Space vector PWM for two-phase inverter with three legs in Matlab-Simulink

T. Laskody ${ }^{1}$, S. Kascak ${ }^{1}$, M. Prazenica ${ }^{1}$
${ }^{1}$ Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina Univerzitná 1, 01026 Žilina
E-mail : tomas.laskody@fel.uniza.sk, slavomir.kascak@fel.uniza.sk, michal.prazenica@fel.uniza.sk

Abstract

: This paper deals with design of SVPWM for two-phase inverter in Matlab/Simulink. Nowadays is effort to reduce switching losses and increase efficiency of electrical devices. One of the many possibilities how to deal with this problem is to use inverter control technique called space vector pulse width modulation (SVPWM).

INTRODUCTION

The single-phase induction motor with two unbalanced winding is widely used at the lower power level, especially in household applications where a three-phase supply is not available. Low power factor and also efficiency represent uncontrolled single phase induction motor. Single phase induction motor can be considered as two phase induction motor with main and auxiliary windings and it is possible to apply vector control of induction motor or any other control technique to increase its efficiency.
Voltage source inverter participates on control scheme and therefore it is necessary to control it. Space vector pulse width modulation gives great results on a field of control techniques. It is possible to switch voltage with variable frequency and magnitude which is great feature of it and it is also necessary for applying vector control. [1-4].

SVPWM FOR TWO-PHASE INVERTER WITH THREE LEGS

One of the many options for creating two-phase orthogonal voltage system is two-phase three leg inverter (Fig. 1.). The advantage against two-phase two legs is in better utilization of the DC bus. Chyba! Nenalezen zdroj odkazů. shows space vectors in two-phase three leg inverter. Six active voltage (Fig. 2.) vectors and two zero vectors can be turned on. Active voltage vectors divide complex plane into six operating area. Maximal trajectory of the reference vector is $\mathrm{U}_{\mathrm{DC}} / 1.414$. [5-6]

Fig. 1: Two-phase VSI with three legs.

Fig. 2: Space vectors in two-phase VSI with three legs. For performing SVPWM it is necessary to determine length and angle of the reference vector. Length of the reference vector can be determined as avector sum of reference voltages [7-8].

$$
\begin{gather*}
\left|\bar{U}_{\operatorname{Re} f}\right|=\sqrt{U_{\alpha}^{2}+U_{\beta}^{2}} \tag{1}\\
\theta=\tan ^{-1} \frac{U_{\beta}}{U_{\alpha}}=\omega t=2 \pi f t \tag{2}
\end{gather*}
$$

From the angle of the reference vector can be derived location of the reference vector. Fig. 3. shows simple algorithm of the sector determination where the reference voltage vector is located.

Fig. 3: Sector determine algorithm.
The switching operation is performed in one sample period T_{S}. It means that it is necessary to spend this time to turn on adjacent active voltage vectors to the reference vector. The first adjacent vector \bar{V}_{1} must be turned on in time T_{1}. The second adjacent vector \bar{V}_{2} must be turned on in time T_{2} [9.].

$$
\begin{equation*}
T_{S} \bar{U}_{\operatorname{Re} f}=T_{1} \bar{V}_{1}+T_{2} \bar{V}_{2} \tag{3}
\end{equation*}
$$

Equation 3 is correct only if the length of the reference vector is equal to its maximal length. If the length of the reference vector is less than its maximal length, then the sum of times T_{1} and T_{2} is less than sample period T_{S}. In that case it is necessary to calculate difference between the sample period T_{S} and sum of T_{1} and T_{2}. Let's call this difference T0 [5.].

$$
\begin{equation*}
T_{0}=T_{S}-\left(T_{1}+T_{2}\right) \tag{4}
\end{equation*}
$$

Voltage vectors \bar{V}_{1}, \bar{V}_{2} and $\bar{V}_{\operatorname{Re} f}$ can be written as follows.

$$
\begin{gather*}
\bar{V}_{1}=U_{1} e^{j \theta_{1}}= \tag{5}\\
U_{1}\left(\cos \theta_{1}+j \sin \theta_{1}\right) \\
\bar{V}_{2}=U_{2} e^{j \theta_{2}}= \tag{6}\\
U_{2}\left(\cos \theta_{2}+j \sin \theta_{2}\right) \\
\bar{V}_{\operatorname{Re} f}=U_{\operatorname{Re} f} e^{j \theta_{\mathrm{Ref}}}= \tag{7}\\
U_{\operatorname{Re} f}\left(\cos \theta_{\operatorname{Re} f}+j \sin \theta_{\operatorname{Re} f}\right)
\end{gather*}
$$

