
OpenGL and VTK interface for .NET

Ivo HANÁK
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

hanak@students.zcu.cz

Milan FRANK
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

mfrank@students.zcu.cz

Václav SKALA
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

skala@kiv.zcu.cz

ABSTRACT
VTK (visualization toolkit) is a large and useful object oriented library for data visualization. The current version
(4.0) is also distributed for Win32 platform by means of dynamic linked libraries. Its native language is C++. An
interface for Java, Python and TCL exists. These languages provide some subset of the VTK functionality only.
Therefore the best use is with C++.
OpenGL is well known library for graphics output used in large scale of applications. Interface and behavior of
the library is defined in specifications available to wild public. Inner implementation of the interface is matter of
operating system and/or graphics hardware providers. Currently existing interface implementations are ready to
use within various programming languages.
There is necessary to automate the process of wrap-class creation because of the VTK size (more then 700
classes). This process consists of two parts - parsing of C++ headers and generating of appropriate wrap-classes.
The parser is distributed with VTK and it is used to generate Java, TCL and Python interfaces and so it is
possible to use it in the case of C#.
It is not possible for the library user to use inheritance and polymorphism when using the manner described
above. A possible way is to use two-level wrapping. The level-one wrap-class is unmanaged and provides calling
of managed virtual methods and makes protected methods accessible for level-two wrap-class where the direct
inheritance is used. The level-two wrap-class is managed and has the same functionality as described above.
One of the aims of this work is to find some way for straightforward use of VTK in C#. It has been done by
means of wrap-classes written in C++ Managed Extension. Each VTK class has its own wrap-class. This wrap-
class is managed and provides access into methods of unmanaged VTK class. Data conversion and memory
management are also matters of wrap-class.
Second aim of this work is to create an OpenGL port to .NET environment by wrapping an existing interface.
The goal of this part is to compare it with already existing OpenGL interface implementation called CsGL. This
interface is fully functional and it is based on the similar principles as of this work. This work tries to go a little
bit further to increase programming safety and user's comfort.
The presented paper is an introduction and description of this work's approach. The goal of this work is to try to
find a reasonable way of VTK and OpenGL porting into .NET environment.

Keywords
VTK, visualization toolkit, OpenGL, CsGL, .NET, interface, C#, porting

1 INTRODUCTION
New .NET environment (also managed environment)
offers to user a lot of possibilities how to create an
application easily. Unfortunately some useful
libraries, known at non-managed environment, do not
exist in managed one. Difficulty of porting of non-
managed libraries to the managed environment differs
form case to case. It depends on internal structure and
interface design of original libraries.

1.1 Porting
There are to ways how to achieve the needed port:

1. Port source code,
2. Port an interface.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing
February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

Project supported by the Ministry of Education of The Czech Republic – Project MSM 235200005 and Microsoft Research Ltd.(U.K.)

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

mailto:hanak@students.zcu.cz
mailto:mfrank@students.zcu.cz
mailto:skala@kiv.zcu.cz

1.1.1 Porting Source Code
Porting source code means to rewrite original library
from non-managed code to the managed one.
Unfortunately this means that there must be changes
done at source code level – changes which are not
trivial.
Not only syntax is needed to change but also it is
needed to change structure of an implementation of
the algorithm due to restrictions of managed
environment in many cases. This task is not easy to
automate.
Also these libraries are usually huge – so it would
take too long to rewrite the code and it could happen
that the next version of library would be released
before the old one is ported. This approach is
possible only for libraries whose source code is
available to a developer.
Next problem of this approach is the fact that some
libraries are heavily system-dependent or low-level
(for example OpenGL). Therefore porting of such
libraries on the source code level does not mean that
these libraries would be possible to use on another
platform (not only different CPU but also different
operating system).

