

A PRECISION OF COMPUTATION IN THE PROJECTIVE SPACE

VACLAV SKALA1, VIT ONDRACKA
1Department of Computer Science and Engineering

University of West Bohemia
Univerzitni 8, CZ 306 14 Plzen

CZECH REPUBLIC
skala@kiv.zcu.cz http://www.VaclavSkala.eu

Abstract: - Precision of computation and stability are the key issues in all computational methods. There are a
lot of problems that lead to a “nearly singular” formulation and if standard approaches are taken wrong results
are usually obtained. The projective formulation of many computational problems seems to be very appealing
as the division operation is not needed if result(s) can remain in the projective representation.
This paper focuses on computational precision using the projective space representation. Properties of this
approach are demonstrated on an inversion of the Hilbert matrix, as the inverse is known analytically and
determinant converges to zero. Also, we will compare the proposed approach with the standard method for
solving linear systems of equations – the comparison is based on pivoted Gaussian method and its projective
variant, using the previously developed library PLib for the .NET environment.
The paper proves that elimination of the division operation is entirely possible while preserving the precision of
the calculation and simplicity of code. This could even lead to a significant performance boost with appropriate
hardware support.

Key-Words: - computer graphics, numerical algorithms, projective space, numerical library

1 Introduction
Many problems solved in computer graphics,
computer vision, visualization etc. require fast and
robust computations, usually using the Euclidean
representation. Many of these problems can be
transformed into the projective representation, using
the homogeneous coordinates. This often leads to
improvement in terms of stability, robustness and/or
speed of the calculation.
The projective space is often used in computer
graphics and computer vision fields to represent
geometric transformations. Recently it was shown
that the solution of linear systems of equations is
equivalent to the generalized cross product [10]-[12],
where no division operation is needed. The
projective space also leads to new formulation of
known problems, often resulting in new more robust
and stable algorithms [10], [13], [14].

2. Projective space and duality
Homogeneous coordinates are widely used in
computer graphics applications, usually connected
with geometric transformations, such as rotation,
scaling, translation and projection, etc. In many
cases, homogeneous coordinates are only seen as
a “mathematical tool” that makes a simple
description of geometric transformations possible.

There are many “invisible” impacts on the algorithm
design that may lead to new, faster and robust
algorithms, which can also be supported in GPU
hardware. Fig.1.a. presents a geometrical
interpretation of Euclidean and projective spaces.

x y

w

w=1
x

X Y

(a)
a b

c

c=1
D(p)

D()ρ

A B

(b)

p

D(P)2P2

E2
D(E) 2

ρ

Euclidean, projective and dual space representations

Figure 1

The point x is defined as a point in E2 with
coordinates X=(X,Y) or as a point with
homogeneous coordinates [x,y,w]T, where w usually
equals 1. The point x is actually a “line” without the
origin [0,0,0]T in the projective space P2, and
X = x/w and Y = y/w where w ≠ 0. It can be seen
that the line p∈E2 is actually a plane ρ without the
origin [0,0,0]T in the projective space P2, i.e. a line p
in the Euclidean is defined as:

0aX bY c+ + = (1)

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

Any w ≠ 0 can multiply this equation without any
effect on the geometry and we get a representation in
the projective P2 space as follows:

0 ,0 ≠=++ wcwbyax (2)
In dual representation, see Fig.1.b, the plane ρ can be
represented as a line D(ρ)∈D(P2) or as a point
D(p)∈D(E2), when a projection is made, e.g. for
c = 1. A complete theory on projective spaces can be
found in [1], [3], [4], [15]. On the other hand, there
is a principle of duality that is useful when deriving a
formula. The principle states that any theorem
remains true when we interchange the words “point”
and “line”, “lie on” and “pass through”, “join” and
“intersection” and so on. Once the theorem has been
established, the dual theorem is obtained as
described above [6]. In other words, the principle of
duality in E2 says that in all theorems it is possible to
substitute the term “point” by the term “line” and the
term “line” by the term “point” and the given
theorem stays valid. This helps a lot in solving some
geometrical cases.

