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Abstract—A class of parametric optimization problems is 
considered which arises in the analysis of linear electric circuits 
whose parameters are uncertain and given as intervals. This 
class involves such problems as tolerance analysis, stability 
analysis and power consumption analysis. A unified method for 
globally solving the resulting interval parameter optimization 
problems is suggested. It is based on the use of so-called 
modified monotonicity conditions.   

Keywords—linear circuits; interval parameters; global 
optimization; unified solution method; modified monotonicity. 

I. INTRODUCTION  
Let 1( ,.., )mp p p  be a real m-dimensional vector 

belonging to a given interval vector 1( ,.., )mp p p . Also, let 
( )A p  and ( )b p  be a real ( )n n  matrix and a n -

dimensional vector ( )b p  whose elements depend on p. As 
is well known, a (real) linear interval parameter (LIP) 
system is defined as the family of linear algebraic systems 

 ( ) ( )A p x b p ,  (1) 

  1 1( ) ( , ..., ), ( ) ( , ..., )ij ij m i i ma p a p p b p b p p   (1a) 

where 1 1( ) ( , ..., ) and ( ) ( , ..., )ij ij m i i ma p a p p b p b p p   are 
given  nonlinear (in the general case) functions, 

 , 1,...,p m   p .  (1b) 

Systems of this type describe various analysis problems 
such as tolerance analysis [1], [2], [5], [7,] stability analysis 
[1] [4], power consumption analysis [3], [6] etc. in linear 
electric circuits whose parameters are uncertain and given 
as intervals. In this paper, we show that all these problems 
can be stated using a general formulation. According to this 
approach any specific problem is reduced to solving several 
times (up to 2n) the following optimization problem: find 
the global minimum 

 * min ( , )l lg g x p  (2) 

subject to the constraint (1) where lg  is, in the general case, 
a nonlinear function. It should be stressed that the global 
optimization problem (2), (1) is NP-hard (its numerical 
complexity grows exponentially with m and n). In this 
paper, a much simpler unified method of polynomial 
complexity for solving (2), (1) is suggested which is based 
on the use of so-called modified monotonicity conditions. 

II. PROBLEM FORMULATION  
To present the general formulation suggested in this 

paper, we first introduce an additional 'n -dimensional  
output variable vector  ( 'n n ) 

 ( , )y f x p . (3) 

Let ( , )k ky f x p  be the kth component of y. We now 
consider the pair of global optimization problems 

  * min ( , ) : ( ) ( ),k l ky f x p A p x b p p   p , (4a) 

  
 

* max ( , ) : ( ) ( ),
min ( , ) : ( ) ( ),

k u k

k

y f x p A p x b p p
f x p A p x b p p

  
    

p
p

. (4b) 

Obviously, the interval * * *,k k ky y    y  defines the range 

of  ky   over p for the linear constraint (1). The interval 

vector  * * *
1 ',..., ny y y  will be called the exact (within 

round-off errors) interval (EI) solution of (3), (1). Thus, the 
general formulation sought can be stated as follows: given 
the triple  ( ) , ( ),A p b p f   and the interval vector p, find 

the corresponding EI solution *y . As is seen from (4), 
solving the general formulation problem reduces indeed to 
solving 2 'n  problems of the type (2). 

The above general formulation covers a large class of 
known range determination problems. This will be 
illustrated by the following example. 

Example. Tolerance analysis of DC circuits. In this case, f 
is independent of p and f E  (E is the identity matrix). 
Thus, the problem is to determine the EI solution *x  related 
only to (1). From (4) it can be seen that each component 

*
kx  is obtained by solving two parametric linear 

programming problems. 
In the case of AC circuits, consider the problem of 

determining the square of the magnitude v of a single 
complex variable kV  involved in a ( n n ) complex-valued 
system [1] 

 GV J . (5) 
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The latter system can be rewritten equivalently as a 
(2 2 )n n  real-valued LIP system by introducing a 2n-
dimensional real state vector x. In x, the first n components 
correspond to the respective real parts of jV  while the next 
n components correspond to the respective imaginary parts 
of jV . Thus, for this example [2]  