1.1.2 Porting of an Interface
Opposite of that is the second approach of porting of
non-managed library to the managed environment.
This approach does not need source codes of original
library – it uses binary form of the original library. It
is based on a fact that the only important thing for a
developer/user is an interface of such library. The
knowledge of inside mechanisms is not needed for a
user using that library. User just needs to know how it
behaves from the view of the outside world – i.e. to
know interface.
Thanks to that the only thing that needs to be ported
is interface. This approach is more flexible in
comparison with the first one. It has one major
advantage – it is possible to automate the task. It
means that it is possible to create ports of new
version of the library fast enough so the situation,
where new version is released before the old one is
port, should not occur.
Also low-level and heavily system-dependent
libraries can be ported with this approach.
Unfortunately this approach to port libraries has one
major disadvantage – all ported libraries are system-
dependent not only on CPU level but also on
operating system level (like OpenGL or VTK).
It means that port of such library is able to run only
on specific CPU/operating system platform. This
disadvantage is quite problematical because every
new platform (operating system/CPU) on which
managed environment is running needs new port of

the library. It is somehow against the idea of managed
environment, where the compiled application created
on one platform can run without any changes on
another one, which supports managed environment.
Unfortunately not all libraries are easily portable and
for those libraries is this approach the only one
possible (as it was explained before). Nice example
of such library is OpenGL.
Another example is VTK library, which is possible to
port as it was described using the first approach, but
source code of this library is quite huge and therefore
there would be high probability that disadvantages
described earlier would occur.
Opposite of OpenGL the VTK library is object
oriented. It is not based on COM technology (like
DirectX) and its porting is not as easy as it would be
in the case of COM technology (as described in
MSDN).

1.2 Introduction to Ported Libraries
1.2.1 OpenGL
OpenGL is a library used for low-level rendering of
3D graphics. Rendering 2D graphics is also possible
but the aim of OpenGL library is displaying of 3D
space. This library was created by SGI and it is based
on commercial SGI's graphic library.
Library provides a user to render various graphics
primitives like lines, points and polygons. It is also
possible to render parametric surfaces (like NURBS)
by OpenGL thanks to additional library called GLU.
Lighting and transformations computation of the
rendered primitives is also provided by OpenGL
library. User can setup various light types (directions,
point and spot), their color, location in 3D space and
other specific properties of light. Also tool for
combining of basic transformations (translation,
rotation and scaling) of rendered primitives is
provided by OpenGL library.
It is possible to apply a texture and material to
rendered primitives. OpenGL provides tools to
handle this task. User can set a texture itself and its
properties. For example user can set whether the
texture is repeated on the surface or not, how it is
combined with rendered primitives and other textures
(this is called multitexturing and it is for example
used to add pre-rendered shadows to rendered
surface), etc.
These are basics of the library. Other functions are
provided according to output device capabilities.
Interface of OpenGL library is standardized by
specifications available to wide public. It consists of
set of static functions (including constants) used to
render primitives and to setup rendering pipeline.
Every new version of the specification guarantees
backward compatibility with previous versions.

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

OpenGL inner structure is based on state machine.
User can change states with functions provided by the
interface of the OpenGL library. Implementation
details depend on operating system/graphics
hardware vendor.
This usually results in debugging difficulties. All
implementations behave as described in the
specification, however, their behavior can differ in a
case of an error while calling interface function
(incorrect parameters, forbidden combination of
function calls, etc.). The result is that an application
can have different outputs depending on used
hardware.
It is possible to add new functionalities to the
OpenGL without need of updating whole
specification. These additions are called GL
Extensions. With them hardware vendors provides
support for the latest features. This means, that they
depend on plugged device capabilities and drivers.
OpenGL library is worldwide known as a standard for
graphics output. It is supported on various platforms
and provides basic facilities to create graphical
engines.

