Inductive Elaboration of EM Theory

Branko MiSkovt

Novi Sad, Serbia
aham.brami@gmail.com

Abstract—With some its additional elaboration, an original
development of EM theory is here presented, from theruder
to the finer levels of observation. Dual conceptiof the two
EM fields is gradually transferred into trilateral system of ra-
dial — static, transverse — kinetic and longitudinh— dynamic
elementary forces, in the functions of position, nton and ac-
celeration of interacting charges. Three sets of thbasic equa-
tions, relating the three ranks of EM quantities, ae presented.
Their senses and ranges of validity are determined.
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I.  ALGEBRAIC RELATIONS
At motion of their carriers, moving associatedd&hlre

producing thedissimilar EM fields. Thus obtained fields
interact withsimilar present fields, as if the present fields
react directly ontanoving dissimilarobjects, by respective
equivalent fieldsThese two processes are described by th

convectivg6) andrelative (7) algebraic pairs:

H =VxD, E =BxU; (6)
Ee=VXB, Hee=Dxu; (7)
E =(v-U)xB, Hy=(V -u)xD. (8)

HereV is the speed of electric, atntl— of magnetic fields,

The axial motion is tested by the two Faraday’s experi-
ments. An instrument is connected by sliding castdoe-
tween the center and rim of a conducting disc tiregan the
front of a cylindrical magnet, around the commoisaXhe
magnetization current (on the magnet cover) intsragth
free electricity (of disc) moving in parallel. Thisteraction
of the two circular currents looks as respectiaialainduc-
tion in the disc, or the equivalent field (7a).

Irrespective of (6b), the same rotation of the neagn
does not produce any inductive effect. The samendor
signal arises at reconnection of the contacts ¢ortitating
magnet itself. The magnet body now takes over tihe of
the disc, with the same magnetic interaction.

Il.  CENTRAL LAWS

Elementary EM interactions are caused byphesence
motion and accelerationof punctual charges. A charge af-
Eects another one by tisgatic central force

9)

(10)

f,=nlep=nc?, N = U qG/4ny, = en,E;

W= /e = ne?, m, = /4, .
Radial integration gives respective potential epevgth the
factorm = nr, as themutual and proper masses. These two
masses represent elementary factoréndbiction and self-
induction respectively. As the condition of the two laws

andv & u — of respective objects. Irrespective of the forceeduivalence, the relation (10b) was the basis Her direct

nature, nominally similar fields from (6) & (7) faally add,
giving the summargffectiveinteractions (8).

The validities of the algebraic relations are soovelne-
stricted. Due to cross-products, the motitansverseto the
field lines is understood. Moreovehe field motion is effec-
tive only along its own gradientinlike anon-vortical(elec-
tric) moving field — (6a), generally inhomogenednsany
direction, the gradient of wortical (magnetic) field — (6b),
is restricted to the planes of its field lines.

In this senseradial motion of a conductor with its field,

gives theaxial induction (6b). The moving gradient changes

the field in the observed location, with respectigaction of
the medium. Similar effect arises around a varidibke cur-
rent, as the accelerated electricity, producingeesve cir-
cular magnetic field, expanding or shrinking ralgiaRadial
motion causeseactive axial induction, in all parallel con-
ductors, including the carrying conductor itself.

On the other hand, the object speed in (7a) iciffein
both transverse directionsxial motion causersadial induc-
tion, and opposite. By respective forces, paralglrents
attract, and opposite ones repel each other, andosswise
conductors tend to the same courses of their ciscrémd in
common, a free moving charge is compelled to cacoio-
tion around lines of the present magnetic field.

calculation of the ‘classical’ electron radius.

Two moving charges interact by additional EM forces
The field (6a) substituted into (8a) would give tipeneral
kinetic interaction. In this aim, let us determthe magnetic
field motion around a moving charge. The centraeptal,
moving alongx-axis, is changing convectively — in direction
y. With respect to the circle equatiodi+ y? = r?, and to its
derivative,dy/ox = —xly, there follows:

_0y __9yox

= 11
ot 0x ot (1)

v v X = veow.
0X y

In accord to (19a & 18b), transverse gradient efrioving
potential is nothing else than magnetic field. Tiedd lines
expand in front, and shrink behind a moving chatbes
producing the longitudinal force component (12).

Due to simplicity, let us restrict to the paralfabtion.
(Some transverse object speed would produce thcaud
longitudinal force component.) In this case, (6a,&8 11)
give transversenagnetic and longitudinaklectric forces, of
thekineticanddynamicfields, respectively:

f., = QE +E,) =-nV(vsird + \bosdi ) ; (12)
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W, = —mV(vsirfg + Vcosd ). (13)
Radial integration of the forces givasitual kineticenergy.

The kinetic field is in fact the magnetic interactiof two

moving charges, as the parallel currents.

The longitudinal (dynamic) component, directed troiga
the moving charge, does not depend on the objetibmo
(v). Acting to all the present electric chargespitids as an
associated wave period. Subtracted from the cestadic
field — extracted from (9), it causes the ellipsbifield de-
formation, somehow predicted by H. Lorentz.