Zero voltage vectors have no role in creating of the reference voltage vector, thus:

$$
\begin{equation*}
T_{S} \bar{U}_{\operatorname{Re} f}=T_{1} \bar{V}_{1}+T_{2} \bar{V}_{2} \tag{8}
\end{equation*}
$$

Substituting equations (5. to 7.) in equation (8.) we get:
$T_{S}\left(U_{\operatorname{Re} f} \cos \theta_{\operatorname{Re} f}+j U_{\operatorname{Re} f} \sin \theta_{\operatorname{Re} f}\right)=$
$T_{1} U_{1} \cos \theta_{1}+j T_{1} U_{1} \sin \theta_{1}+$
$T_{2} U_{2} \cos \theta_{2}+j T_{2} U_{2} \sin \theta_{2}$
After separating real and imaginary parts and writing in matrix notation we get:
$T_{S}\left[\begin{array}{l}U_{\operatorname{Re} f} \cos \theta_{\operatorname{Re} f} \\ U_{\operatorname{Re} f} \sin \theta_{\operatorname{Re} f}\end{array}\right]=\left[\begin{array}{ll}U_{1} \cos \theta_{1} & U_{2} \cos \theta_{2} \\ U_{1} \sin \theta_{1} & U_{2} \sin \theta_{2}\end{array}\right]\left[\begin{array}{l}T_{1} \\ T_{2}\end{array}\right]$
From equation (10.) we can separate times T_{1} and T_{2}

$$
\left[\begin{array}{l}
T_{1} \tag{11}\\
T_{2}
\end{array}\right]=T_{S}\left[\begin{array}{ll}
U_{1} \cos \theta_{1} & U_{2} \cos \theta_{2} \\
U_{1} \sin \theta_{1} & U_{2} \sin \theta_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
U_{\mathrm{Re} f} \cos \theta_{\mathrm{Re} f} \\
U_{\mathrm{Re} f} \sin \theta_{\mathrm{Re} f}
\end{array}\right]
$$

Therefore:

$$
\begin{align*}
& T_{1}=T_{S} \frac{U_{\operatorname{Re} f}}{U_{1}} \frac{\sin \left(\theta_{2}-\theta_{\operatorname{Re} f}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)} \tag{12}\\
& T_{2}=T_{S} \frac{U_{\operatorname{Re} f}}{U_{2}} \frac{\sin \left(\theta_{\operatorname{Re} f}-\theta_{1}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)} \tag{13}
\end{align*}
$$

A value of U_{1}, U_{2}, θ_{1} and θ_{2} depends on operating area where reference vector is located.
Tab. 1: Parameters definition for active voltage vectors

Sector	$\overline{\boldsymbol{V}}_{\mathbf{1}}$	$\overline{\boldsymbol{V}}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{\theta}_{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{2}}$
1	$\bar{V}_{1}(1,0,0)$	$\bar{V}_{2}(1,0,1)$	1	$\sqrt{2}$	0°	45°
2	$\bar{V}_{3}(0,0,1)$	$\bar{V}_{2}(1,0,1)$	1	$\sqrt{2}$	90°	45°
3	$\bar{V}_{3}(0,0,1)$	$\bar{V}_{4}(0,1,1)$	1	1	90°	180°
4	$\bar{V}_{5}(0,1,0)$	$\bar{V}_{4}(0,1,1)$	$\sqrt{2}$	1	225°	180°
5	$\bar{V}_{5}(0,1,0)$	$\bar{V}_{6}(1,1,0)$	$\sqrt{2}$	1	225°	270°
6	$\bar{V}_{1}(1,0,0)$	$\bar{V}_{6}(1,1,0)$	1	1	0°	280°

The Fig. 4. shows times T_{1}, T_{2} and T_{0} for active and zero vectors in one period.