1.2.2 VTK
VTK is object-oriented library for data visualization
that contains many useful algorithms, importers,
exporters and renderers. The main idea of VTK is
visualization pipeline where output of one module is
connected to the input of another one. This scheme
implicates existence of two main object categories
(process objects and data objects). The process
objects are further divided into data source objects
(outputs only), filters (inputs and outputs) and slinks
(inputs only). Except these main objects there are
some help objects (like matrix). In general VTK 4.0
contains approximately 700 classes with
approximately 16000 public and protected class
members.
For better view there is a simple example. Following
code generates sphere colored by elevation. We can
see the visualization pipeline diagram on (Figure 1).
The vtkSphereSource (source) object generates
vtkPolyData (data object). This data object passes
through vtkElevationFilter (filter) that colors it to the
vtkDataSetMaper (slink).

vtkPolyData

vtkPolyData

vktSphereSource

vktElevationFilter

vktDataSetMaper

vtkPolyData

vtkPolyData

vktSphereSource

vktElevationFilter

vktDataSetMaper

Figure 1. Example of visualization pipeline
Part of C# source code that implements visualization
pipeline Figure 1 follows. Part of source code that
creates renderer and rendering window was omitted.
vtkSphereSource sphere

= vtkSphereSource.New();
sphere.SetThetaResolution(12);
sphere.SetPhiResolution(12);
vtkElevationFilter elevationFilter =

vtkElevationFilter.New();
elevationFilter.SetInput(

sphere.GetOutput());
elevationFilter.SetLowPoint(

0.0f, 0.0f, -1.0f);
elevationFilter.SetHighPoint(

0.0f, 0.0f, 1.0f);
vtkDataSetMapper mapper =

vtkDataSetMapper.New();
mapper.SetInput(

elevationFilter.GetOutput());
Graphical result of this example is shown on Figure 2

Figure 2. The resulting sphere
In general VTK is compact software with many
useful rules that make user's life easier but there are
some exceptions that make life sometimes harder.

1.3 The Goal
The goal of this project is to try to create not an
implementation but an interface to existing OpenGL
and VTK library in managed environment. This
implementation should be able to maintain the
highest compatibility with an original interface in
non-managed environment. Also the important thing
was to decrease delay of communication between
non-managed and managed environment to the lowest
possible value and to increase safety of programming.

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

2 EXISTING SOLUTIONS
2.1 CsGL
While there is probably no working port of VTK
library to the managed environment, for OpenGL it
already exists one. It is called CsGL and it is based
on an approach described as a second one. It means
that it is port of the interface of library in binary
form.
This port is open source. It was implemented using
plain C# with use of PInvoke mechanism and plain C
language. As it is mentioned in CsGL documentation,
this fact can simplify porting of the library to another
platform. While porting, there is a need to modify
only the C code. This C code is heavily system
dependent and it is used to initialize OpenGL Render
Context.
The use of PInvoke mechanism to port functions
(their interfaces) is one of the main reasons why
porting can be easily automated. This means that
creating of interface implementation of new OpenGL
Extension is just matter of running prepared script or
application that deals with it. Together with a fact
that creation of such application/script is not difficult
this leads to quite important advantage.
Next advantage of CsGL is that porting of existing
OpenGL application is quite simple with an exception
of framework of an application, which needs to be
modified due to restrictions of managed environment.
Similar situation is by OpenGL initialization
provided by CsGL library.
It is possible because of inheritance. All
OpenGL/GLU functions and constants are static
members of one class (from a view of CsGL user).
Because of that the user needs to inherit his/her class
in order to use OpenGL from CsGL class and modify
source code (C/C++ source code) to compile it with
C# compiler (or another compiler for managed
environment). After that the code is able to run in
managed environment using OpenGL.
This possibility is quite useful because of the fact that
the result (OpenGL source code) looks quite the
similar compared to original C code. Unfortunately
this approach also means that user has no chance to
use functions of specific OpenGL/GLU interface
specification.
Safety of the programming is quite important task and
it is not handled by CsGL. It means there is no
control mechanism able to check validity of function
parameters. For example it is possible to pass smaller
array of values than required by a function. It is
similar situation as in original C code and it can lead
to bugs, which are not easy to find.
Question is whether this means a disadvantage or not.
Because of the lack of function parameters checking,

an application (or OpenGL code) runs faster than
with parameters checking. This is an advantage for
highly experienced user because speed is quite
important in graphical applications.
Opposite of that, for less experienced user who is
working on larger project, the safety of programming
is more important than the speed. When passing
invalid function parameters a run-time error will
occur. The run-time error is not easy to invoke again
and therefore debugging of such application is not an
easy task. It costs a lot of time to locate and repair it.
CsGL interface is full functional. It contains OpenGL
version 1.1, 1.2, 1.3 and 1.4, GLU and at least 50
OpenGL Extensions. It also includes tool to port new
extension (user just need C language header files).
From this view CsGL is ready to use.

