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There are many algorithms based on computation of intersection of lines, planes etc. Those 
algorithms are based on representation in the Euclidean space. Sometimes, very complex 
mathematical notations are used to express simple mathematical solutions.  
This paper presents solutions of some selected problems that can be easily solved by the 
projective space representation. Sometimes, if the principle of duality is used, quite surprising 
solutions can be found and new useful theorems can be generated as well.  
It will be shown that it is not necessary to solve linear system of equations to find the intersection 
of two lines in the case of E2 or the intersection of three planes in the case of E3. 
Plücker coordinates and principle of duality are used to derive an equation of a parametric line in 
E3 as an intersection of two planes. This new formulation avoids division operations and 
increases the robustness of computation. 
The presented approach for intersection computation is well suited especially for applications 
where robustness is required, e.g. large GIS/CAD/CAM systems etc.  
 
Keywords: computer graphics; homogeneous coordinates; Plücker coordinates; principle of 
duality; line and plane intersections computation; projective geometry 

 
 

Notation used: 
En - n-dimensional Euclidean space,  
Dn - n-dimensional Dual space, 
Pn - n-dimensional Projective space of  En or Dn,  
X  - vector in Euclidean or Dual spaces,  
x - vector in Projective space,  

)(i
kx - value of the i-th coordinate of the vector kx , i.e. kk y=)2(x etc. 

a × b - cross-product of a, b vectors, 
a . b or aT b - dot-product of a, b vectors. 
 
 
1. Introduction 
 
The homogeneous coordinates are used in computer graphics and related fields to 
represent geometric transformations, projections. They are often thought to be just a 
mathematical tool to enable representation of fundamental geometric transformations 
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by matrix or vector multiplications. The homogeneous coordinates are not the only 
ones available. Nevertheless, they are often used for point/line/plane description in the 
projective space. 

Algorithms for intersection computations are usually performed in the Euclidean 
space using the Euclidean coordinates. Primitives are converted from the homogeneous 
coordinates to the Euclidean coordinates before computation and the result is converted 
back to the homogeneous coordinates for future manipulations. This is quite visible 
especially within the graphical pipeline. 

Unfortunately, these conversions are time consuming and require division 
operations, which cause instability and decrease robustness in some situations. 

There are some simple problems like intersection of lines or planes, where 
computer scientists have trouble if the Euclidean coordinates are used. On the other 
hand, the homogeneous coordinates cause some difficulties in development of new 
algorithms. Of course, it is necessary to understand principle of the projective geometry 
and geometrical interpretation of the projective space. 
 
2. Projective geometry 
 
The homogeneous coordinates are mostly introduced with geometric transformations 
concepts and used for the projective space representation. Many books and papers 
define mathematically how to make transformations from the homogeneous 
coordinates to the Euclidean coordinates and vice versa. Nevertheless, geometrical 
interpretation is missing in nearly all publications. Therefore, the question is how to 
imagine the projective space P2 and representations of elements.  

Conversion from the homogeneous coordinates to the Euclidean coordinates is 
defined for E2 case as: 

 
 X = x / w     Y = y / w (1) 
 
where: w ≠ 0, point x = [ x, y, w]T and x∈P2, X = [X, Y]T and X∈E2, 
if w = 0 then x represents “an ideal point”, that is a point in infinity.  
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Figure 1: Euclidean, projective and dual space representations 

 
Let us consider a situation at Fig.1.a. We can see that the point X∈E2 in the 

Euclidean space is actually a line p in the projective space P2 passing the given point 
X∈E2 at the plane w = 1 (that is the Euclidean space actually) and the origin of the 
projective space P2. It means that all the points x∈P2 of the line (excluding [0, 0, 0]T) 
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represent the same point in the Euclidean space. Similarly, transformation for the E3 
case is defined as: 

 
 X = x / w     Y = y / w     Z = z / w (2) 
 

where: w ≠ 0, point x = [ x, y, z, w]T and x∈P3, X = [X, Y, Z]T and X∈E3. 
 
Let us assume the Euclidean space E2, see Fig.1.a. We actually use the projective space 
whenever we use the implicit representation for graphical elements.  

