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Abstract: - Precision of computation and stability are the key issues in all computational methods. There are a 
lot of problems that lead to a “nearly singular” formulation and if standard approaches are taken wrong results 
are usually obtained. The projective formulation of many computational problems seems to be very appealing 
as the division operation is not needed if result(s) can remain in the projective representation. 
This paper focuses on computational precision using the projective space representation. Properties of this 
approach are demonstrated on an inversion of the Hilbert matrix, as the inverse is known analytically and 
determinant converges to zero. Also, we will compare the proposed approach with the standard method for 
solving linear systems of equations – the comparison is based on pivoted Gaussian method and its projective 
variant, using the previously developed library PLib for the .NET environment. 
The paper proves that elimination of the division operation is entirely possible while preserving the precision of 
the calculation and simplicity of code. This could even lead to a significant performance boost with appropriate 
hardware support. 
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1 Introduction 
Many problems solved in computer graphics, 
computer vision, visualization etc. require fast and 
robust computations, usually using the Euclidean 
representation. Many of these problems can be 
transformed into the projective representation, using 
the homogeneous coordinates. This often leads to 
improvement in terms of stability, robustness and/or 
speed of the calculation. 
The projective space is often used in computer 
graphics and computer vision fields to represent 
geometric transformations. Recently it was shown 
that the solution of linear systems of equations is 
equivalent to the generalized cross product [10]-[12], 
where no division operation is needed. The 
projective space also leads to new formulation of 
known problems, often resulting in new more robust 
and stable algorithms [10], [13], [14].  
 
2. Projective space and duality 
Homogeneous coordinates are widely used in 
computer graphics applications, usually connected 
with geometric transformations, such as rotation, 
scaling, translation and projection, etc. In many 
cases, homogeneous coordinates are only seen as 
a “mathematical tool” that makes a simple 
description of geometric transformations possible. 

There are many “invisible” impacts on the algorithm 
design that may lead to new, faster and robust 
algorithms, which can also be supported in GPU 
hardware. Fig.1.a. presents a geometrical 
interpretation of Euclidean and projective spaces. 
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The point x is defined as a point in E2 with 
coordinates X=(X,Y) or as a point with 
homogeneous coordinates [x,y,w]T, where w usually 
equals 1. The point x is actually a “line” without the 
origin [0,0,0]T in the projective space P2, and 
X = x/w and Y = y/w where w ≠ 0. It can be seen 
that the line p∈E2 is actually a plane ρ without the 
origin [0,0,0]T in the projective space P2, i.e. a line p 
in the Euclidean is defined as: 

0aX bY c+ + =  (1) 
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Any w ≠ 0 can multiply this equation without any 
effect on the geometry and we get a representation in 
the projective P2 space as follows: 

0    ,0 ≠=++ wcwbyax  (2) 
In dual representation, see Fig.1.b, the plane ρ can be 
represented as a line D(ρ)∈D(P2) or as a point 
D(p)∈D(E2), when a projection is made, e.g. for 
c = 1. A complete theory on projective spaces can be 
found in [1], [3], [4], [15]. On the other hand, there 
is a principle of duality that is useful when deriving a 
formula. The principle states that any theorem 
remains true when we interchange the words “point” 
and “line”, “lie on” and “pass through”, “join” and 
“intersection” and so on. Once the theorem has been 
established, the dual theorem is obtained as 
described above [6]. In other words, the principle of 
duality in E2 says that in all theorems it is possible to 
substitute the term “point” by the term “line” and the 
term “line” by the term “point” and the given 
theorem stays valid. This helps a lot in solving some 
geometrical cases.  
 
Definition 1 
The cross product of the two vectors x1 = [x1,y1,w1]T 
and x2 = [x2,y2,w2]T is defined as: 

1 2 1 1 1

2 2 2

 × det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x x

 

(3) 

where: i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T   
Please, note that the homogeneous coordinates are 
used. 
 