2.2 VTK Wrappers
VTK already supports number of programming
languages. Native language of VTK is C++ so it is
apparent that the most efficient use is again in C++.
Wrap-classes in different languages usually have only
subset of functionality and higher time and memory
consumption. These problems are unavoidable in our
solution too.

3 ANALYSIS
3.1 OpenGL Approach
Approach that was chosen for an OpenGL port to
managed environment was the second one which was
described before – i.e. porting of an interface.
OpenGL is low-level library because of being too
close to operating system and device drivers. This
means that it is impossible to port this library by
rewriting source code and it also means that this
library is heavily system-dependent.
This implicates that the only way how to implement
OpenGL in managed environment is to implement an
interface of this library. It is approach used by CsGL
version of OpenGL port. In order to use this approach
a creation of wrappers for all functions is needed.
Inside of wrapper's body there is code for handling
data sharing between managed and non-managed
environment.
Fortunately OpenGL interface consist of group of
functions and constants which are not members of
any class. Because of this and the fact that OpenGL is
available as C-style header files it is possible to
automate this task.
Usually this wrapper's body consists of call of
original OpenGL function but in some cases there is
need of special handling of passed data due to
differences between managed and non-managed
environment.

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

Also data validity checking can be placed inside of
such wrapper's body. This checking should prevent
user from passing arrays of invalid size. For example
common error is passing of shorter array then it is
needed by OpenGL to overwrite it with data. That is
caused by a fact that the only thing that is passed to
the system is a pointer without any information about
the length of this array.
According to that system can rewrite some parts of
memory situated behind such array. This could lead
to application's crash. This crash depends on current
memory content. This bug can sometimes cause
application's crash and such mistake is not easy to
find during debugging.

3.1.1 Difficulties
The main problem that needs to be solved is Garbage
Collector (alias GC). It is part of managed
environment which is quite useful. It handles memory
deallocation and fragmentation. It means that user of
managed environment does not need to be aware of
memory management. Object created by a user is
simply removed from the memory when there is no
active reference to such object.
This advantage could be a disadvantage while sharing
data (in the form of an array) with non-managed
environment. In the case of OpenGL this situation
can occur when the user passes data (in a form of an
array) to an interface. These data are then passed
through and stored inside of OpenGL library in form
of pointer in non-managed environment and can be
used somewhere in a future.
Consider this situation happens in a function where
the array was allocated and the only reference, which
exists, is local variable. Due to the fact that pointer to
data is stored inside OpenGL library in form of plain
pointer, GC does not know that there still exists a
reference to an array.
After exit from the function and release of local
variables such object is next candidate for
deallocation because there is no reference pointing at
it. This memory cleaning does not occur immediately
after an object looses all of its references but later
(depending on construction of CG). This situation
occurs while using functions like glVertexPointer,
etc.
As it was mentioned, GC also handles memory
fragmentation. This means GC can move block of
memory to prevent memory fragmentation.
Unfortunately it can happen anytime. Because of that,
every function, which works with an array, needs
special data handling inside of wrapper’s body. This
handling should prevent GC from moving or
deallocation of passed data.

