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Abstract—Inductive development of EM theory overlooked The equation (3a) defines the kinetic, by motiorstatic
some aspects or details of this complex physicalsgipline. The  potentials. Let us now examine their mutual diffeis re-
reverse deductive exposition would further explairthe former lation. Namelydiv-operator applied directly to (3a) gives so
results. Starting from the founded supposition of acompressi-  called Lorentz’ condition, as the continuity eqoatidiffer-
ble, super-fluidic and inert medium, as the suffient starting  entially relating the two EM potentials:
view, EM theory is here exposed deductively. The tiee men-

tioned fluid features enable static, kinetic and dgamic phe- ORA = ep(@ 0V +VII@) = —end@. (4)
nomena, respectively. All the physical quantitiesrad their rela-
tions are convincingly interpreted aerodynamically. Dilatation andconvection of the static, determine the kinetic
potentials. Following its carrying charge, the istabtential
Keywords— EM theory; deductive exposition; fluid behaves as a rigid structure, of the homogeneceexs he
mechanics; quantum fluid; moving fields former middle term thus annuls, with tbenvective deriva-
tive, VI @ = — 0, @, in the latter term. This derivative is op-
I.  STATIC RELATIONS posite to the gradient of a moving potential.

Let a subtle fluicbe taken as the substantial essence of Two parallel fluid flows interact by mutual forcesnd

4D space, including particles, as its disturban@es; that  crosswise ones — by respective torque. Thissic interac-
this medium is denser around positive, and spas®ind  tions, determined by transverse gradientwt of the linear
negative particles. Tending to the flulmogeneity, tWo  momentum density (4), are represented in EM thégrihe
equipolar particles repel, and opposite ones atteach agnetic field, defined by (5a). In the similar manner, its
other. The first and last fluid features, aseltsticity (€) and  own curl will soon be identified as the current field, ith a
mass density (L), are the bases of tiseatic anddynamic ef-  ne three electric structural layers (5b):

fects, dependent on a distance or acceleratiopectsely,

of the disturbances. As such, these two featurésrmae OxA =B, OxH =J,,. (5)
the speed of EM wave propagatiof=clk. ?

Internal pressure of theompressible fluid equals to the HereJix =J + 0D is the total current field consisting of the
energy density, and each its disturbance, as #mmegitary ~convection andcondgc‘uon components — in the former, and
static potential, provides the energy for all other such distur-displacement one — in latter terms, — at vacuum, conductors
bances, as thebjects. This quantity determines thaatic ~ and dielectrics, respectively. Magnetic field isgendicular

field, and this field itself -earrying charge: to the other two (collinear) vectors.
_ B In accord to the relations (3) of the two potestiat car-
He=-E,, b = Q. @) riers, the fields, as their intermediate quantjtees similarly

o ) _ related. The substitution of (3a) into (5a) gives:
Each new quantity in this sequence is the formafuie of

the preceding one. The static field is the gradafmespec- B=gu(@OxV -V x0®), H=VxD. (6)
tive potential. The beginnings of the field linepresent the

positive, and their terminals — negative chargéatiSfield | the case of rectilinear motion of the rigid &tatotential,
thus mediates the relation of electric charge @mpective the former term in (6a) annuls, and (2a) substitito the
potential. Thus introduced, the static quantitiestae bases |atter term gives theonvective kinetic relation (6b). A mov-

for following definition of kinetic ones. ing electric, produces the magnetic field, representing trans-
verse kinetic forcesCurl applied to (6b), excluding spatial
Il. KINETIC RELATIONS derivatives of the field speed, gives (5b):
The mediunsuper-fluidity enables continual fluid flows.
In parallel to thecurrent field definition (3b), the motion of OxH =VID -VID =J+dD . (5p")
a dtatic, as thepressure disturbance, formskinetic potential,
as thdinear momentum density (3a): Here VO =VQ=J , and VIID =-9D - the convective

derivative of the moving electric field.

A=epdV, J=Qv. @) Instead of the kinetic potential and magnetic fidhk

kinetic interactions of respective quantities are expkdse
EM theory by theequivalent static quantities, determined at
least in the case of the parallel motion:

The product of theompressibility (€), regular density (L)
and pressure disturbance (@) gives thedensity disturbance
(ep®). The charges are inseparable from their potemntial
and so the two kinetic quantities are collinearndtion of @ = VA, Q = -euvid. @)
negative static quantities, these two are opposite.
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These equations are formally inverse to the dédimit (3),

with the productep — consequently replaced. The negative

signs point to the attractive (or repulsive) intti@ns.Grad

applied to (7a), after missing of the spatial daties of the

object speed, gives respective ‘electric’ field:
E, = VIDA+vx[OxA =vxB . (8)