Let us imagine that the Euclidean space E2 is represented as a plane w = 1. For 
simplicity, let us consider a line p defined as: 

 
 aX + bY + c = 0 (3) 

 
We can multiply it by w ≠ 0 and we get: 
 
 ax + by + cw = 0 (4) 
 
It is actually a plane in the projective space P2 (excluding the point [0, 0, 0]T) passing 
through the origin. The vector of coefficients p represents the line p∈E2: 

 
 p = [a, b, c]T (5) 

 
Let us assume a dual representation, see Fig.1.b. In the dual representation in which the 
point [a, b, c]T actually represents a line D(p)∈D(E2) given by the point [a, b, c]T and 
the origin of the dual space, see [1], [2] for details on projective geometry.  

It is necessary to note that any ξ ≠ 0 can multiply the Eq.4 without any effect to the 
geometry. It means that there will be different vectors of coefficients p that will 
represent the same line p∈E2.  

In the dual coordinate system, those points will form a line D(p). We can project the 
line D(p) e.g. to a plane with c = 1 and we get a point. The line p∈E2 is actually 
represented in projective space by a plane ρ∈P2 (the origin [0,0,0]T is excluded). It 
means that the line p∈E2 is a point in the dual representation D(p)∈D(E2) and vice 
versa.  

On the other hand, there is a phenomenon of a principle of duality that can be used 
for derivation of some useful formula.  

 
3. Principle of duality 

 
The principle of duality in E2 states that any theorem remains true when we interchange 
the words “point” and “line”, “lie on” and “pass through”, “join” and “intersection”, 
“collinear” and “concurrent” and so on. Once the theorem has been established, the 
dual theorem is obtained as described above, see [3], [4] for details. 

In other words, the principle of duality says that in all theorems it is possible to 
substitute the term “point” by the term “line” and the term “line” by the term “point” 
etc. in E2 and the given theorem stays valid. Similar duality is valid for E3 as well, i.e. 
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the terms “point” and “plane” are dual etc. This helps a lot to solve some geometrical 
problems.  

 
3.1. E2 case 
 
In the E2 case, parameters of a line given by two points or an intersection point of two 
lines are computed very often. We will use the duality principle in which a point is dual 
to a line and vice versa. 

In the first case, the solution is simple if the points are not in the homogeneous 
coordinates. If they are given in the homogeneous coordinates, the coordinates are 
converted to the Euclidean coordinates and then parameters of the line are computed.  

In the second case, a linear system of equations of the degree two is usually solved 
and division is to be performed. It is necessary to note that any division operation 
decreases robustness of computation.  

A new approach performing an appropriate computation in projective space will be 
presented. It will allow us to avoid division operations. 
 
Definition1 
The cross-product of two vectors x1, x2∈E2, if given in the homogeneous coordinates, 
is defined as (if w = 1 the standard formula is obtained): 
 

 

222

11121

zyx
zyx
kji

xx =×  (6) 

 
where: i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T  
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Theorem1 
Let two points x1, x2∈E2 be given in the projective space. Then a line p∈E2 defined by 
those two points is determined as a cross-product: 
 
 p = x1 × x2 (8) 
 
where: p = [a, b, c]T  
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Proof1 
Let the line p∈E2 is defined as: 
 
 ax + by + c = 0 (9) 
 
The end-points must satisfy Eq.9 and therefore 01 =pxT  and 02 =pxT , i.e. 

 ⎥
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It can be seen that it is a standard formula [5] if the  Eq.7 is used: 
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and therefore the cross-product defines the line p, i.e.  
 
 p  = x1 × x2 (12) 

 
 
Note: It can be seen that Eq.8 is valid also for cases when w ≠ 0 and w ≠ 1. 
Coefficients a, b, c can be determined as sub-determinants in the Eq.10. The proof is 
left to a reader. 
 
Now we can apply the principle of duality directly. 
 
Theorem2 
Let two lines p1, p2∈E2 be given in the projective space. Then a point x defined as an 
intersection of those two lines is determined as a cross product: 
 
 x = p1 × p2. (13) 
where: x = [x, y, w]T 
 
Proof2 
This is a direct consequence of the principle of duality application. 

 
222

11121

cba
cba
wyx

=×= ppx  (14) 

where: x = [x, y, w]T 
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These two theorems are very important as they enable us to handle some problems 
defined in the homogeneous coordinates directly and make computations quite 
effective. 

Direct impact of these two theorems is that it is very easy to compute a line given 
by two points in E2 and an intersection point of two lines in E2 as well. The presented 
approach is convenient if vector-vector operations are supported, especially for GPU 
applications. Note that we do not need to solve linear system of equations to find the 
intersection point of two lines and if the result can remain in the homogeneous 
coordinates, no division operation is needed. 

Of course, there is a question, how to handle the E3 cases. 
 