CsGL implementation solves this problem by use of
PInvoke mechanism and IntPtr data type. It usually
means that user is responsible for preventing GC
from doing its duty on desired objects.
This approach leads to higher speed because of the
fact that the user (developer) is the only one, who can
decide when and how long should be data protected
against GC. Unfortunately the user has to have the
knowledge about non-managed and managed
environment interaction. Implementation described
here tries to handle this interaction on its own so the
user does not need to have such knowledge.
Not only arrays are problematic. Also callback
functions are source of difficulties. PInvoke
mechanism offers a possibility to pass delegate that is
used as a callback function. This solution is used by
described implementation and by CsGL.
The problem is not callback itself but its parameters.
As long as these parameters are simple data types the
PInvoke mechanism (together with data marshaling)
handles this task. A problem can occur in case of
passing user object as a parameter of the callback (for
example user data). This can be solved either using
IntPtr data type or handling it inside of wrapper’s
body.
Using IntPtr solves the problem completely. This
data type can be used to store an index to user
defined array or a key to hash table. This solution
does not need any support from interface because it is
handled similar to any other simple value data type.
This approach is used by CsGL library – it is easy to
implement and not difficult to use because it is quite
similar to the void pointer (non-managed
environment).
With no use of IntPtr interface has to handle user
defined data itself and provide data structures for
storing such data. This approach simplifies use of
such callbacks (from a user’s point of view) because
user does not need to take care about configuring
his/her own data to pass them to callback. User can
pass an object (user data) to the callback setup
function and get it in form of callback’s parameter.
It hides parts of code that is created by user in the
case of IntPtr. Due to that it leads to larger wrapper’s
source code, additional data structures and increased
memory requirements. It is also solution used by
interface described here.
Last major difficulty of an interface implementation
is void pointer. That is a very useful language
construction. A function, which uses void pointer as a
parameter, can easily get various data structures via
void pointer without need of explicit data conversion.
The rest of the parameters provide description of
such data. In managed environment a data type IntPtr

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

has a quite similar meaning (from user's view) as void
pointer in non-managed one.
It is easy to implement and it is not difficult to use for
an experienced user. Probably this is why CsGL uses
it. Unfortunately this can lead to pass invalid data to a
function via this data type. An inexperienced user can
pass array of objects instead of array of value data
types quite easily.
This implementation avoids use of IntPtr as an
attempt to increase programming safety. It is sure this
approach is more complicated than the previous one
because of need to specify data type and it can also
lead to slowdown.

3.2 VTK
We will discuss our solution of VTK interface for
.NET in this section. In the first subsection we will
show wrap-class principle on simple example. In the
second subsection problems with inheritance and
polymorphism will be discussed. Possible solution of
it could be done by two-level wrapping. This solution
is currently under investigation.

Hardware

Windows

VTK (Win32) .NET Framework

vtkDotNetWrap

Application
(Win32
part)

Application (.NET part)

Application

Figure 3. Possible scheme of VTK application in
.NET environment.

The possible placement of managed dynamic-linked
library with wrappers is shown on Figure 3. It should
be between .NET applications and unmanaged
dynamically linked libraries of VTK.

3.2.1 C++ Managed Extension Wrap-class
Each wrap-class is written in C++ Managed
Extension and provides access to one unmanaged
VTK class. The wrap-class is garbage-collected
(managed) and so accessible from .NET environment.
An instance of wrap-class contains one instance of
unmanaged VTK class. The wrap-class has the same
public methods as wrapped-class. Calling of wrap-
class method usually causes only calling of
appropriate wrapped-class method and some data
conversions. There are some exceptions especially in
constructors. Following source code is a part of wrap-
class source code.

public __gc class vtkAbstractMapper : public
vtkProcessObject // wrap-class
{
public:
::vtkAbstractMapper *w; // wrapped-class
vtkAbstractMapper(

::vtkAbstractMapper *_w):
vtkProcessObject(_w) { w = _w;}

// const char *GetClassName (); 1303 ()
System::String * GetClassName()
{
return new System::String(

w->GetClassName());
}

Note the data conversion in GetClassName method.
There is creation of String object from zero-
terminated string returned from unmanaged method.
This is typical example.
All these wrap-classes are compiled into one
managed dynamic linked library file that uses
unmanaged libraries of VTK.

3.2.2 Difficulties
There are some difficulties in this way of porting. In
the following subsection there is described the most
interesting problem with inheritance. In the second
subsection there are outlined some minor problems
together with explanation why only subset of methods
can be successfully wrapped.