Definition 1
The cross product of the two vectors x1 = [x1,y1,w1]T
and x2 = [x2,y2,w2]T is defined as:

1 2 1 1 1

2 2 2

 × det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x x

(3)

where: i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T
Please, note that the homogeneous coordinates are
used.

Theorem 1
Let two points x1 and x2 be given in the projective
space. Then the coefficients of the line p, which is
defined by those two points, are determined as the
cross product of their homogeneous coordinates.

p = x1× x2 (4)
Proof 1
Let the line p∈E2 be defined in homogeneous
coordinates as

ax + by + cw = 0 (5)
We are actually looking for a solution to the
following equations:

1 0T =p x and 2 0T =p x (6)

where: p = [a,b,c]T

It means that any point x that lies on the line p must
satisfy both the equations above and the equation

0T =p x (7)
in other words the vector p is defined as

1 1 1

2 2 2

det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
p

(8)

We can write
()1 2× 0T =x x x

(9)

i.e.

1 1 1

2 2 2

det 0
x y w
x y w
x y w

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

(10)

Then evaluating the determinant, we get the line
coefficients as:

⎥
⎦

⎤
⎢
⎣

⎡
=

22

11det
wy
wy

a

⎥
⎦

⎤
⎢
⎣

⎡
−=

22

11det
wx
wx

b

⎥
⎦

⎤
⎢
⎣

⎡
=

22

11det
yx
yx

c

(11)

Note: For w = 1 we get the standard cross product
formula and the cross product defines the line p, i.e.

p = x1 × x2 (12)
where: p = [a,b,c]T

Theorem 2
Let two lines p1 and p2 be given in the projective
space. Then the homogeneous coordinates of the
point x at the intersection of those two lines are
given by the cross product of vectors of their
coordinates

1 2 1 1 1

2 2 2

 × det a b c
a b c

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x p p

(13)

where: i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T
Note: Actually two equations

1 0T =p x and 2 0T =p x (14)

are solved.

Proof 2
An immediate result of Theorem 1 and the duality
principle.

The E3 case is a little bit more complex as a point is
dual to a plane and vice versa. It should be noted that
a line in E3 is not dual to a line in the dual space, for
details see [6], [15].

In the E3 case the plane ρ is given by three points
X=(X,Y,Z) or by points in the homogeneous
coordinates x=[x,y,z,w]T.

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

Theorem 3
Let three points x1, x2 and x3 be given in the
projective space. Then the coefficients of the
plane ρ, which is defined by those three points, are
determined by the cross product of their
homogeneous coordinates

ρ = x1 × x2 × x3 (15)

where: ρ = [a,b,c,d]T
and the cross product is defined as follows:

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
x y z w
x y z w
x y z w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

x x x

(16)

where: i = [1,0,0,0]T, j = [0,1,0,0]T, k = [0,0,1,0]T ,
l = [0,0,0,1]T
The proof is left to the reader, as it is similar to
Proof 1.

Theorem 4
Let three planes ρ1, ρ2 and ρ3 be given in the
projective space. Then the homogeneous coordinates
of the point x at the intersection of those three planes
are given by the cross product of their coordinates

x = ρ1 × ρ2 × ρ3 (17)

i.e.:

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
a b c d
a b c d
a b c d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

ρ ρ ρ

(18)

where: i = [1,0,0,0]T, j = [0,1,0,0]T, k = [0,0,1,0]T ,
 l = [0,0,0,1]T
The proof is left to the reader, as it is similar to
Proof 2.

These theorems are very important as they enable us
to handle some problems defined in the
homogeneous coordinates efficiently and make the
computations more robust and effective.