Theorem 1 
Let two points x1 and x2 be given in the projective 
space. Then the coefficients of the line p, which is 
defined by those two points, are determined as the 
cross product of their homogeneous coordinates. 

p = x1× x2 (4) 
Proof 1 
Let the line p∈E2 be defined in homogeneous 
coordinates as  

ax + by + cw = 0 (5) 
We are actually looking for a solution to the 
following equations: 

1 0T =p x      and       2 0T =p x  (6) 

where: p = [a,b,c]T 
 
It means that any point x that lies on the line p must 
satisfy both the equations above and the equation  

0T =p x  (7) 
in other words the vector p is defined as 

1 1 1

2 2 2

det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
p

 

(8) 

We can write  
( )1 2× 0T =x x x  

(9) 

i.e. 

1 1 1

2 2 2

det 0
x y w
x y w
x y w

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦  

(10) 

 
Then evaluating the determinant, we get the line 
coefficients as: 

⎥
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⎥
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⎢
⎣

⎡
−=

22

11det
wx
wx
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⎥
⎦

⎤
⎢
⎣

⎡
=

22

11det
yx
yx

c
 

(11) 

Note: For w = 1 we get the standard cross product 
formula and the cross product defines the line p, i.e.  

p = x1 × x2 (12) 
where: p = [a,b,c]T 
 
Theorem 2 
Let two lines p1 and p2 be given in the projective 
space. Then the homogeneous coordinates of the 
point x at the intersection of those two lines are 
given by the cross product of vectors of their 
coordinates  

1 2 1 1 1

2 2 2

 × det a b c
a b c

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x p p

 

(13) 

where: i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T   
Note: Actually two equations  

1 0T =p x      and       2 0T =p x  (14) 

are solved. 
 
Proof 2 
An immediate result of Theorem 1 and the duality 
principle. 
 
The E3 case is a little bit more complex as a point is 
dual to a plane and vice versa. It should be noted that 
a line in E3 is not dual to a line in the dual space, for 
details see [6], [15]. 
  
In the E3 case the plane ρ is given by three points 
X=(X,Y,Z) or by points in the homogeneous 
coordinates x=[x,y,z,w]T.  
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Theorem 3 
Let three points x1, x2 and x3 be given in the 
projective space. Then the coefficients of the 
plane ρ, which is defined by those three points, are 
determined by the cross product of their 
homogeneous coordinates 

ρ =  x1 × x2 × x3 (15) 
 
where: ρ = [a,b,c,d]T 
and the cross product is defined as follows: 

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
x y z w
x y z w
x y z w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

x x x

 

(16) 

where: i = [1,0,0,0]T, j = [0,1,0,0]T, k = [0,0,1,0]T ,   
l = [0,0,0,1]T   
The proof is left to the reader, as it is similar to 
Proof 1. 
 
Theorem 4 
Let three planes ρ1, ρ2 and ρ3 be given in the 
projective space. Then the homogeneous coordinates 
of the point x at the intersection of those three planes 
are given by the cross product of their coordinates  

x = ρ1 × ρ2 × ρ3 (17) 
 
i.e.: 

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
a b c d
a b c d
a b c d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

ρ ρ ρ

 

(18) 

where: i = [1,0,0,0]T, j = [0,1,0,0]T, k = [0,0,1,0]T , 
 l = [0,0,0,1]T   
The proof is left to the reader, as it is similar to 
Proof 2. 
 
These theorems are very important as they enable us 
to handle some problems defined in the 
homogeneous coordinates efficiently and make the 
computations more robust and effective.  
 
3 Gaussian Elimination  
The Gauss-Jordan elimination is a well-known 
method for solving systems of n linear equations: 

Ax = b (19)
A solution exists if A is a regular matrix; furthermore 
in this paper we are interested specifically in the case 
of a square regular matrix. We can rearrange the 
equations and the right hand side vector into an 
augmented matrix A|b (with coefficients ai,j) to get 
our problem reformulated into this form: 

niaxa
n

j
nijji ,,2,1      

1
1,, K==∑

=
+  (20)

The solution is then found by transforming the given 
matrix A into upper triangular matrix A’, (with 
coefficients a’i,j). The components xi of the solution 
vector x: 

1,,1,      
1

,1, K−=′−′= ∑
+=

+ nnjaax
n

ij
jinii (21)

One of the problems of this unmodified, standard 
approach is its numerical stability. This can be 
solved by pivoting, a method which selects rows 
with higher values for elimination of the others. This 
means that the coefficients are kept at lower order, 
which – because of floating point numbers storage 
pattern – helps to preserve the precision. 
 
