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Abstract—With some its additional elaboration, an original 
development of EM theory is here presented, from the cruder 
to the finer levels of observation. Dual conception of the two 
EM fields is gradually transferred into trilateral system of ra-
dial – static, transverse – kinetic and longitudinal – dynamic 
elementary forces, in the functions of position, motion and ac-
celeration of interacting charges. Three sets of the basic equa-
tions, relating the three ranks of EM quantities, are presented. 
Their senses and ranges of validity are determined.  
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I. ALGEBRAIC RELATIONS  

At motion of their carriers, moving associated fields are 
producing the dissimilar EM fields. Thus obtained fields 
interact with similar present fields, as if the present fields 
react directly onto moving dissimilar objects, by respective 
equivalent fields. These two processes are described by the 
convective (6) and relative (7) algebraic pairs: 

 = ×H V D ,                     = ×E B U ;                (6) 

eq = ×E v B ,                  eq = ×H D u ;                (7) 

ef ( )= − ×E v U B ,          ef ( )= − ×H V u D .           (8) 

Here V is the speed of electric, and U – of magnetic fields, 
and v & u – of respective objects. Irrespective of the force 
nature, nominally similar fields from (6) & (7) formally add, 
giving the summary effective interactions (8). 

The validities of the algebraic relations are somehow re-
stricted. Due to cross-products, the motion transverse to the 
field lines is understood. Moreover, the field motion is effec-
tive only along its own gradient. Unlike a non-vortical (elec-
tric) moving field – (6a), generally inhomogeneous in any 
direction, the gradient of a vortical (magnetic) field – (6b), 
is restricted to the planes of its field lines.  

In this sense, radial motion of a conductor with its field, 
gives the axial induction (6b). The moving gradient changes 
the field in the observed location, with respective reaction of 
the medium. Similar effect arises around a variable line cur-
rent, as the accelerated electricity, producing respective cir-
cular magnetic field, expanding or shrinking radially. Radial 
motion causes reactive axial induction, in all parallel con-
ductors, including the carrying conductor itself.  

On the other hand, the object speed in (7a) is effective in 
both transverse directions: axial motion causes radial induc-
tion, and opposite. By respective forces, parallel currents 
attract, and opposite ones repel each other, and so crosswise 
conductors tend to the same courses of their currents. And in 
common, a free moving charge is compelled to circular mo-
tion around lines of the present magnetic field.  

The axial motion is tested by the two Faraday’s experi-
ments. An instrument is connected by sliding contacts be-
tween the center and rim of a conducting disc, rotating in the 
front of a cylindrical magnet, around the common axis. The 
magnetization current (on the magnet cover) interacts with 
free electricity (of disc) moving in parallel. This interaction 
of the two circular currents looks as respective radial induc-
tion in the disc, or the equivalent field (7a). 

Irrespective of (6b), the same rotation of the magnet 
does not produce any inductive effect. The same former 
signal arises at reconnection of the contacts to the rotating 
magnet itself. The magnet body now takes over the role of 
the disc, with the same magnetic interaction.  

II. CENTRAL LAWS  

Elementary EM interactions are caused by the presence, 
motion and acceleration of punctual charges. A charge af-
fects another one by the static central force: 

2
s /εµ cf n n= = ,         2

1 2 1 2 2 s /4  εµ,n q q r q E= µ π = ;      (9) 

2/ cw m m= εµ = ,              2
o oµ /4m q r= π  .           (10) 

Radial integration gives respective potential energy, with the 
factor m = nr, as the mutual and proper masses. These two 
masses represent elementary factors of induction and self-
induction, respectively. As the condition of the two laws 
equivalence, the relation (10b) was the basis for the direct 
calculation of the ‘classical’ electron radius. 

Two moving charges interact by additional EM forces. 
The field (6a) substituted into (8a) would give the general 
kinetic interaction. In this aim, let us determine the magnetic 
field motion around a moving charge. The central potential, 
moving along x-axis, is changing convectively – in direction 
y. With respect to the circle equation, x2 + y2 = r2, and to its 
derivative, ∂y/∂x = – x/y, there follows: 
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In accord to (19a & 18b), transverse gradient of the moving 
potential is nothing else than magnetic field. The field lines 
expand in front, and shrink behind a moving charge, thus 
producing the longitudinal force component (12). 

Due to simplicity, let us restrict to the parallel motion. 
(Some transverse object speed would produce the additional 
longitudinal force component.) In this case, (6a, 8a & 11) 
give transverse magnetic, and longitudinal electric forces, of 
the kinetic and dynamic fields, respectively: 

1 2 k d t l( ) ( cos ), q nV v sin Vθ θ= + = − +f E E i i  ;        (12) 
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2 2
1 2 ( sin cos ),w mV v Vθ θ= − + .                     (13) 

Radial integration of the forces gives mutual kinetic energy. 
The kinetic field is in fact the magnetic interaction of two 
moving charges, as the parallel currents.  

The longitudinal (dynamic) component, directed towards 
the moving charge, does not depend on the object motion 
(v). Acting to all the present electric charges, it looks as an 
associated wave period. Subtracted from the central static 
field – extracted from (9), it causes the ellipsoidal field de-
formation, somehow predicted by H. Lorentz. 