3 Gaussian Elimination
The Gauss-Jordan elimination is a well-known
method for solving systems of n linear equations:

Ax = b (19)
A solution exists if A is a regular matrix; furthermore
in this paper we are interested specifically in the case
of a square regular matrix. We can rearrange the
equations and the right hand side vector into an
augmented matrix A|b (with coefficients ai,j) to get
our problem reformulated into this form:

niaxa
n

j
nijji ,,2,1

1
1,, K==∑

=
+ (20)

The solution is then found by transforming the given
matrix A into upper triangular matrix A’, (with
coefficients a’i,j). The components xi of the solution
vector x:

1,,1,
1

,1, K−=′−′= ∑
+=

+ nnjaax
n

ij
jinii (21)

One of the problems of this unmodified, standard
approach is its numerical stability. This can be
solved by pivoting, a method which selects rows
with higher values for elimination of the others. This
means that the coefficients are kept at lower order,
which – because of floating point numbers storage
pattern – helps to preserve the precision.

2.1. A projective extension. One of the very basic
properties of the projective space is that the vectors
are equivalent if they are multiplied including the
homogeneous coordinate by any value except zero:
[] []Ti

T
i kwkakakawaaa :,,,:,,, 2121 KK = (22)

If we expand matrix A|b to A|b|w, we get a new –
projective – matrix, with the same properties for the
solving of the system.
Since the Gaussian elimination is an iterative
algorithm, we can run into problems with numerical
overflow of vector components, if we want to
eliminate the use of the division operation. Using
homogeneous coordinates, we can easily solve this
problem. Based on (22), the following formula is
valid for vector with homogeneous coordinate:

[]

[]Tw
ss

i
ss

T

s

s

ws

s

is

s

Ts
w

s
i

s

rrr

rrr

rrr

ww

w

w

w

i

w

wi

:2,,2

2
2:

2
2,,

2
2

2:2,,2

11

1

1

1

1

1

−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

K

K

K

 (23)

We will call this operation the exponent
normalization further in this paper.

4 Experiments
We have chosen a Hilbert matrix for the coefficients
of our system. Its coefficients are given by the
following formula:

nji
ji

a ji ..1,
1

1
, ∈

−+
= (24)

The determinant of the Hilbert matrix is very quickly
falling towards zero as the dimension of the matrix
grows, making it a perfect candidate for the precision
testing.

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

The right hand vector is chosen as:
niibi ..1 1 ∈−= (25)

Size of the problem was limited to n 20..2∈n for
the following comparisons, as the Hilbert matrix is
becoming very ill-conditioned with growing n (the
determinant value for n = 5 is of order 10-15).
Two methods were implemented for the comparison
purposes:
- pivoting Gaussian elimination
- non-pivoting projective Gaussian elimination
The first comparison of the methods is based upon
the back substitution of the resulting vectors – x for
the standard and xp for the projective variant. The
differences of the newly obtained right hand vectors
b’ (b’p respectively) is then calculated and
normalized:

∑
=

−′=
n

i
ii bb

n 1

1δ (26)

∑
=

−′=
n

i
iipp bb

n 1

1δ
(27)

The second comparison is based upon the exact
solution of the given system. We can compute this
using the matrix inverse H –1:

bHx 1−=e (27)
since the formula for the coefficients is known [1]:

() ()
2

),(
1

1
211

 11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

−+−= +−

i
ji

in
jn

jn
in

jiji
jiH

 (28)

The numbers of this matrix are integers. This means
– supposing we chose the integer right hand vector –
that the xe components will be integers as well.

