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Abstract—This paper deals with the discretization of strongly
non-linear systems. Proposed method is based on application
of so called dissipation normal form (discrete and continuous-
time). The paper shows that trough the discretization it is
possible to conserve chaotic behaviour of the system. During
the discretization the chaotic behaviour is usually considered as
critically sensitive to changes in initial conditions, parameters and
inputs. It is interesting that some aspects of the chaotic behaviour
are conserved even for systems with quantized values of states
and parameters.

I. INTRODUCTION

Non-linear systems with chaotic behaviour (see the exact

definition bellow) represent a fast-growing sector of non-

linear dynamical systems theory. To have an opportunity to

build discrete-time models of examined objects or phenomena

would be useful in a large number of applications. There

is no doubt that the digital signal processing offers much

wider possibilities than the continuous processing. Discrete

implementation of originally continuous-time systems can be

used for pseudo-random sequences generation, for the syn-

chronisation between a transceiver and a receiver in special

communications schemes or for any purposes requiring deter-

ministic signals with certain degree of irregularity. The main

goal of the paper is to propose the methodology which can be

used for the discretization of strongly non-linear systems with

chaotic behaviour.

II. DISCRETIZATION METHOD CONSERVING QUALITATIVE

BEHAVIOUR OF THE SYSTEM

Suppose a system desribed by the dissipation normal form

[3]. It is possible to divide the matrix of dynamics A into a

sum of particular matrices

A =











−α1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0











+











0 −α2 . . . 0
α2 0 . . . 0
...

...
. . .

...

0 0 . . . 0











· · ·

+











0 . . . 0 0
...

...
. . .

...

0 . . . 0 −αn

0 . . . αn 0











,

A =

n
∑

i=1

Ai. (1)

Then it is possible to apply a standard method of discretization

on the matrix sum in a form

Â = exp(

n
∑

i=1

AiT s) =

n
∏

i=1

exp(AiT s) = Â1 · Â2 · · · Ân,

(2)

where

Â1 =











exp(−α1T s) 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1











, (3)

Âi =





























1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 . . . cos(αiT s) − sin(αiT s) . . . 0
0 . . . sin(αiT s) cos(αiT s) . . . 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0
0 0 0 . . . 0 1





























.

(4)

It can be proven that using this method of discretization we

can get directly the discrete-time dissipation normal form. The

dissipation normal form is closely related to the lattice-ladder

structure of linear time-invariant discrete-time filters [2].

The important point is that the mentioned method conserves

the qualitative behaviour of the system. If we suppose the

abstract energy function in a form

E =
1

2

n
∑

i=1

x2

i =
1

2
x

T
x,

then the evolution of energy can be described by the expression

dE

dt
=

1

2
(ẋT

x+ x
T
ẋ) =

=
1

2
[xT

A
T(x)x+ x

T
A(x)x] = −α1(x)x

2

1. (5)

The expression above can be interpreted in the sense that

on intervals where the function α1(x) > 0 is the system

antidissipative, on intervals where α1(x) < 0 is the system

dissipative and for α1(x) = 0 is the system conservative.

For a discrete-time system it is possible to write the energy

conservation law in a form

∆E(k) = E(k + 1)− E(k) =
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=
1

2
[xT (k + 1)x(k + 1)− x

T (k)x(k)] =

=
1

2
x
T (k)[Â

T

Â− I]x(k) (6)

We can see that for all Ai, i 6= 1 is the result of the product

A
T

i Ai a unit matrix and the energy change can be expressed

by the equation

∆E(k) =
1

2
(∆1 − 1)x2

1
=

1

2
(e−α1Ts − 1)x2

1
, (7)

this means that there is exactly the same condition for the

dissipativity of the discretised system as for the continuous-

time system.

III. EXAMPLE

Let us have a strongly non-linear system representation by

equations

R{S} : ẋ1 = x2 + x3,

ẋ2 = −x1 + 0.5x2,

ẋ3 = x2

1
− x3,

y = x1. (8)

It is not possible to use the discretization method mentioned

above for this system representation. If the discretization is

provided directly, the result is a non-stable discrete system.

Our first task is to find a representation in the form specified

by. An equivalent system representation is given by equations

R{S̄} : ˙̄x1 = −α1x̄1 + α2x̄2,

˙̄x2 = x̄1 + x̄3,

˙̄x3 = −α3x̄2,

ȳ = x̄2, (9)

where α1 = 0.5, α2 = 2x̄2+1.5, α3 = x̄2+2. It is possible to

find a diffeomorphism T (x) that transforms the representation

R{S} to the representation R{S̄} from the inner invariants

equality requirement .




L0

f (h)

L1

f (h)

L2

f (h)



 =





L0

f (h̄)

L1

f (h̄)

L2

f (h̄)



 (10)





x1

x2 + x3

−x1 + x2

1
+ 0.5x2 − x3



 =





x̄2

x̄1 + x̄3

−0.5x̄1 + x̄2

2
− 0.5x̄2





(11)

After several manipulations we can obtain the transformation

in a form




x̄1

x̄2

x̄3



 =





1 −1 2
1 0 0
−1 2 1









x1

x2

x3



 . (12)

The comparison between outputs y(t) and ȳ(t) of equivalent

system representations is depicted at the Figure 1. However

the outputs seem to be identical, on longer time interval

the difference between outputs rapidly increases. The interval

with negligible difference between outputs of both realizations
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Fig. 1. Time evolution of chaotic continuous and discretized system outputs

depends on the method and parameters used for the numerical

integration of given differential equations. The reason is that

in different representations rounding errors influence results in

a different way and the behaviour of the system is chaotic thus

extremely sensitive to changes in initial conditions. Once the

system is expressed by the representation (9), it is possible to

provide the discretization in the standard way.

IV. CONCLUSIONS

The main goal of the paper is to show that it is possible

to find a discrete-time representation of strongly non-linear

systems with chaotic behaviour. The important result is that

the presented method of discretization conserves qualitative

behaviour of the discretized system. The second important

result is that it is possible to find an interval (which depends

mainly on sampling frequency) with an acceptable difference

between state variables values of the original continuous-time

and the discretized system. In the paper [3] was shown that

discrete-time non-linear systems can be modified to digital

(discrete in time and level) systems that can generate pseudo-

random sequences. Dicretization of continuous-time chaotic

systems can lead to pseudo-random sequences generators

with specific behaviour. The next important point is that for

discrete-time systems new methods of synchronization based

on digital signal processing can be proposed. The method-

ology of discretization of chaotic systems also gives a new

perspective on the problem of reconstruction of trajectory in

the states space (the most common method was presented in

[1]).
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