3.2.2.1 Inheritance and Polymorphism
The main disadvantage of this approach is probably
the inability of effective usage of inheritance and
polymorphism. It is caused due to composition was
used instead of inheritance between wrapped-class
and wrap-class. For user it means there is no
straightforward way to create its own VTK module in
C#.
For example, consider we want to create our own
source of vtkPolyData (for example Sierpinsky
fractal). Standard approach in C++ is to derive our
own class (vtkSierpinSource) from
vtkPolyDataSource and override the virtual method
Execute (and other methods). After that we have fully
functional source of polygonal data. We can connect
it into any visualization pipeline that accepts
polygonal data object. With C# it is not possible due
to inability to override any virtual method and to
access protected methods/attributes.
Fortunately there is a way to go around it. We call it
double wrapping. On the following example there is
shown the main idea of this approach. Let us have
unmanaged Win32 class (called Win32Class) in DLL
that we cannot modify. This class contains two
methods which implementations are not important.
class EXPORT Win32Class
{
public:
void PrintSelf();

protected:
virtual char *Info();

};

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

The level-one wrapper is also unmanaged and
provides access to protected methods and is
responsible for correct calling of virtual method of
level-two wrapper. Note that the direct inheritance is
used.
class L1Wrapper : public Win32Class
{
public:
void * l2w; //packed GCHandle

of level-two wrapper
char * Info();

};
Things are going to be more complicated. Following
method unpacks the GCHandle from void pointer and
calls virtual method of level-two wrapper.
char * L1Wrapper::Info()
{
IntPtr intPtr

= IntPtr::op_Explicit(this->l2w);
GCHandle handle

= GCHandle::op_Explicit(intPtr);
L2Wrapper::L2Wrapper * managed

= dynamic_cast <L2Wrapper::L2Wrapper *>
(handle.Target);

char * ret
= String2Chars(managed->Info());

return ret;
}
Level-two wrapper is very similar to the single wrap-
class presented above. It is managed and makes level-
one wrapper easily accessible from .NET
environment.
__gc public class L2Wrapper
{
public:
::L1Wrapper *w;

L2Wrapper()
{
w = new ::L1Wrapper;
GCHandle handle =

GCHandle::Alloc(this, GCHandleType::Weak);

IntPtr intPtr = (IntPtr) handle;
w->l2w = (void *) intPtr;

}

~L2WBase()
{
handle.Free();
delete w;

}

void PrintSelf()
{
w->PrintSelf();

}

virtual System::String * Info()
{
return new

System::String("L2Wrapper::Info()");
}

}
This approach looks like a reasonable way to make a
possible to create fully functional VTK modules in
C#. Nowadays it is in current research interest.
Simple examples based on this works well.

3.2.2.2 Other Minor Difficulties
Other difficulties with porting are some
inconsistencies in VTK library. For example in some
cases there is a difference in class instancing. Many
classes can be only in heap memory (because
constructors are protected) so they are accessible only
by pointer but there are some classes that can be
anywhere. Different approach of wrapping has to be
used. Also sometimes C structure FILE is used in the
place of C++ stream, etc. Also callback functions are
tough and some system dependent variables like
window handles are not already fully implemented.

4 IMPLEMENTATION
4.1 OpenGL
Described solution is implemented in Managed
Extension C++ because of the possibility to mix
managed and unmanaged code and to use unmanaged
APIs directly (as described in MSDN). Also C style
preprocessor macros help to simplify implementation
of parameters-checking.
The goal of our implementation is to create an
interface which is as close as possible to the original
OpenGL API (described in specification) while being
easy to use. Also possibility to choose specific
version of OpenGL is one of the important parts of
the goal.
Designed and implemented interface consists of three
main classes: class representing OpenGL's Rendering
Context, class used for storing internal data and class
containing interface functions and constants.
Opposite of CsGL, functions are not static members
of the class – i.e. an instance of such class have to be
created in order to use OpenGL/GLU functions. It is
possible to use this class in two slightly different
ways.
First one is similar to the approach recommended in
CsGL library. User has to inherit his own class from a
class containing OpenGL/GLU functions (constants).
However it is not possible to use both libraries
OpenGL and GLU with this approach because they
are placed in separate classes.
Second approach is suitable for this interface. User
has to create an instance of desired classes and than
call their member functions. Unfortunately source
code, which is the result of use of this approach, can
look ugly compared to CsGL source code.
To solve this disadvantage, a second set of functions
and constants was included into each class. This set
differs only in the name of functions (constants). In
the case of functions the “gl” prefix is removed from
a function name. In the case of constants the situation
is similar – the “GL_” prefix is removed form a
constant's name.