2.1. A projective extension. One of the very basic 
properties of the projective space is that the vectors 
are equivalent if they are multiplied including the 
homogeneous coordinate by any value except zero: 
[ ] [ ]Ti

T
i kwkakakawaaa :,,,:,,, 2121 KK = (22)

If we expand matrix A|b to A|b|w, we get a new – 
projective – matrix, with the same properties for the 
solving of the system. 
Since the Gaussian elimination is an iterative 
algorithm, we can run into problems with numerical 
overflow of vector components, if we want to 
eliminate the use of the division operation. Using 
homogeneous coordinates, we can easily solve this 
problem. Based on (22), the following formula is 
valid for vector with homogeneous coordinate: 

[ ]

[ ]Tw
ss

i
ss

T

s

s

ws

s

is

s

Ts
w

s
i

s

rrr

rrr

rrr

ww

w

w

w

i

w

wi
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2
2:

2
2,,

2
2

2:2,,2 

11

1

1

1

1

1

−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

K

K

K

 (23)

We will call this operation the exponent 
normalization further in this paper. 
 
4 Experiments 
We have chosen a Hilbert matrix for the coefficients 
of our system. Its coefficients are given by the 
following formula: 

nji
ji

a ji ..1,      
1

1
, ∈

−+
=  (24)

The determinant of the Hilbert matrix is very quickly 
falling towards zero as the dimension of the matrix 
grows, making it a perfect candidate for the precision 
testing. 
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The right hand vector is chosen as: 
niibi ..1      1 ∈−=  (25)

Size of the problem was limited to n 20..2∈n  for 
the following comparisons, as the Hilbert matrix is 
becoming very ill-conditioned with growing n (the 
determinant value for n = 5 is of order 10-15). 
Two methods were implemented for the comparison 
purposes: 
- pivoting Gaussian elimination 
- non-pivoting projective Gaussian elimination 
The first comparison of the methods is based upon 
the back substitution of the resulting vectors – x for 
the standard and xp for the projective variant. The 
differences of the newly obtained right hand vectors 
b’ (b’p respectively) is then calculated and 
normalized: 

∑
=

−′=
n

i
ii bb

n 1

1δ  (26)

∑
=

−′=
n

i
iipp bb

n 1

1δ  
(27)

The second comparison is based upon the exact 
solution of the given system. We can compute this 
using the matrix inverse H –1: 

bHx 1−=e  (27)
since the formula for the coefficients is known [1]: 

( ) ( )
2

),(
1

1
211

 11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

−+−= +−

i
ji

in
jn

jn
in

jiji
jiH

 (28)

The numbers of this matrix are integers. This means 
– supposing we chose the integer right hand vector – 
that the xe components will be integers as well. 
 
As one can imagine, the multiplication of large 
numbers causes an imprecision problem, as the 
length of the mantissa is limited. Our second 
comparison is based upon this fact – the imprecision 
can be understood as a round-off error, and we will 
calculate it as sum of the differences from the vector 
obtained by the analytic solution: 

∑
=

−=
n

i
iei xx

1
ε  (29)

∑
=

−=
n

i
ieipp xx

1
ε  (30)

However, even the exact solution values are affected 
by the round-off error for n > 11, therefore we 
introduce the expected result error: 

[ ]∑
=

−=
n

i
eiei xx

1
 ξ  (31)

 
5 Results 
The need for rapid development and verification of 
various algorithms’ projective variants led us to 
implement a library for computation in the projective 
space – PLib [8]. It allows users to perform various 
arithmetical operations on projective vectors, while 
providing natural notation and therefore making the 
code more readable, and makes algorithms easier to 
implement. However this comes at a price of a 
performance penalty. Implementation of the 
algorithm for these tests was done using C# and the 
.NET platform. 
 
The Table 1 shows that there are just minor 
differences in error rates of the methods and 
therefore they can be considered as equal in terms of 
precision from the first criterion standpoint. 
The Fig 1 shows the data from Table 1 in a chart. 
There is an interesting change in trend for n > 14, but 
both algorithms are already far off the correct result 
– round-off errors are too large. 
 
