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Abstract—A series of feedforward coupled hopf-type amplifiers
and LTI filter sections are suitable in the cochlea modeling. From
a more general point of view, we compare the usage of different
canonical dissipative systems with Hopf-type bifurcations and
analyze their nonlinear amplification characteristics.
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I. INTRODUCTION

Various experiments revealed that the nonlinear amplifica-

tion process in the cochlea is characteristic for a system close

to a Hopf instability [1]. Thus, a Hopf-type amplifier was

proposed as basic element in the cochlea modeling [2]. Among

other complicate hydrodynamic models, a chain of alternating

Hopf amplifiers and filters shows the desired accuracy to

model the entire cochlea [3]. Thereby, the Hopf cells are

described by a µ-family of complex differential equations

ξ̇ = (µ+ j)ω0ξ − ω0|ξ|
2ξ − ω0F, ξ, F ∈ C, (1)

or its real representation

ẋ = µω0x− ω0y − ω0x(x
2 + y2)− ω0p

ẏ = µω0y + ω0x− ω0y(x
2 + y2)− ω0q,

(2)

where ξ = x + jy and the external forcing F = p + jq. A

main property of this Hopf cell is a µ-dependent nonlinear

amplification of the input signal for small negative µ-values.

This phenomenon arise also in a cochlear such that a Hopf

cell is well-suited in cochlear modeling.

It is known (see [4]) that (2) can be reformulated, neglecting

the forcing terms, as a canonical dissipative system (CDS)

ẋ = −
∂H

∂y
− gxµ(H)

∂H

∂x

ẏ =
∂H

∂x
− gyµ(H)

∂H

∂y
,

(3)

where H(x, y) := (ω0/2)(x
2 + y2) and gx,yµ (H) :=

(2/ω0)H − µ. Omitting the second terms of the r.h.s. of (3),

that can be interpreted as damping terms, we obtain a energy

preserving Hamilton system. In this case the system represents

a simple linear oscillator. For positive µ-values the function

gµ(H) has a non-trivial zero set and a stable limit cycle

arises (see [4]). For negative µ-values the damping terms are

positive and zero is the only and furthermore asymptotically

stable solution. Due to its amplification characteristic, that

appears close to the bifurcation point µ = 0, only the case of

small negative µ-values is of interest.

Obviously, there are other CDS where H and gx,yµ have to

be chosen such that we obtain a system with limit cycles.

In this paper we consider the symmetric CDS (3) and a

asymmetric variant of (3) where one of the terms gxµ or gyµ is

omitted and a forcing term is added. Then we compare the

transfer behavior of forced symmetric and asymmetric CDS.

Especially, we assume the asymmetric CDS

ẋ = ω0y

ẏ = −ω0x− ω0y(x
2 + y2 − µ) + ω0f,

(4)

where f is the external forcing. At first we analyze

the symmetric system (2). After setting the forcing

term F (t) to zero and linearizing the r.h.s. of (2) we

calculate the eigenvalues of the corresponding Jacobian as

λ1,2 = (µ± j)ω0. We find that the imaginary parts of the

eigenvalues are constant and only the real parts change linear

in varying µ. If the asymmetric CDS (4) is linearized we

obtain its eigenvalues as λ1,2 = (µ/2± (1/2)
√

µ2 − 4)ω0. In

this case the eigenvalues are complex only for |µ| < 2. We

emphasize that the transient solutions differ in dependence of

µ. Assuming an external forcing term F (t) = F0e
jωt in (1)

results in a steady-state solution of the type ξ(t) = ξ0e
j(ωt+θ);

a corresponding real representation for (2) can be obtained.

For the asymmetric CDS (4) we assume f(t) = f0 cos(ωt)
and the solution is of the form x(t) = x0 cos(ωt + ϕ).
Calculating the amplitudes of (1) and (4) for these input

signals close to resonance, ω = ω0, we obtain F0 = |µξ0−ξ30 |
and f0 = |µx0 − x3

0|, respectively. Therefore, we have the

same amplification characteristics for both systems.

Now, we analyze the behavior of the cascaded systems

that consist of CDS and LTI filter sections, where each

CDSi has a different resonance frequency ω0,i and each filter

section has its own cutoff frequency fch,i. The filters are

realized by 6th-order IIR Butterworth low-pass filters (see

[5]). The numerical solutions of the systems are calculated by

an explicit 4th-order Runge-Kutta method. We implemented

the different systems on a DSP development board. More
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Fig. 1. Single tone responses, section 8, fch = 2960 Hz and µi = −0.2 ∀i.

details about the realization can be found in the final paper.

Measurement results for the cascaded systems with the

symmetric and the asymmetric CDS are shown in Fig. 1. At

the 8th section the response upon a single-tone stimulation is

measured as a function of the stimulation frequency. Thereby,

the input strength is scaled from −20 dB down to −80 dB.

Comparing the transfer behavior for small µ the phenomenon

of nonlinear amplification arises in both systems and even the

qualitative behavior in dependence of the frequency is similar.

We expect that this behavior exists also in other CDS-filter

chains. Some more detailed results can be found in the final

paper.
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