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

This together with intelligent names for class
instances results into clear source code quite similar
to original C (or CsGL) code.

glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);
glVertex2d(0, 0);
glEnd();
glFlush();
gl.glClearColor(0, 0, 0, 0);
gl.glClear(GL.GL_COLOR_BUFFER_BIT);
gl.glBegin(GL.GL_POINTS);
gl.glVertex2d(0, 0);
gl.glEnd();
gl.glFlush();
gl.ClearColor(0, 0, 0, 0);
gl.Clear(GL.COLOR_BUFFER_BIT);
gl.Begin(GL.POINTS);
gl.Vertex2d(0, 0);
gl.End();
gl.Flush();

Figure 4. Example of use of C/CsGL code (on the
top), described interface (middle and bottom).

Example in Figure 4 displays use of C/CsGL code
(on the top) and described interface. Identifier “gl” is
name of instance of “GL” class, which contains
OpenGL functions and constants. The code on the
bottom uses function set with removed prefixes. You
can see that the code on the bottom is quite similar to
the code on the top.
As it was mentioned above, OpenGL and GLU
functions (constants) are placed in separate classes.
To achieve a possibility for the user to choose
specific version of OpenGL/GLU, every version is
placed in separate class. Such class inherits from a
class of previous version. For OpenGL this means
that there exists (or will be created as described in
chapter Future work) a class for version 1.1 (GL11),
version 1.2 (GL12), etc. Class GL12 inherits from
class GL11.
To simplify use of these classes a special class is
added. This class is inherited from highest version of
OpenGL specification which is implemented.
Therefore this class provides simple use of constants
and the user does not need to know which version of
OpenGL interface contains desired constant.
To add new OpenGL versions it is required to do
some modifications of specific parts of the interface's
implementation.

• The parent of GL class needs to be updated
to reflect the latest implemented version.

• The class, which contains internal data
structures, needs to be modified by adding
(not changing) members (if needed).

All of these modifications are not major and they are
not visible for user. Therefore older applications can
run without any modifications. GLU interface
implementation is handled in similar way, same as
OpenGL.

4.2 VTK
Because of VTK size there is necessary to automate
the processes of wrap-class generating. This process
consists of two parts. At the first part it is necessary
to obtain information about each VTK class we want
to wrap. The second part is generator itself that use
the output from parser. For data exchange between
the parser and the generator intermediate files are
used. It is a simple text file that contains appropriate
information about class, methods and method
parameters. Schematic view on the whole process is
shown in Figure 5.

C++ header files

Parser (IF generator)

Intermediate files

Wrap-classgenerator

Wrap-classes

hints

wgTypeHints

wgTypes

Figure 5. Scheme of automated wrap-class
generating process

4.2.1 Parsing of C++ Headers
To obtain information about VTK classes parsing of
C++ headers was chosen. This is the easiest way
because parser for it already exists. This parser has
been already used for Java, TCL and Python
interfaces. The parser is written by means of Yacc
and Lex. There was no problem to add simple
exporter from inner structures of the parser to some
text file. This text file is called intermediate file and
an example of it follows. Note this is part of the same
class as in example in sec. 3.2.1.
ClassName vtkAbstractMapper
HasDelete No
IsAbstract No
IsConcrete Yes
NumberOfSuperClasses 1
SuperClass vtkProcessObject
NumberOfFunctions 18
FunctionName GetClassName
FunctionSignature const char *GetClassName