In the case of the equal speeds of the field carrier and its 
object, the full force (12) and energy (13) are reduced into 
the central forms. The comparison with (9) & (10) identifies 
the static laws as the opposite special cases of these ones, at 
the speed c – of all the particles. This analogy points to the 
common motion along the temporal axis, related with cos-
mic expansion. The negative sign announces some motion 
in r t-planes, superimposed to the expansion. 

Affecting in return the carrier itself, the obtained central 
force is distributed about the particle surface, and thus sub-
tracted from respective static force (9): 

2 2 2 2 2 2 2 (c ) c (1 /c ) cf n v n v n g= − = − = .          (14) 

With the particle model – as the elastic sphere, this force 
should be opposed by some external pressure, independent 
of the speed: fo = noc

2, where no = n(ro). Keeping the equi-
librium with the decreasing force (14), the external pressure 
compresses the radius (r = gro) and thus increases the parti-
cle mass (10b) – in the ratio: m = mo/g . 

The obtained mass-function speaks in favor of the inertia 
and induction equivalence. With respect to the mass differ-
ential, ∂m = mv∂v/(c2–v2), there follows the proper kinetic 
energy of a moving (charged) particle: 

2 2
k ( ) cw p t vf t v mv mv v v m m∂ = ∂ = ∂ = ∂ = ∂ + ∂ = ∂ ,     (15a) 

2 2
k o o o( )c (1/ 1/ )/4πεw w w m m q r r= − = − = − .      (15b) 

The term mv∂v accords to classical kinetic energy, assuming 
the constant mass. The last equality relates the proper ki-
netic energy with that of EM fields between the two radii. 
This is well-known Einstein’s result, obtained accidentally, 
without the mentioned EM interpretation. 

Unlike the dynamic force component – at uniform mo-
tion (12), the relation (10b) of mass and charge also points 
to some dynamic forces at accelerated motion, expressed by 
the known force action law. Of course, apart from the body 
acceleration, the dynamic force also depends on its speed, 
via the variable mass or the factor g: 
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There are the two forces, centrifugal and inertial. Instead of 
respective two different masses, they are the distinct func-
tions of the same variable mass. The former force strives to 
the strait direction, and the latter opposes linear acceleration, 
with respective transfer of energy. The comparison with the 
two components of (12) points that the former force may be 
of magnetic, and latter – of electric natures. 

III.  DIFFERENTIAL EQUATIONS  

Some generalization of the central fields, and their com-
parison with the two potentials, gives the three pairs of dif-
ferential equations, static, kinetic and dynamic: 

 Q∇ =Di ,       tot ∇× =H J ,      t∇× = − ∂E B ;     (17) 

s Φ= −∇E ,       = ∇×B A ,         d t= −∂E A ;         (18) 

 Φ= εµA V ,              tΦ∇ = − εµ ∂Ai .           (19) 

The set (17) is known as Maxwell’s equations, and (18) – as 
gauge conditions. The mutual comparison of the potentials 
relates them algebraically and differentially (19). The latter 
of them only was used so far. These two equations point to 
the fluidic interpretation of EM phenomena. 

In this sense, starting from a hypothetical, compressible, 
super-fluidic and inert medium, EM potentials can be intro-
duced as the fluidic states of this medium. If the static po-
tential (Φ ) be understood as the pressure disturbance of the 
fluid, its motion will give the kinetic potential (19a), as the 
massive fluid flow or linear momentum density. The two EM 
constants, as the factors of compressibility (elasticity) or the 
regular mass density of the fluid, finally give its linear mo-
mentum density. As such, these two constants determine the 
speed of EM wave propagation: c2 = 1/εµ. 

On these fundamental bases, the gauge conditions can be 
logically introduced. The static condition (18a) points to the 
pressure disturbances, as the static field causes. Tending to 
the fluid homogeneity, two equipolar disturbances repel, and 
opposite ones attract each other. The fluid flows are affected 
by kinetic forces, attracting parallel, and repelling opposite 
currents, as the collinear vectors. These forces are expressed 
by the circular magnetic field, as the transverse gradient of 
the fluid flow (18b). The dynamic condition (18c) is nothing 
else than force action law (16), here applied to the linear 
momentum density. In fact, the three EM fields are only the 
differential features of the two potentials. 

On the other hand, in analogy to electric displacement 
current – in (17b), time derivative of the magnetic field – in 
(17c), at least formally, may be considered as the magnetic 
displacement current. In this sense, the three relevant Max-
well’s equations (17) define the carriers (charge and cur-
rents) as the formal features of the fields. The fields are the 
derivatives of potentials, and carriers – of the fields. There-
fore, the carriers are the second order derivatives of the po-
tentials. Between the three types of physical quantities, the 
two potentials, as some density disturbance and its motion, 
appear as the fundamental EM quantities. 

IV.  CONCLUSION  

Three stages of EM theory are presented. Algebraic re-
lations kinetically link the two fields & their moving ob-
jects, and central laws determine EM forces acting on the 
present, moving and accelerated charges. The three fields 
represent the static, kinetic and dynamic effects, described 
by respective differential equations. Mechanical inertia is 
convincingly explained by EM induction.  
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