3.2. E3 case 
 
The E3 case is a little bit complicated as the projective geometry and duality offer more 
possibilities, but generally a point is dual to a plane and vice versa. So let us explore 
how to find: 
• a plane defined by three points given in the homogeneous coordinates, 
• an intersection point of three planes. 
To find a plane is simple if points are converted to the Euclidean coordinates. It 
requires use of the division operation and therefore robustness is decreased in general. 

Let us explore the extension possibility of the E2 cases, as discussed above, to the E3 
case.  

 
Definition2 
The cross-product of three vectors x1, x2 and x3 is defined as: 
 

 

3333

2222

1111
321

wzyx
wzyx
wzyx
lkji

xxx =××  (15) 

 
where: i = [1,0,0,0]T, j = [0,1,0,0]T, k = [0,0,1,0]T, l = [0,0,0,1]T   
 
Theorem3 
Let three points x1, x2, x3 be given in the projective space. Then a plane ρ∈E3 defined 
by those three points is determined as: 
 
 ρ = x1 × x2 × x3 (16) 
 
Proof3 
Let the plane ρ∈E3 be defined as: 
 
 ax + by + cz + d = 0 (17) 
 
It can be seen that: 
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that is the cross-product that defines a plane ρ if three points are given and therefore: 
 
 ρ = x1 × x2 × x3 (19) 

 
 
Note: It can be seen that it is a standard formula for the case w = 1 [5]. The proof is left 
to a reader. 
 
As a point is dual to a plane, a plane is dual to a point we can use the principle of 
duality directly, now. 
  
Theorem4 
Let three planes ρ1, ρ2 and ρ3 be given in the projective space. Then a point x, which is 
defined as the intersection point of those three planes, is determined as:  
 
 x = ρ1 × ρ2 × ρ3 (20) 
where: x = [ x, y, z, w]T 
 
Proof4 
This is a direct consequence of the principle of duality application: 
 

 

3333

2222

1111
321

dcba
dcba
dcba
lkji

ρρρx =××=  (21) 

 
where: x = [ x, y, z, w]T 

 
 
These two theorems are very important as they enable us to handle some problems 
defined in the homogeneous coordinates efficiently and make computations quite 
effective. Even more, if an input is in the Euclidean or homogeneous coordinates and 
output can be in the homogeneous coordinates, no division is needed. It means that we 
have robust computation of an intersection point. 
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Direct impact of these two theorems is that it is very easy to compute a plane in the 
E3 given by three points in the E3 and compute an intersection point determined as an 
intersection of three planes in the E3. Of course, there is a question, how to handle lines 
in the E3 or P3 cases.  

The above mentioned formulae Eq.16 and Eg.20 are not known in general and the 
authors present explicit formulae for the Euclidean coordinates, i.e. for w = 1, see 
Eq.41 and formula 44. 

 
3.3. Line in E3 defined parametrically  
 
Let us consider a little bit more difficult problems formulated as follows: 
1. determine a line q∈E3 if given by two points xi , 
2. determine a line q∈E3 if given by two planes ρi . 
if the parametric form is required. 

These problem formulations seem to be trivial problems if wi = 1 and the division 
operation are permitted.  

On the other hand, a classic rule for robustness is to “postpone division operation to 
the last moment possible”. Even if division is permitted, the 2nd case seems to be more 
difficult not only from the robustness point of view as the line is considered as an 
intersection of two planes, i.e. a common solution of their implicit equations.  

We will derive a new method for determination of a line in the E3 for those two 
possible cases without use of division directly in the projective space.  

The Plücker coordinates will be used as they can help us to formalize and resolve 
this problem efficiently.  

 
4. Plücker coordinates 
 
The formulae presented above enable us to handle points and planes in E3. 
Nevertheless, it is necessary to have a way to handle lines in the E3 in the parametric 
form using the homogeneous coordinates as well and avoid the division operations, too. 
A parametric form for a line given by two points in the Euclidean coordinates is given 
as: 
 
 X(t) = X1 + ( X2 - X1 ) t (22) 
where: t is a parameter t ∈ ( -∞ , ∞ ). 
 