Fig. 4: Times $T_{1}, T_{2} T_{0}$ as a function of time in one period.
If times T_{1}, T_{2} and T_{0} are known, active voltage vectors can be assigned to them and it is possible to
generate switching signals. There are many ways how to generate switching signals. In this case it is symmetrical switching sequence. For first sector it looks like:
Tab. 2: Parameters definition for active voltage vectors

Secto r	$\frac{T_{0}}{2}$	T_{1}	T_{2}	T_{0}	T_{2}	T_{1}	$\frac{T_{0}}{2}$
1	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{1}=(1,0,0)$	$\bar{V}_{2}=(1,0,1)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{2}=(1,0,1)$	$\bar{V}_{1}=(1,0,0)$	$\bar{V}_{0}=(0,0,0)$
2	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{3}=(0,0,1)$	$\bar{V}_{2}=(1,0,1)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{2}=(1,0,1)$	$\bar{V}_{3}=(0,0,1)$	$\bar{V}_{0}=(0,0,0)$
3	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{3}=(0,0,1)$	$\bar{V}_{4}=(0,1,1)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{4}=(0,1,1)$	$\bar{V}_{3}=(0,0,1)$	$\bar{V}_{0}=(0,0,0) \mid$
4	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{5}=(0,1,0)$	$\bar{V}_{4}=(0,1,1)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{4}=(0,1,1)$	$\bar{V}_{5}=(0,1,0)$	$\bar{V}_{0}=(0,0,0)$
5	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{5}=(0,1,0)$	$\bar{V}_{6}=(1,1,0)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{6}=(1,1,0)$	$\bar{V}_{5}=(0,1,0)$	$\bar{V}_{0}=(0,0,0)$
6	$\bar{V}_{0}=(0,0,0)$	$\bar{V}_{1}=(1,0,0)$	$\bar{V}_{6}=(1,1,0)$	$\bar{V}_{7}=(1,1,1)$	$\bar{V}_{6}=(1,1,0)$	$\bar{V}_{1}=(1,0,0)$	$\bar{V}_{0}=(0,0,0)$

Because of effort to reduction switching losses there is necessity to optimize switching sequence. Chyba! Nenalezen zdroj odkazů. shows the possibility how to realize the switching sequence for two-phase three leg inverter. As we can see, active vectors were chosen with consideration of switching states of

Tab. 3: Parameters definition for active voltage vectors

		Sector 1							
		Ts				Ts			
		t0/2	t1	t2	t0/2	t0/2	t2	t1	t0/2
Upper switches	S1								
	S3								
	S5								
Lower switches	S2								
	S4								
	S6								

		Sector 3							
		Ts				Ts			
		t0/2	t1	t2	t0/2	t0/2	t2	t1	t0/2
Upper switches	S1								
	S3								
	S5								
Lower switches	S2								
	S4								
	S6								

$$
\begin{aligned}
& \bar{V}_{0}(0,0,0)-\bar{V}_{1}(1,0,0)-\bar{V}_{2}(1,0,1)-\bar{V}_{7}(1,1,1) \\
& -\bar{V}_{2}(1,0,1)-\bar{V}_{1}(1,0,0)-\bar{V}_{0}(0,0,0)
\end{aligned}
$$

switches. There is always only one switch which changes its switching state.It is possible to derive switching pattern from Chyba! Nenalezen zdroj odkazů.. It is necessary to derive it only for upper switches, because lower switches switch complementary to upper.

From Chyba! Nenalezen zdroj odkazů. it is possible to derive duty cycles for upper switches of two phase three leg inverter. Lower switches switch complementary to upper, thus it is not necessary to determine duty cycles to lower switches of two-phase three leg inverter.

Fig. 5: Duty cycles for upper switches for one period.
Fig. 5. shows duty cycles for switches in one period. The blue curve shows duty cycle for switch S1. The red one shows duty cycle for switch S_{5} and green curve shows duty cycle for switch S_{3}. Switch S_{3} switches middle leg of inverter. The common point of TPIM is connected to this leg.
The simulation was performed with the simulation step of $1 \mathrm{e}-6$ and the sample time $\mathrm{T}_{\mathrm{S}}=0,0002 \mathrm{~s}$. Fig. 6. shows the stator current at start-up and in steady state. As a load of the inverter, asymmetrical two phase induction motor (TPIM) was used.
Tab. 4: Parameters of the TPIM