As one can imagine, the multiplication of large
numbers causes an imprecision problem, as the
length of the mantissa is limited. Our second
comparison is based upon this fact – the imprecision
can be understood as a round-off error, and we will
calculate it as sum of the differences from the vector
obtained by the analytic solution:

∑
=

−=
n

i
iei xx

1
ε (29)

∑
=

−=
n

i
ieipp xx

1
ε (30)

However, even the exact solution values are affected
by the round-off error for n > 11, therefore we
introduce the expected result error:

[]∑
=

−=
n

i
eiei xx

1
 ξ (31)

5 Results
The need for rapid development and verification of
various algorithms’ projective variants led us to
implement a library for computation in the projective
space – PLib [8]. It allows users to perform various
arithmetical operations on projective vectors, while
providing natural notation and therefore making the
code more readable, and makes algorithms easier to
implement. However this comes at a price of a
performance penalty. Implementation of the
algorithm for these tests was done using C# and the
.NET platform.

The Table 1 shows that there are just minor
differences in error rates of the methods and
therefore they can be considered as equal in terms of
precision from the first criterion standpoint.
The Fig 1 shows the data from Table 1 in a chart.
There is an interesting change in trend for n > 14, but
both algorithms are already far off the correct result
– round-off errors are too large.

As for the second criterion, the results are summed
up in the Table 2. Again, we can see very similar
values for both error rates.
Also, the values of the expected error of the analytic
solution ξ are significantly smaller compared to ε and
εp error rates, therefore they should not be affected
by the imprecise values of the analytical solution.

6 Conclusion
The experiment described in this paper proved that
choosing a projective variant of the existing
algorithm for solving the system of linear equations
does not result in any loss of precision, while the
division operation can be avoided completely.
Although in the current state of the hardware support
there is a performance penalty for the chosen
approach (because of no support for the vector
normalization), the future performance gains could
be substantial.

The precision testing results nevertheless clearly
proved that the precision of both the original
pivoting Gauss-Jordan elimination and its projective
non-pivoting variant is very similar, but the
projective approach is clear and simple to
implement.

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

Table 1 – The normalized error of the right hand side
vector (26),(27) for both Euclidean and projective

variant.

Table 2 - The absolute solution errors and the analytic
solution’s expected error.

N δ δp
3 1,13687E-13 1,13687E-13
4 4,83169E-13 5,68434E-12
5 2,41016E-11 3,27418E-11
6 1,14596E-10 2,18279E-11
7 5,42059E-09 6,16274E-09
8 1,32131E-08 4,24334E-08
9 1,50176E-08 1,61817E-08
10 2,41213E-07 2,73809E-07
11 1,63913E-06 8,3819E-06
12 1,21891E-05 1,08033E-05
13 2,33352E-05 0,0001266
14 0,003219604 0,000446826
15 4,39584E-05 1,8537E-05
16 0,000948489 0,000533044
17 0,000926971 0,000339508
18 0,038101196 0,001551539
19 0,008105278 0,000868797
20 0,000365913 0,000473663

N ε εp ξ
3 9,9476E-13 9,9476E-13 0
4 4,82288E-10 3,42681E-10 0
5 1,13388E-08 8,73861E-08 0
6 5,48076E-05 0,000114997 0
7 0,014617973 0,033832397 0
8 0,718061665 2,935712333 0
9 982,6737948 625,4853351 0
10 222632,4052 260728,5907 0
11 40196386,46 55722836,66 0
12 5,16119E+12 5,16056E+12 0,517578125
13 4,44831E+13 4,43733E+13 0,501983881
14 3,64103E+14 3,5566E+14 0,127941132
15 2,96255E+15 2,96225E+15 0,2433815
16 2,27245E+16 2,27254E+16 10,28186035
17 1,79964E+17 1,79965E+17 166,4783936
18 1,34053E+18 1,34054E+18 1780,544922
19 1,0235E+19 1,0235E+19 9886,289063
20 7,44466E+19 7,44466E+19 110468,0039

7 Acknowledgement
The authors would like to thank colleagues and
students at the University of West Bohemia for their
comments and suggestions. This project was
supported by the grants VIRTUAL No 2C06002, LC-
CPG No LC06008 of the MŠMT Czech Republic.

References
[1] Bloomenthal,J., Rokne,J.: Homogeneous

Coordinates, The Visual Computer, Vol.11,
No.1, pp.15-26, 1994.