This is straightforward for the Euclidean coordinates and for the homogeneous 
coordinates if the division operation is permitted. It is necessary to represent a position 
and a direction, see Eq.22. The question is how to make it directly in the projective 
space using the homogeneous coordinates. Therefore, the Plücker coordinates will be 
introduced to resolve the situation. Another approach using the Grassmann coordinate 
system can be found in [6].  
Let us consider two points in the homogeneous coordinates: 

 
 x1 = [x1, y1, z1, w1]T      x2 = [x2, y2, z2, w2]T (23) 

 
The Plücker coordinates lij are defined as follows: 
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 l41 = w1x2 – w2x1          l23 = y1z2 – y2z1 
 l42 = w1y2 – w2y1          l31 = z1x2 – z2x1 (24) 
 l43 = w1z2 – w2z1          l12 = x1y2 – x2y1 
 
It is possible to express the Plücker coordinates as  
 
 )(

1
)(

2
)(

2
)(

1
jiji

ijl xxxx −=  (25) 
 
alternatively, as an anti-symmetric matrix L: 
 
 TT

1221 xxxxL −=  (26) 
where: lij = - lji and lii = 0.  
 
Let us define two vectors ω and v as:  
 
 ω = [l41 , l42 , l43 ]T       v = [l23 , l31 , l12 ]T (27) 
 
It means that ω represents the “directional vector”, while v represents the “positional 
vector”. It can be seen that for the Euclidean space (w = 1) we get:  
 
 X2 – X1 = ω           X1 × X2 = v (28) 
where: Xi = [xi, yi, zi]T/wi are points in the Euclidean coordinates. 

 
For general case wi ≠ 1 when xi are not ideal points, i.e. wi ≠ 0 we get: 
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It can be seen that for the projective space, vectors ω and v can be expressed as: 
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and  
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The Eq.30 and Eq.31 show the relation between vectors ω and v and the Plücker 
coordinates lij. In 1871 Klein derived that ωT v = 0 [7], i.e. in the Plücker coordinates: 
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 l23* l41 + l31 *  l42 + l12 * l43  = 0 (32) 
 
This is a homogeneous equation of degree 2 and therefore the solution lies on a 4-
dimensional quadratic hyper-surface [8]. If q is a point on a line q(t) = q1 + ω t  given 
by the Plücker coordinates, it must satisfy equation: 
 
 vq =×ω  (33) 
 
Let X2 – X1 = ω and X1 × X2 = v. A point on the line q(t) = q1 + ω t  is defined  as: 
 

 ( ) tt ω
ω

ω 
+

×
=

2
vq  (34) 

 
Please, see Appendix B for derivation of this formula. It should be noted that for t = 0 
we do not get the point X1. If 0=ω the given points are equal. 
 
The Eq.34 defines a line q(t) in the E3 by two points x1 and x2 given in the 
homogeneous coordinates. Of course, we can avoid the division operation easily using 
homogeneous notation for a scalar value ( )tq) , as follows: 
 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +×
= 2

2

ω

ωωω t
t

v
q)  (35) 

 
and the resulting line is defined directly in the projective space P3.  
 

Let us imagine that we have to solve the second problem, i.e. a line defined as an 
intersection of two given planes ρ1 and  ρ2 in the Euclidean space:  
 
 ρ1 = [a1, b1, c1, d1]T     ρ2 = [a2, b2, c2, d2]T (36) 
 
It is well known that the directional vector s of the line is given by those two planes as 
a ratio: 
 

 
22
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11 ::::
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sss zyx =  (37) 

 
that is actually the ratio l23 : l31 : l12 if the principle of duality is used, i.e. vector of 
[ai, bi, ci, di]T  instead of [xi, yi, zi, wi]T is used, and it defines the vector v instead of ω.  

Now we can apply the principle of duality as we can interchange the terms “point” 
and “plane” and exchange v and ω in the Eq.34 and we get: 
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 ( ) tt v
v

vq +
×

=
2

 ω  (38) 

 
and similarly to the Eq.35, the formula for the line in the homogeneous coordinates is 
given as: 
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If 0=v  then the given planes are parallel. 
 
It means that we have obtained the known formula for an intersection of two planes 
ρ1, ρ2 in the Euclidean coordinates, see [5]: 
 
 ( ) tt 30 nqq +=  (40) 
 
where: 213 nnn ×= ,   q0 = [X0, Y0, Z0]T and planes 

0: 111 =+ dT xnρ    0: 222 =+ dT xnρ  
 
The intersection point X0 of three planes in the Euclidean coordinates is defined as: 
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If a line is defined by two points and 1=ω , i.e. the directional vector is normalized, 
we get Eq.34 and the line is simply determined as:  
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 ( ) tt ωω +×= vq  (42) 
 
If a line is defined by two planes and 1=v , i.e. the positional vector is normalized, 
we get Eq.38 and the line is simply determined as:  
 ( ) tt vvq +×=ω  (43) 
 
Those formulae are well known if the Euclidean coordinates are used.  