By dot product in (7a), the motion is directaldng the po-

IV. MOVING FIELDS
Instead of the field variation — in Maxwell's eqiaaus,
the algebraic relations treat their motion. Movielgctric,
produces magnetic field (6), affectikipetically the charges
moving in parallel — by respective force (8):

E, = —enEVWsingi,. (19)

Here @ is the polar angle between the direction of motion

tential A, and thus, the former middle term usually annulsgng the moving field itself. The obtained kinetield just
Finally, div applied to (8) gives (7b), as the kinetic '”terac'depends on the speed product. Possible transverspoe

tion of two parallel currents. However, (8) is gealized to

nent of the object speed, with respect to the edsrspeed,

the transverse direction too, as the torque tending to the,qid produce the axial force component.

same courses of two crosswise currents.

I1l.  DYNAMIC RELATIONS

With respect to the massive omnipresent quantuid, flu
temporal derivative of the kinetic potential, a® tlnear
momentum density, gives the reactogamic forces, rep-
resented by respective electric field:

oA = -E,, OxE =-90B . 9)
Curl applied to (9a), with respect to (5a), gives digeamic
equation (9b). Similarly,div applied to (5a), via mixed vec-
tor product, gives the trivial Maxwell’s equationtB =0.
It only speaks against the existence of free magmpetes,
being possibly predicted in advance.

The kinetic potential and magnetic field are the {er-
pendicular vortical fields, and their gradient, gendicular
to the common surface, is a non-vortical field. Thetion
in this direction convectively varies the potentehd — with
respect to (9a), induces tbgnamic field:

E,=-0A =UMA =B xU . (10)

U is transverse speed of the field and potential, in the plains

of the field lines, and sdZA| = [IxA| = B|. Thereforecurl
applied to (10) directly gives (9b):

OxE, =UMB-UOB =-0B . (9b")
As before, the speed derivatives are misséahnetic field

motion in the planes of its lines induces the dynamic forces,
represented by respective electric field.

With respect to (7), a punctual charge, movinginea
tion of a carrying current, suffers the transvedsetic force
(8). However, with respect to (10), the currentyiag con-
ductor, moving in the same direction (of the zeradignt),
would not cause any inductive effect. This direttidoes
not obey the principle of relativity. Unlike appatecharge
(7b), any real charge cannot be obtained by axatlan of
a current, at least in the frames of 3D space.

The dynamic convective relation (10), together withki-
netic one (6b), forms the convective pair introducedlby.
Thomson. With respect to the above proceduresgntgd
all the spatial derivatives of the field speedss thair is re-
stricted to theuniform rectilinear motion. In addition of the
above restriction of the direction of motion, théa® rela-
tions were seeming to be problematic. This wasréason
of their missing from the standard EM theory.

With respect to Lorentz’ condition (4), a movingétic
potential causes songlgnamic induction:

E,= 0A =VIMA =V[A =-guEV’cosd ,. (20)
The longitudinalgrad equals tadiv. Thus obtained dynamic
field, independent of the object speed, is direcgilly,
towards the carrier. It points to some acceleratibtihe me-
dium in the front, and its deceleration behind avimg
charge. Subtracted from the moving static fieldaitises the
ellipsoidal field deformation. SRT ascribed thiseef to the
increased transverse field components.

The vector sum of the two components — kinetic (19)
and dynamic (20) — affects all the present eleathiarges,
including the causing charge itself:

E, +E, = —euEV (vsindi ,+V codi | . (21)
In the resting framev(=0), this is reduced to the letter term.
In the moving frame\{ = v), vector sum of the two compo-
nents represents the central field. Its subtractiom the
moving static field as if scales this field:
E'= 1-ew)E, = g°E.. (22)
The transverse components, acting on the objecgebaare
scaled by the factorh =1-euVv. With some formal incon-

sistencies and fantastic interpretations, the taaidfs play
the crucial roles in foundation of SRT.

V. CONCLUSION

Introduced in fluid dynamics of an omnipresent medi
all the basic laws of EM theory, as the former gireano-
logical postulates — in differential or algebraiecriis, define
and mutually relate all EM quantities. The threentitsed
fluid features enable and logically determine b static,
kinetic & dynamic effects, respectively. The thied fields
are introduced by respective differential equati@ml their
mutual algebraic relations are thus consequentibéshed.
EM theory is finally presented as the central ptgisdisci-
pline, between other such disciplines, from thesitzal, up
to the quantum mechanics. The ability of the fulifigation
of the physics in general is thus pointed at.
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