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Abstract— This publication presents computation of magnetic 

force acting on particle moving in the field created by two toroi-

dal wires with currents. Equivalent dipole method is used. 

Index Terms—Dielectrics and electrical insulation, dielectrics, 

dielectrophoresis. 

I. INTRODUCTION 

 Recently, microfluidics combined with the ability of mag-

netic manipulations has concerned much attention due to its 

great possibility for biomedical applications, such as mixing, 

transport and separation of biomolecules. Rapid cell sorting is 

an example of the recently arising fields of cellular therapy and 

in biotechnology. Current clinical apparatuses are based on 

immunoaffinity columns, or on high-gradient magnetic separa-

tion columns using either micrometer polymeric beads doped 

with magnetite, or nanometer iron-dextran colloids, attached to 

targeting antibodies [3]. There are many methods for supply-

ing drugs to specific locations and magnetic drug targeting 

(MDT) is a one of the approaches for tumor treatment because 

of its high targeting effectiveness. MDT contains required 

medical medium in compound magnetic nanoparticles, intro-

ducing these into the blood stream entering a tumor and using 

a highly inhomogeneous magnetic field in order to locate the 

magnetic particles within the chosen area [1].  

 The applications of magnetic particles in analysis system 

permits one to quantitatively investigate biomolecules in a 

straightforward way, therefore it is significant to separate and 

sort magnetic particles from solution efficiently. In recent 

times, new migration effects induced by diverse external fields 

have been used for the separation and characterization of mi-

cro- and nanoparticles. Particularly, magnetophoresis, which 

one can define as the migration of magnetic particles under the 

strongly inhomogeneous magnetic field, is useful for the classi-

fication throughout the specification of the magnetic permea-

bility of particles and the separation of microparticles from 

liquid. A distinctive benefit of the magnetophoresis is that it 

generates no heat inside bulk liquid, what makes it distinctive 

from the electrophoresis and dielectrophoresis. This is only 

true when magnetic field has so low frequency that it does not 

generate eddy currents [5]. Hence, the magnetic separation is 

essentially non-invasive method for soft particles such as cells 

and cell composites, which can be by strong magnetic fields 

acting on them destroyed. Additional benefit is that the mag-

netic field can penetrate various substances such as glasses and 

other synthetic materials much easier than electric field.  

 Hence, the sources of the magnetophoretic force can be 

placed entirely outside a microchannel and they are therefore 

not in contact with vessel and solution. This substantially sim-

plifies construction of the appropriate arrangements used to 

separation of particles according to required properties. Mag-

netophoresis is the phenomenon where the gradient of a mag-

netic field causes movement of some magnetic material objects 

due to a force on the magnetic moment induced by the same 

field. The induced magnetic moment also produces its own 

magnetic fields and they can thus interact [2]. 

II. MAIN EQUATIONS 

 It can be shown that equivalent dipole moment of the mag-

netic sphere is given by relation [4] 
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When magnetic particle is placed in inhomogeneous field on 

the equivalent magnetic dipole acts a force, which is dependent 

from m and from magnetic field H 

  d 1 F m H  (3) 

Taking into account (1) and because HH  1/2H
2
, the force 

acting on particle has the value 

  3 2

d 0 1 CM 2 14π ,r K H   F  (4) 

 In the above formula coefficient μ1 is absolute permeability 

of the medium with number 1. Sense of the force Fd depends 

from the sign of the Clausius-Mossotti factor. When μ2 > μ1 

then particle is dragged in to the field with greater gradient and 

when μ2 < μ1 then it is push out of the stronger field. 

III. AN EXAMPLE 

 As an example let us consider calculation of magnetopho-

retic force acting on magnetic particle placed between two 

toroidal wires which are 0.4 μm away each from other. Cross 

section of each wire is circular with the radius 0.1 μm and to-

roid diameter is equal 0.8 μm. Constant currents I0 = 0.25 mA 

are flowing in opposite directions in order to achieve high 

magnetic field gradient (Fig. 1). Between these two wires 

magnetic particle with the radius r0 = 1/30 μm and relative 

permeability μ2 = 10 can move freely along straight lines. All 

is placed in air with permeability μ1 = 1. The whole computa-

tional area is surrounded by a sphere with radius 2 μm. Clausi-

us-Mossotti factor has for this example value KCM = 9/12. 

First, we have to solve magnetic field equation [6] 
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by finite element method. First the potential A next magnetic 

field strength was calculated. Magnetic field has axial sym-

metry respectively axes y  
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Fig. 1. Two wires with currents and magnetic particle inside. 

 

 In the Fig.2 the component ∂Hx/∂x is plotted and in Fig.3 

the component ∂Hx/∂x as the particle moves along x and y ax-

es, respectively. 
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Fig. 2. Plot of the partial derivative ∂Hx/∂x along  

the line x  (−0.82, +0.82) μm. 
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Fig. 3. Plot of the partial derivative ∂Hy/∂x along  

the line y  (−0.82, +0.82) μm. 
 

 In Fig. 4 and  Fig.5 there are shown Fx and Fy components 

of the force acting on particle. The most abrupt changes have 

place when particle moves under the wires.  
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Fig. 4. Plot of the Fx along the line x  (−0.82, +0.82) μm. 
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Fig. 5. Plot of the Fy along the line y  (−0.82, +0.82) μm. 

 

 In this publication calculation of the forces acting on mag-

netic particle immersed in fluid with the permeability μ0. 

Equivalent dipole method is used. The main advantage of the 

equivalent dipole method is that distribution of the magnetic 

field is calculated without presence of particle in computation-

al space. This significantly simplifies the computations. The 

other method, which can be used in this context, the Maxwell 

stress method needs division of the space on the finite ele-

ments together with the particles. This can substantially in-

crease the finite element number and lead to weakly condi-

tioned system matrix. 
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