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Abstract

The paper deals with mathematical modelling and computer simulation of the seismic response of fuel assembly
components. The seismic response is investigated by numerical integration method in time domain. The seismic
excitation is given by two horizontal and one vertical synthetic accelerograms at the level of the pressure vessel
seating. Dynamic response of the hexagonal type nuclear fuel assembly is caused by spatial motion of the support
plates in the reactor core investigated on the reactor global model. The modal synthesis method with condensation
is used for calculation of the fuel assembly component displacements and speeds on the level of the spacer grid
cells.
c© 2014 University of West Bohemia. All rights reserved.

Keywords: seismic response, nuclear fuel assembly, modal synthesis method, condensation

1. Introduction

One of the basic requirements on operation conditions of the nuclear reactor is the feasible
seismic response guarantee. Two basic approaches can be applied to seismic response determi-
nation. The stochastic approach [5] is based on statistical description of loading process and
on the parameters of vibrating system. For the sake of simplicity, it is mostly supposed the
stochasticity is solely due to the loading process, while the vibrating system is considered as a
deterministic one. The deterministic approach is based on description of the seismic excitation
in either analytical or digital form.

The seismic action is most often represented by the response spectrum in displacement,
pseudo-velocity or pseudo-acceleration [1] expressed analytically as a function of the eigenfre-
quency and relative damping of a simple oscillator. The seismic response is calculated by the
response spectrum method based on different combination of vibration mode contributions [8].
The specific method of response spectrum method, so called missing mass correction method,
includes the high frequency rigid modes into the system response pseudostatically [4]. The
seismic action in the digital form is represented by synthetic accelerograms corresponding to
given response spectra generally for damping value 5 % for ground spectra and 2 % for floor
spectra [1]. Both deterministic approaches require assemblage of the mathematical model of
the reactor for frequency area up to about 50 Hz.

An assessment of nuclear fuel assemblies (FA) behaviour at standard and extreme operating
conditions belongs to important safety and reliability audit. A significant part of FA assess-
ment plays dynamic deformation and load of FA components especial of fuel rods (FR) and
load-bearing skeleton (LS) (see Fig. 1). The beam type FA model used in seismic analyses of
WWER type reactors [2] does not enable investigation of seismic deformations and load of FA
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Fig. 1. Fuel assembly Fig. 2. Reactor

components. The goal of this contribution, in direct sequence at an interpretation of FA mod-
elling, modal analysis and calculation of dynamic response caused by pressure pulsation [12],
is a presentation of the newly developed method for seismic analysis of FA components. The
seismic displacements, velocities and deformations of the FA components on the level of spacer
grids (SG) can be used for their stress analysis.

2. The seismic motion of the supporting plates

The original linearized mathematical model of the WWER 1000/320 type reactor intended for
seismic response calculation was derived on the basis of computational (physical) model, whose
structure is shown in Fig. 2. It was derived using the decomposition method [11]. The reac-
tor was decomposed into eight subsystems [3, 11] — pressure vessel (PV), core barrel (CB)
composed from two rigid bodies which are connected by beam-type continuum (CB2), reactor
core (RC) formed from 163 FA, block of protection tubes (BPT), upper block (UP), system
of 61 control rod drive housing (DH), system of 61 electromagnet blocks (EM) and system
of 61 drive assemblies composed from a lifting system mechanism (LS) which ensures a sus-
pension bar (SB) motion with the control elements (CE). The mass and static stiffness of the
primary coolant loops between a reactor pressure vesel nozzles and steam generators were ap-
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proximately replaced by mass points and springs placed in gravity centers of the nozzles. The
components marked by grey in Fig. 2 were reflected as rigid bodies with six degrees of freedom
excepted tope part of core barrel (CB1) having only three degrees of freedom with respect to
pressure vessel. Other components are modelled as one-dimensional continua of beam types.

The mathematical model of the reactor after discretization of the one-dimensional continu-
ums and a completion of the damping approximated by the proportional damping matrix B and
of the seismic excitation has the form [2]

Mq̈ +Bq̇ +Kq = −m1üx(t)−m2üy(t)−m3üz(t) , (1)

where components of the vector generalized coordinates q are relative displacements of carried
subsystems with respect to supporting subsystems. So, for example, the supporting subsystem
for CB, BPT, UB, DH is the pressure vessel (PV). Pressure vessel generalized coordinates are
relative displacements with respect to basis. The seismic excitation is expressed by the syn-
thetic accelerograms ül, l = x, y, z of the reactor hall as basic in directions of axes x, y, z on
the level of point A (see Fig. 2). The first three generalized coordinates of the pressure vessel
and the whole reactor are relative translation displacements with respect to basis. That is why
the vectors mi, i = 1, 2, 3 are the first three columns of the reactor mass matrix M . The same
horizontal accelerograms üx(t), üz(t) and one vertical accelerogram üy(t), given by Škoda Nu-
clear Machinery for NPP Temelı́n, are presented in Fig. 3 and Fig. 4, along with their power
spectral densities.
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Fig. 3. Horizontal accelerogram

Each fuel assembly (see Fig. 1) is fixed by means of lower tailpiece (LP) into mounting
plate in core barrel bottom and by means of head piece (HP) into lower supporting plate of the
block of protection tubes. These support plates with pieces can be considered as rigid bodies.
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Fig. 4. Vertical accelerogram

Let use consider the spatial motion of the support plates described in coordinate systems
xX , yX , zX (X = L, U) with origins in plate gravity centres L, U by displacement vectors (see
Fig. 5)

qX = [xX , yX , zX , ϕx,X, ϕy,X , ϕz,X ]
T , X = L, U. (2)