();
NumberOfArguments 0
ArrayFailure No
IsPureVirtual No
IsPublic Yes
IsOperator No
HaveHint No
HintSize 0
ReturnType 1303
ReturnClass None
FunctionName IsA
FunctionSignature int IsA (const char

*name);

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

NumberOfArguments 1
ArgType 1303
ArgCounts 0
ArgClasses None

ArrayFailure No
IsPureVirtual No
IsPublic Yes
IsOperator No
HaveHint No
HintSize 0
ReturnType 4
ReturnClass None

There are some difficulties in this approach. Probably
the most serious is coding of data types. The parser
uses coding of data types where some ambiguities
are. This must be patched in generator with explicit
retyping. The creation of the explicit retyping data
file is time consuming.

4.2.2 Wrap-class Generator
The generator itself is one program written in C# that
converts intermediate files into wrap-classes source
codes. It has three types of input files. The first one is
intermediate file with class description (presented
above). The second one is file wgTypeHints where
some data type codes are explicitly overridden. The
third one is file wgTypes where data type conversions
are defined by means of macros. An example of this
is given in Table 1.

Code 303

ACppDecl char * <var>
MCppDecl System::String * <var>
ToACpp wgStr2Char(<var>)
ToMCpp new System::String(<var>)
TmpDecl

TmpRet

IsProblematic No
Table 1 Example of macros for System.String

conversion.
Usage example of conversion macros follows in
pseudo-code. It presents how and where these macros
are expanded during wrap-class generation.
MCppDecl<methodName(MCppDecl<arg0>,
MCppDecl<arg1>)>
{
TmpDecl<arg0, tmp0>;
MCppDecl<ret>;
ret = ToMCpp<w->methodName(

ToACpp<tmp0, arg0>, ToACpp<arg1>)>;
TmpRet<arg0, tmp0>;
return ret;

}
In these subsections the process of wrap-class
generation has been briefly presented . This process
is quite complicated and is not designed for user to
do it and we presented it here only for better view
how we deal with the size of VTK.

5 FUTURE WORK
5.1 OpenGL
As it was mentioned above future work will be aimed
to increase the programming safety, to add parameter
validity checking and enumerate types (to replace
constants). Also implementation of newer
OpenGL/GLU versions and OpenGL Extensions are
goals of the future work.
Future work will concern an attempt to create tests to
measure the slowdown of specific parts of interface in
comparison to CsGL implementation. The C code
will be used as reference. This should prove
whenever our interface implementation is suitable for
use in practise or not.

5.2 VTK
The main goal for the future work is to implement the
double wrapping to make possible inheritance and
polymorphism and so allow writing fully compatible
algorithms as VTK objects in C#. Also some data
types not currently implemented should be added.
As a vision we are considering the possibility of
graphical programming with VTK modules similarly
to MVE 1.0 developed by our workgroup. See
http://herakles.zcu.cz.

6 CONCLUSION
Described OpenGL interface was not meant to
replace existing CsGL implementation. It is an
attempt to create an interface where user can fully
enjoy the comfort and safety of managed environment
while experiencing the lowest slowdown as possible.
Currently this interface is in status of beta version and
so it is not yet recommended for serious use.
Interface of OpenGL 1.1 and GLU 1.1 is fully
implemented without mentioned parameter checking.
Presented solution of VTK interface looks reasonable
and follows the same strategy as OpenGL interface
according to comfort and safety of managed
environment. In fact it suffers from the same
problems as interfaces of VTK for other languages
(not full set of accessible methods).

7 REFERENCES
[1] SGI: OpenGL 1.3 specification
[2] MSDN (electronic resource)
[3] CsGL project documentation
[4] Schreder, W., Martin, K., Lorensen, B.: The

Visualiasation Toolkit, Prentice Hall, New
Jersey, 1998

[5] Kačmář, D.: Programujeme .NET aplikace (in
Czech), Computer Press, Praha, 2001

proceedings of C# and .NET Technologies’2003 Int.Workshop, ISBN 80-90301-3-6, UNION Agency – Science Press, Plzen, Czech Republic, pp.25-34, 2003

http://herakles.zcu.cz