$\begin{aligned} & \text { Rsd }= \\ & 61.3 \Omega \end{aligned}$	$\begin{aligned} & \text { Rsq }= \\ & 68.8 \Omega \end{aligned}$	Rrd 87.25Ω	$\begin{aligned} & \text { Rrq }=109.95 \\ & \Omega \end{aligned}$
$\begin{aligned} & \text { Lsd }= \\ & 1.154 \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Lsq}= \\ & 1.645 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { Lrd }= \\ & 1.174 \mathrm{H} \end{aligned}$	$\operatorname{Lrq}=1.665$
$\begin{aligned} & \hline \text { Msrd }= \\ & 1.12 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { Msrq }= \\ & 1.6 \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{TN}=0.15 \\ & \mathrm{Nm} \end{aligned}$	$\mathrm{np}=1$
$\begin{aligned} & \mathrm{UN}=230 \\ & \mathrm{~V} \end{aligned}$	$\mathrm{f}=50 \mathrm{~Hz}$	$\begin{aligned} & \mathrm{nN}=2850 \\ & \mathrm{rpm} \end{aligned}$	$\begin{aligned} & J=25.10-5 \\ & \text { Kg.m2 } \end{aligned}$

		Sector 6							
		Ts				Ts			
		t0/2	t1	t2	t0/2	t0/2	t2	t1	t0/2
Upper switches	S1								
	S3								
	S5								
Lower switches	S2								
	S4								
	S6								

Fig. 6: Stator current at start-up and in steady state.
The simulink tool powergui offers option of Fast Fourier Transformation (FFT). With this tool it is possible to make FFT analysis of the stator currents and it can also compute THD (Total Harmonic Distortion) of the currents. For example stator current in phase β has THD equal to value $6,33 \%$ (Fig. 7.).

Fig. 7: FFT analysis of stator current.

CONCLUSION

The two-phase space vector PWM for the three leg inverter topologies is proposed in this paper. Principles of the SVPWM for three leg inverter with respect to switching reduction are also described. Switching reduction increase efficiency and this could be the main reason for using of the SPWM.

ACKNOWLEDGEMENT

This paper was done within the project ITMS 26220220078.

REFERENCES

[1] P. Brandstetter, P. Chlebis and P. Palacky, "Direct Torque Control of Induction Motor with Direct Calculation of Voltage Vector," Advances in Electrical and Computer Engineering, Vol 10, No 4, 2010, pp.17-22, ISSN1844-7600,
[2] T. Sutikno, A.. Jidin and N.R.N. Idris, "New approach FPGA-based implementation of discontinuous SVPWM," Turk J Elec Eng \& Comp Sci, Vol.18, No.4, 2010
[3] K. Zhou, and D. Wang, "Relationship between space-vector modulation and three-phase carrierbased PWM: a comprehensive analysis [threephase inverters]." Industrial Electronics, IEEE Transactions on, 49(1), pp. 186-196.
[4] S. Janous, J. Sedlak, M. Prazenica, and J. Kuchta, "Implementation of Three PhaseDiscontinuous Space Vector Modulation Using Single DSC-PWM Module," Communications scientific letters of the University of Zilina, Vol. 15, No. 3 (2013), pp. 39-42., ISSN 1335-4205
[5] Do-Hyun Jang; Duck-Yong Yoon, "Spacevector PWM technique for two-phase inverter-
fed two-phase induction motors," Industry Applications, IEEE Transactions on, vol.39, no.2, pp.542,549, Mar/Apr 2003 doi: 10.1109/TIA. 2003.809448
[6] Do-Hyun Jang, "PWM methods for two-phase inverters," Industry Applications Magazine, IEEE, vol.13, no.2, pp.50,61, March-April 2007
[7] Tomaselli, L. C.; Lazzarin, T.B.; Martins, D.C.; Barbi, I., "Application of the Vector Modulation in the Symmetrical Two-Phase Induction Machine Drive" Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th , vol., no., pp.1253,1258, 16-16 June 2005
[8] Janous, S., Sedlak, J., Prazenica, M., Kuchta, J.: "Implementation of Three Phase-Discontinuous Space Vector Modulation Using Single DSCPWM Module", In: Communications - scientific letters of the University of Žilina, Vol. 15, No. 3 (2013), pp. 39-42., ISSN 1335-4205
[9] Laškody, T,:: "Návrh riadenia meniča s použitím systému dSPACE" Diplomová práca, Žilinská univerzita $\quad v$ Žiline, 2013