As for the second criterion, the results are summed 
up in the Table 2. Again, we can see very similar 
values for both error rates. 
Also, the values of the expected error of the analytic 
solution ξ are significantly smaller compared to ε and 
εp error rates, therefore they should not be affected 
by the imprecise values of the analytical solution. 
 
6 Conclusion 
The experiment described in this paper proved that 
choosing a projective variant of the existing 
algorithm for solving the system of linear equations 
does not result in any loss of precision, while the 
division operation can be avoided completely. 
Although in the current state of the hardware support 
there is a performance penalty for the chosen 
approach (because of no support for the vector 
normalization), the future performance gains could 
be substantial. 

The precision testing results nevertheless clearly 
proved that the precision of both the original 
pivoting Gauss-Jordan elimination and its projective 
non-pivoting variant is very similar, but the 
projective approach is clear and simple to 
implement. 
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Table 1 – The normalized error of the right hand side 
vector (26),(27) for both Euclidean and projective 

variant. 

Table 2 - The absolute solution errors and the analytic 
solution’s expected error. 

N δ δp 
3 1,13687E-13 1,13687E-13
4 4,83169E-13 5,68434E-12
5 2,41016E-11 3,27418E-11
6 1,14596E-10 2,18279E-11
7 5,42059E-09 6,16274E-09
8 1,32131E-08 4,24334E-08
9 1,50176E-08 1,61817E-08
10 2,41213E-07 2,73809E-07
11 1,63913E-06 8,3819E-06 
12 1,21891E-05 1,08033E-05
13 2,33352E-05 0,0001266 
14 0,003219604 0,000446826
15 4,39584E-05 1,8537E-05 
16 0,000948489 0,000533044
17 0,000926971 0,000339508
18 0,038101196 0,001551539
19 0,008105278 0,000868797
20 0,000365913 0,000473663

 

N ε εp ξ 
3 9,9476E-13 9,9476E-13 0 
4 4,82288E-10 3,42681E-10 0 
5 1,13388E-08 8,73861E-08 0 
6 5,48076E-05 0,000114997 0 
7 0,014617973 0,033832397 0 
8 0,718061665 2,935712333 0 
9 982,6737948 625,4853351 0 
10 222632,4052 260728,5907 0 
11 40196386,46 55722836,66 0 
12 5,16119E+12 5,16056E+12 0,517578125
13 4,44831E+13 4,43733E+13 0,501983881
14 3,64103E+14 3,5566E+14 0,127941132
15 2,96255E+15 2,96225E+15 0,2433815
16 2,27245E+16 2,27254E+16 10,28186035
17 1,79964E+17 1,79965E+17 166,4783936
18 1,34053E+18 1,34054E+18 1780,544922
19 1,0235E+19 1,0235E+19 9886,289063
20 7,44466E+19 7,44466E+19 110468,0039
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Fig 2. Error of the right hand side vector 

 
Fig 3. Absolute errors of the solution and expected analytical solution error 

 
 

Appendix A 
 
The cross product in 4D defined as 
 

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

det
x y z w
x y z w
x y z w

× × =

i j k l

x x x

 

(A1) 

 

can be implemented in Cg/HLSL on GPU as 
follows: 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ 
 return ( dot(x1.yzw, cross(x2.yzw, x3.yzw)),  
 -dot(x1.xzw, cross(x2.xzw, x3.xzw)),  
 dot(x1.xyw, cross(x2.xyw, x3.xyw)), 
 -dot(x1.xyz, cross(x2.xyz, x3.xyz)) ); 
} 
 
 

 

1,0E-14
1,0E-13
1,0E-12
1,0E-11
1,0E-10
1,0E-09
1,0E-08
1,0E-07
1,0E-06
1,0E-05
1,0E-04
1,0E-03
1,0E-02
1,0E-01
1,0E+00

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rro

r

Order of the Hilbert matrix

δ
δp

1,0E-13
1,0E-11
1,0E-09
1,0E-07
1,0E-05
1,0E-03
1,0E-01
1,0E+01
1,0E+03
1,0E+05
1,0E+07
1,0E+09
1,0E+11
1,0E+13
1,0E+15
1,0E+17
1,0E+19

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rr

or

Order of the Hilbert matrix

ε

εp

ξ
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