[2] Choi, M.D., Tricks or Treats with the Hilbert
Matrix, American Mathematical Monthly 90,
p301-312, 1983

[3] Coxeter,H.S.M.: Introduction to Geometry, John
Wiley, 1969.

[4] Hartley,R, Zisserman,A.: MultiView Geometry in
Computer Vision, Cambridge Univ. Press, 2000.

[5] Jimenez,J.J., Segura,R.J., Feito,F.R.: Efficient
Collision Detection between 2D Polygons,
Journal of WSCG, Vol.12, No.1-3, 2003

[6] Johnson,M: Proof by Duality: or the Discovery
of New Theorems, Mathematics Today, 12,1996.

[7] Richardson, T.M.: The Filbert Matrix, 1999,
http://arxiv.org/abs/math.LA/9905079/ 6/2007

[8] Skala, V., Kaiser, J., Ondracka, V.: A library for
computation in the projective space, in 6th
International Conference Proceedings of Aplimat
2007, STU Bratislava , 2007

[9] Skala, V.: Length, Area and Volume
Computation in Homogeneous Coordinates,
International Journal of Image and Graphics,
Vol.6, No.4, p.625-639, 2006

[10] Skala, V.: Barycentric Coordinates Computation
in Homogeneous Coordinates, in Computers &
Graphics, Vol.32, No.1, p120-127, Elsevier,
2008

[11] Skala, V.: GPU Computation in Projective Space
Using Homogeneous Coordinates, Game
Programming Gems 6 (Ed.Dickheiser,M.), p137-
147, Charles River Media, 2006

[12] Skala,V.: Computation in Projective Space,
MAMECTIS conference, La Laguna, Spain,
WSEAS, pp.152-157, 2009

[13] Skala,V.: Duality and Intersection Computation
in Projective Space with GPU support, Applied
Mathematics, Simulation and Modelling - ASM
2010, NAUN, Corfu, Greece, pp.66-71, 2010

[14] Skala,V:Duality and Intersection Computation in
Projective Space with GPU Support, WSEAS
Trans.on Mathematics, Vol.9.No.6.pp.407-416,
2010

[15] Stolfi,J: Oriented Projective Geometry,
Academic Press, 2001.

[16] PLib: Projective Library,
http://www.kiv.zcu.cz/vyzkum/
software/index.html

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

Fig 2. Error of the right hand side vector

Fig 3. Absolute errors of the solution and expected analytical solution error

Appendix A

The cross product in 4D defined as

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

det
x y z w
x y z w
x y z w

× × =

i j k l

x x x

(A1)

can be implemented in Cg/HLSL on GPU as
follows:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{
 return (dot(x1.yzw, cross(x2.yzw, x3.yzw)),
 -dot(x1.xzw, cross(x2.xzw, x3.xzw)),
 dot(x1.xyw, cross(x2.xyw, x3.xyw)),
 -dot(x1.xyz, cross(x2.xyz, x3.xyz)));
}

1,0E-14
1,0E-13
1,0E-12
1,0E-11
1,0E-10
1,0E-09
1,0E-08
1,0E-07
1,0E-06
1,0E-05
1,0E-04
1,0E-03
1,0E-02
1,0E-01
1,0E+00

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rro

r

Order of the Hilbert matrix

δ
δp

1,0E-13
1,0E-11
1,0E-09
1,0E-07
1,0E-05
1,0E-03
1,0E-01
1,0E+01
1,0E+03
1,0E+05
1,0E+07
1,0E+09
1,0E+11
1,0E+13
1,0E+15
1,0E+17
1,0E+19

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rr

or

Order of the Hilbert matrix

ε

εp

ξ

Recent Researches in Computer Science, pp.35-40, 15th WSEAS Int.Conference on Computers, ISBN 978-1-61804-019-0, Corfu, Greece, 2011