 
Note:  
It is possible to define vectors v and ω for the plane intersection case as 
v = [l41, l42, l43 ]T and ω = [l23, l31, l12 ]T, i.e. with swapped Plücker vectors, and have the 
same equation for the line q(t) but the symbols would have different interpretation – 
that is the reason, why the priority was given to different notation for those two cases. 
 
5. Conclusion 
 
This paper presents a new approach computation of:  
• a line in the E2 and a plane in the E3, 
• an intersection point of two lines in the E2 and three planes in the E3, 
• a parametric equation of a line in the E3 if given by two points or two planes in the 

E3, 
using the homogeneous coordinates directly has been presented. The presented 
approach enables a unified solution for the case when the line is given by two points in 
E3 and also as an intersection of two planes in homogeneous coordinates directly. The 
presented approach uses the projective space, the principle of duality and gives several 
advantages over the known approaches like robustness, and avoiding division 
operation. It also simplifies some algorithms, e.g. line clipping and offers additional 
algorithms speed-ups [9] and new formula developments [10].  

There is a hope that the Plücker coordinates and the projective space representation 
will be useful for development of new methods based on intersection computation and 
will allow derivation of robust algorithms with higher efficiency.  

Many interesting hints for more general approach can be found in [11], [12]. 
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Appendix A 
 
The following formula for finding the intersection point of three planes in the E3 can be 
found [13]: 
 

 ( ) ( ) ( )
( )321

213132321

nnn
nnnnnn

X
×

×+×+×
=

DDD  (44) 

where: XnT
iiD =  and X = [X, Y, Z]T 

 
It is obvious that the notation is not only difficult to remember, but also it is “invisible” 
how the formula was derived. 
 
 
Appendix B 
 
There is a double cross-product used in deriving Eq.34 from Eq.33. Let us review the 
double cross-product equality. 
 
Definition 
Let a, b and c are vectors. Then: 
 
 ( ) ( ) ( ) ( ) ( ) c.bab.cac.b.ab.c.acba             TT −=−=××  
  (45) 
 ( ) ( ) ( ) ( ) ( ) a.bcb.aca.b.cb.a.ccba             TT −=−=××  
 
where: “a . b” means the “dot-product” of  vectors a and b is equivalent to scalar 
multiplication and ( )T means a vector transposition. 
 
Let us reconsider the Eq.33:  
 vq =×ω  (46) 
 
and the line q(t) equation: 
 
 q(t) = q1 + ω t (47) 
 
Then the left hand side of Eq.46 multiplied by ω from the right: 
 
 (ω × q) × ω = (ω . ω). q–(ω . q). ω = || ω ||2 q – 0 = || ω ||2 q (48) 
 
It can be seen that the vectors ω and v are orthogonal, see Eq.33, i.e. ω . v = 0, and 
therefore the Eq.46 becomes: 
 
 || ω ||2 q = v × ω  (49) 
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This equality must be valid also for the point q1 and therefore: 
 
 || ω ||2 q1 = v x ω (50) 
 
and if || ω ||2 ≠ 0 we can write: 
 
 q1 = v × ω / || ω ||2  (51) 
 
Substituting (51) to (47) we obtain: 
 
 q(t) = v × ω / || ω ||2 + ω t (52) 
 
that is identical with an Eq.34. 
 
 
Appendix C 
 
The cross product in 4D is defined as 

 

3333

2222

1111
321 det

wzyx
wzyx
wzyx
lkji

xxx =××  (53) 

 
and can be implemented in Cg/HLSL on a GPU as follows: 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3)  
{ 
 float4 a; 
 a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw)); 
 a.y = - dot(x1.xzw, cross(x2.xzw, x3.xzw)); 
 // or a.y = dot(x1.xzw, cross(x3.xzw, x2.xzw)); 
 a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw)); 
 a.w = - dot(x1.xyz, cross(x2.xyz, x3.xyz)); 
 // or a.w = dot(x1.xyz, cross(x3.xyz, x2.xyz)); 
 
 return a; 
} 
 
or more compactly 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ 
 return ( dot(x1.yzw, cross(x2.yzw, x3.yzw)),  
 - dot(x1.xzw, cross(x2.xzw, x3.xzw)),  
 dot(x1.xyw, cross(x2.xyw, x3.xyw)), 
 - dot(x1.xyz, cross(x2.xyz, x3.xyz)) ); 
} 
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