 2 2
k k ny x x   . (6) 

III. UNIFIED METHOD 
An iterative method for solving (4) is suggested in this 

section. For simplicity, it will be presented for the simpler 
case of f E , i.e. when the problem is to compute the EI 
solution *x  related only to (1). The new method is based on 
individually finding each interval component *

kx  of *x . 
Each component  * *,k kx x    

*
kx  is, in its turn, found by 

separately determining the lower end-point *
kx   and upper 

end-point *
kx   of *

kx , respectively. The lower end-point 
*
kx   is located as the solution of the following global 

optimization problem 

 * min T
k kx e x   (7a) 

( T
ke  is the kth column of E) subject to the constraint 

 ( ) ( ),A p x b p p  p . (7b) 

The solution of (7) is found by an iterative method which, at 
each iteration, makes use of a respective outer solution x 
and an upper bound u

kx  on *
kx  . The latter bound is 

determined using a simple local minimization technique 
requiring a polynomial amount of computation with respect 
to n and m. The upper end-point *

kx   is located in a similar 
manner using relevant outer solutions x and lower bounds 

l
kx  on *

kx  . In both cases, appropriate modified 
monotonicity conditions are checked and used. Such an 
approach results in a better performance as compared to 
other similar methods employing, however, standard 
monotonicity conditions. 

The derivation of the modified monotonicity conditions 
is shown for the case of determining the lower end-point 

*
kx  . After differentiating (1) with respect to lp  for a given  

p  we get the system 

 
1 1

( )( )
( ) , 1, ...,

n n
j iji

ij j
j jl l l

x a pb p
a p x i n

p p p 

 
  

    , (8a) 

which can be written equivalently as 

 ( ) ( ) ( )l l lA p d p p x   ,  p p ,  x x  (8b)  (7) 

where ( )l p  is a column vector and ( )l p  is a matrix. Let 
ld  denote an outer solution to (7b). Тhus, the kth 

component lkd  of ld  is an enclosure  for the derivative 
/k lx p   of kx  with respect to lp  for a given  p. The 

requirement 0 lkd called global monotonicity condition 
has been used in [2]. If 0 lkd , we can reduce the interval 

lp  to an end-point lp   or lp   depending on whether 
0lkd  or 0lkd . In this paper, a better monotonicity 

condition '0 lkd  called modified is suggested.  The interval 
'
lkd  is defined as follows. We introduce a modified outer 

solution vector x  with components 
 

 

 
, if

[ , ] if
i

u
k k k

i k

x x i k

 
 

 i
x

x
x

. (9) 

 
The new approach consists in replacing (8b) with the 
following system: 

 ( ) ( ) ( )l l lA p d p p x   , p p , x x .  (10)  

The interval '
lkd  is computed as the kth component of the 

outer solution '
ld  of (10). Again, if '0 lkd , the interval lp  

is reduced to an end-point lp   or lp   if ' 0lkd  or ' 0lkd , 
respectively. Since  k kx x ,  x x , which entails 

'
lk lkd d  (the interval operations are known to be inclusive 

monotonic). Hence, the modified monotonicity conditions 
are less restrictive as compared to the previously used 
global monotonicity conditions. It is shown that the new 
method converges in at most m number of iterations (m is 
the size of the parameter vector p) and that its numerical 
complexity is polynomial with respect to n and  m. 

The same conclusions remain valid for arbitrary function 
f. We now differentiate ( , )k ky f x p  to get 

 
1

( ) ( , ) ( , ) ( , )
n

jk k k

l l l lj

xy f f
p x p x p x p

p p p p

  
 

    . (11) 

The modified monotonicity conditions now refer to the 
derivative /k ly p   

IV. APPLICATIONS 
In this section, the above general formulation and unified 

method are applied to solve the following specific problems: 
(i) tolerance analysis of linear electric circuits described by 
nodal analysis equations, (ii) determination of the stability 
margin of linear electric circuits described by DAE 
equations [4] and (iii) determination of the range of the 
power consumed in linear electric circuits [3] described by 
nodal analysis equations. Comparisons with previous 
solutions are also provided. 
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