In the case of the equal speeds of the field gaand its
object, the full force (12) and energy (13) areucat into
the central forms. The comparison with (9) & (1@@ntifies
the static laws as the opposite special casesséthnes, at
the speed ¢ — of all the particles. This analogytsao the
common motion along the temporal axis, related witk-
mic expansion. The negative sign announces somamot
in rt-planes, superimposed to the expansion.

Affecting in return the carrier itself, the obtatheentral
force is distributed about the particle surface] #trus sub-
tracted from respective static force (9):

f = n(c®*- V%) = nc?(1- /&)= nd ¢ (14)
With the particle model — as thdastic sphergthis force
should be opposed by some external pressure, indepe
of the speedf, = n,c?, wheren, = n(r,). Keeping the equi-
librium with the decreasing force (14), the extémassure

compresses the radius< gr,) and thus increases the parti-
cle mass (10b) — in the ratiot=my/g .

The obtainednass-functiorspeaks in favor of thiaertia
andinduction equivalence. With respect to theass differ-
ential, dm = mwv/(c>~?), there follows theproper kinetic
energy of a moving (charged) particle:

ow, = pot=vfot=d(my= md v @ mca 1, (15a)

W, =w-w =(m- m)c®= G -1g)lde. (15b)

lll.  DIFFERENTIAL EQUATIONS

Some generalization of the central fields, andrtbem-
parison with the two potentials, gives the thre&spaf dif-
ferential equationsstatic kineticanddynamic

D =Q, 0OxH=J,, 0OxE=-4B; (17)
E.=-0®, B=0OxA, E,=-0A; (18)
A = gu@V OeA = —epq@. (19)

The set (17) is known adaxwell’s equationsand (18) — as
gauge conditionsThe mutual comparison of the potentials
relates them algebraically and differentially (18he latter
of them only was used so far. These two equati@irst po
the fluidic interpretation of EM phenomena.

In this sense, starting from a hypotheticampressible
super-fluidicandinert medium, EM potentials can be intro-
duced as the fluidic states of this medium. If static po-
tential (@) be understood as the pressure disturbance of the
fluid, its motion will give the kinetic potentiall@a), as the
massive fluid flovor linear momentum densit¥he two EM
constants, as the factors @dmpressibility(elasticity) or the
regular mass densitgf the fluid, finally give its linear mo-
mentum density. As such, these two constants daterthe
speed of EM wave propagatiorf: < 1£pL.

On these fundamental bases, the gauge conditionBeca
logically introduced. The static condition (18a)iie to the
pressure disturbances, as the static field cadssxling to
the fluid homogeneity, two equipolar disturbanceyset, and
opposite ones attract each other. The fluid flovesadfected
by kinetic forces, attracting parallel, and repgjliopposite
currents, as the collinear vectors. These forceeapressed
by the circularmagnetic field as the transverse gradient of
the fluid flow (18b). The dynamic condition (18s)nothing
else thanforce action law(16), here applied to the linear
momentum density. In facte three EM fields are only the
differential features of the two potentials

On the other hand, in analogy étectric displacement
current — in (17b), time derivative of the magndigid — in
(17c), at least formally, may be considered asntlagnetic

The termmwv accords to classical kinetic energy, assuminglisplacement current. In this sense, the threevaateMax-

the constant mass. The last equality relates tbeeprki-
netic energy with that of EM fields between the tvealii.
This is well-known Einstein’s result, obtained afsnitally,
without the mentioned EM interpretation.

Unlike the dynamic force component —uatiform mo-
tion (12), the relation (10b) of mass and charge atsote
to some dynamic forces atcelerated motianexpressed by
the knownforce action law Of course, apart from the body
acceleration the dynamic force also depends onspeed
via thevariable mas®r the factog:

mov
-——V, .

g’ ot

_ _0(mw,) :m_vzr
d ot r°

(16)

There are the two forcesentrifugalandinertial. Instead of
respective two different masses, they are thengisfunc-
tions of the same variable mass. The former fotdees to
the strait direction, and the latter opposes limeaeleration,
with respective transfer of energy. The compariaith the
two components of (12) points that the former farey be
of magnetic, and latter — of electric natures.

well's equations (17) define thearriers (charge and cur-
rents) as théormal features of the fieldI he fields are the
derivatives of potentials, and carriers — of thedd. There-
fore, the carriers are the second order derivatifebe po-

tentials. Between the three types of physical gtiast the

two potentials, as some density disturbance anthdson,

appear as the fundamental EM quantities.

IV. CONCLUSION

Three stages of EM theory are presenfddebraic re-
lations kinetically link the two fields & their moving ob-
jects, andcentral lawsdetermine EM forces acting on the
present movingandacceleratedcharges. The three fields
represent thetatic kinetic anddynamiceffects, described
by respective differential equations. Mechanicariia is
convincingly explained by EM induction.
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