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Abstract—In this paper, a novel method for solving ordinary
and partial differential equations is presented. The proposed
method gives a numerical solution based on an input variant par-
ticle swarm optimization; where each particle, has a dimension
equal to the number of expected solutions. The proposed method
also overcomes the problem of considering many constraints
(initial and boundary conditions) for the solution.The main
motivation of this paper, is to find a solver that is accurate,
fast and can handle many constrains as well as many variables.
This method is tested over many systems of ordinary and partial
differential equations. Further, the proposed is compared with
some leading state of the art techniques.

I. INTRODUCTION

Ordinary (ODEs) and partial (PDEs) differential equations
are widely used to model many problems in engineering and
physics. This justifies the fact, that many approaches are
developed to solve systems of ODEs or PDEs. Some methods
use analytical solution [1]and the final solution is expressed
into algebraic form. A recent sample of analytical solver is
solving differential equations using artificial neural network
[2], [3]. This technique gives an accurate solution with low
usage off memory space. In addition, it can be implemented
in neuro or parallel processors. However, it relies highly on the
size of the training set and restricts to few solution constraints
(initial and boundary conditions). Another techniques of solv-
ing differential equations is the numerical solution [4], [5],
[6]. Numerical analysis represents the solution in the form of
a vector of values, whose element index represents the system
input (e.g. time step). (Garcia,2006) presents a numerical solu-
tion using an optimization approach. This method, overcomes
the problem of solution constraints. However, This classical
method is costly, since its optimization function requires high
number of decision variables. The main goal of this paper is to
propose a technique that overcomes the underlined drawbacks
of the classical methods. This motivation is embodied in
finding a solver that is accurate, fast and flexible to the
constraints problem. As a result of that, this paper proposes
a new solver. This solver models the target problem as an
input variant optimization approach. Indeed, it optimizes the
solution at each input step via Particle Swarm Optimization
(PSO), whose number of decision variables is equal to the
number of solutions. The proposed method can be used to
solve linear, nonlinear, homogeneous and non homogeneous

ODEs or PDEs. The method also overcomes the problem
related to constraints. This method that we denoted DEPSO is
solving Differential Equations using PSO.

II. DESCRIPTION OF THE METHOD

The general definition of a system of differential equations
is used in this section to describe the proposed method
DEPSO, whose explicit form is giving by:

~F (t, Y (t),∇Y (t), . . . ,∇nY (t)) = ~0 t ε D (1)

where ~F = (F1, F2, . . . , FM )T ; ~0 = (0, 0, . . . , 0)T a zeros
vector with size M ; Y (t) = (y1(t), y2(t), . . . , yK(t)); ∇ =
d or ∂ denote ordinary or partial derivative; D is the input
set. The first step is to transform the general form given by
(1) to an optimization problem at input t in order to find the
solution Y (t) . The general form of the optimization function
is given by:

minG(~F , ~BC, t) (2)

where

G(~F , ~BC, t) =

M∑
m=1

F 2
m(t) +

R∑
r=1

BC2
r (t) (3)

~BC = (BC1(Y (t)), BC2(Y (t)), . . . , BCR(Y (t)))T = ~0
is the vector of boundary conditions. Then, the goal is to
find the minimum value (should be very close to 0) of
G(~F , ~BC, t) at each input step t, where the decision variables
are the solution at each input t. This means at each input
step, there are n decision variables represented by the vector
~o = (y∗1(t), y

∗
2(t), . . . , y

∗
n(t))

T . The optimization process is
then applied for all input values t. The second step is to
find a fast and reliable optimization method.Therefore, Particle
Swarm Optimization is chosen [8]. In order to use PSO, the
problem addressed in Eq.2 has to be discretized. Therefore,
finite difference method [4] is used to express the cost function
G into discrete form; h is the discretization step size.

III. PARTICLE SWARM OPTIMIZATION (PSO) AS A SLOVER

Recently PSO becomes one of the most important optimiza-
tion problems solver [8]. The basic idea behind PSO is to make
the optimizer rely on the collaboration between many particles,
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and thereby creating the so called swarm. These particles
search through different directions around the searching space
in order to find the optimum solution. PSO is composed of
number of iterations. At each iteration i the particle p has
a position vector ~Y i

p and a velocity vector ~V i
p . The velocity

vector updates the particle position to a new direction. This
direction is influenced by the best position the related particle
has reached and the best position among all particles. This
update process is performed using the following equations [9],
[10]:

~V i
p = ω~V i−1

p + c1rd(L
i−1
p − ~Y i−1

p )

+c2rd(L
i−1
global − ~Y i−1

p )
(4)

~Y i
p = ~Y i−1

p + ~V i
p (5)

where rd ε[0 1] is a random number; c1 and c2 are the self
confidence operators; ω is the inertia weight [9] which varies
between 0.9 and 0.4 with respect to direction of search; Li−1

p

is the best position for particle p; Li−1
global is the best position

among all particles. In DEPSO, the position and velocity of
each particle are given by

~Y i
p [ts] = (yip,1[ts], y

i
p,2[ts], . . . , y

i
p,k[ts])

T (6)

~V i
p [ts] = (vip,1[ts], v

i
p,2[ts], . . . , v

i
p,k[ts])

T (7)

where ts is the discrete time obtained with step size h.

IV. RESULTS

In this section, an example of DEPSO is presented. This
example represents a system of two first order ODEs described
by the following equations:

dy1
dt

= cos(t) + y21(t) + y2(t)− (1 + t2 + sin2(t)) (8)

dy2
dt

= 2t− (1 + t2) sin(t) + y1(t)y2(t) (9)

The initial conditions are y1(0) = 0 and y2(0) = 1. Using
finite difference method with an interval h, The discrete forms
of Eq(9) and Eq(10) are given by

F1[ts] =
y1[ts + 1]− y1[ts]

h
− cos(tsh) + y21 [ts] + y2[ts]

−(1 + (tsh)
2 + sin2(tsh))

(10)

F2[ts] =
y2[ts + 1]− y2[ts]

h
− 2tsh− (1 + (tsh)

2)

sin(tsh) + y1(ts)y2(ts).
(11)

Thus, the optimization cost function is given by

G(~F , ts) = F 2
1 [ts] + F 2

2 [ts]. (12)

The next process is to optimize G at each step ts using
PSO to obtain the solution vector ~o = (y∗1 , y

∗
2). Fig 1 shows

the result of DEPSO (red line) with comparison to the result
using Matlab solver ode113 (blue line). Where h = 0.01 and
ts = [0 500] a discrete form of t = [0 5].
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Fig. 1.
Evaluation of DEPSO: Matlab solver (Red), DEPSO (Blue)

V. CONCLUSION

A novel method is presented for solving ordinary and partial
differential equations. This method overcomes the problem of
having many boundary conditions as well as many variables.
The proposed method can be used to solve linear, non linear,
homogeneous and non homogeneous differential equations.
The main idea behind this method, is to transform the dif-
ferential equation problem to an input variant optimization
problem. Therefore, we propose an input variant particle
swarm optimization method to get the solution of the target
differential equation.
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