Fig. 5. Spatial motion of the FA support plates
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The transformation relations between reactor generalized coordinates and absolute displace-
ments of lower (L) and upper (U) FA supporting plates can be expressed in the global matrix
form

qX = TR,Xq + u(t) , TR,X ∈ R6,nR, X = L, U, (3)

where nR is reactor DOF number. The vector u(t) of basis translational motion, with respect to
different reactor and plates coordinate systems (see Fig. 2 and Fig. 5), is

u(t) = [ux(t),−uz(t), uy(t), 0, 0, 0]
T . (4)

3. Condensed mathematical model of the fuel assembly

In order to model, the hexagonal type FA (Fig. 6) is divided into subsystems-six identical rod
segments s = 1, . . . , 6, centre tube (CT) and load-bearing skeleton (LS). Each rod segment of
the TVSA-T FA (on Fig. 6 drawn in lateral FA cross section and circumscribed by triangles)
is composed of 52 fuel rods with fixed bottom ends in lower piece (LP) and 3 guide thimbles
(GT) fully restrained in lower and head pieces (HP). The fuel rods and guide thimbles are linked
by transverse spacer grids g = 1, . . . , 8 of three types (SG1-SG3) inside the segments. All FA
components are modelled as one dimensional continuum of beam type with nodal points in the
gravity centres of their cross-section on the level of the spacer grids. Mathematical models of
six segments s = 1, . . . , 6 are identical in consequence of radial ξ (s)r,g and orthogonal η(s)r,g fuel
rods and guide thimbles lateral displacements and bending angles ϑ(s)

r,g , ψ(s)
r,g around these lateral

displacements on the level of spacer grid g (in the Fig. 5 on the level fixed ends).
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The FA mathematical model was derived in the configuration space [3, 11]

q = [qT
1 , . . . , q

T
s , . . . , q

T
6 , q

T
CT , q

T
LS]

T (5)

corresponding to FA decomposition. The vector s of generalized coordinates of each subsystem
(rod segments, centre tube) losed in kinematically excited nodes fixed into lower and upper
supporting plate can be partitioned in the form

qs = [(q
(s)
L )T , (q

(s)
F )T , (q

(s)
U )T ]T , s = 1, . . . , 6, CT (6)

and the skeleton s = LS fixed in bottom ends only has the form

qLS = [(q
(LS)
L )T , (q

(LS)
F )T ]T . (7)

The displacements of free system nodes (uncoupled with support plates) are integrated in vec-
tors q(s)

F ∈ Rns . The conservative mathematical models of the loosed subsystems in the decom-
posed block form corresponding to partitioned vectors can be written as⎡⎢⎢⎣
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for the s = 1, . . . , 6, CT and for the skeleton as[
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, (9)

where letters M (K) correspond to mass (stiffness) submatrices of the subsystems. The force
subvectors f (s)

C express the coupling forces between subsystem s and adjacent subsystems trans-
mitted by spacer grids. The second set of equations extracted from (8) and (9) for each subsys-
tem s = 1, . . . , 6, CT, LS is

M
(s)
F q̈

(s)
F +K

(s)
F q

(s)
F = −M

(s)
F,Lq̈

(s)
L −M

(s)
F,U q̈

(s)
U −K

(s)
F,Lq

(s)
L −K

(s)
F,Uq

(s)
U + f

(s)
C , (10)

where for the skeleton (LS) is M (LS)
F,U = 0, K(LS)

F,U = 0 because the skeleton is fixed only with
lower supporting plate.

Displacements and accelerations of the all kinematically excited nodes of the subsystems
can be expressed by the displacements and accelerations of the lower (X = L) and upper
(X = U) supporting plates as

q
(s)
X = T

(s)
X qX , q̈

(s)
X = T

(s)
X q̈X , X = L, U . (11)

The transformation matrices T (s)
X depend on the FA position in the reactor core.

The global model of the fuel assembly has too large DOF number for calculation of dynamic
response excited by support plate motion. Therefore, we assemble the condensed model using
the modal synthesis method presented in the paper [10]. Let the modal properties of the conser-
vative models of the mutually uncoupled subsystems with the strengthened end-nodes coupled
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with immovable support plates be characterized by spectral Λs and modal Vs matrices of order
ns, suitable to orthonormality conditions

V T
s M

(s)
F Vs = E , V T

s K
(s)
F Vs = Λs, s = 1, . . . , 6, CT, LS. (12)

The vectors q(s)
F of dimension ns, corresponding to free nodes of subsystems, can be approxi-

mately transformed in the form

q
(s)
F = mVsxs , xs ∈ Rms , s = 1, . . . , 6, CT, LS, (13)

where mVs ∈ Rns,ms are modal submatrices composed from chosen ms master eigenvectors of
fixed subsystems. The equations (10) can be rewritten using (11) and (13) in the form

ẍs(t) +
mΛsxs(t) = −mV T

s

∑
X=L,U

[M
(s)
F,XT

(s)
X q̈X +K

(s)
F,XT

(s)
X qX ] +

mV T
s f

(s)
C , (14)

where spectral submatrices mΛs ∈ Rms,ms correspond to chosen master eigenvectors in matrix
mVs. The models (14) of all subsystems can be written in the global configuration space x =
[xs], s = 1, . . . , 6, CT, LS of dimension m =

∑
sms = 6ms +mCT +mLS

ẍ(t) + (Λ+ V TKCV )x(t) = −V T
∑

X=L,U

[
MXQ̈X(t) +KXQX(t)

]
, (15)

where global vector fC = [f
(s)
C ] of coupling forces between subsystems was expressed by

means of the stiffness matric KC in the form fC = −KCqF , qF = [q
(s)
F ] ∈ Rn, n =

∑
ns =

6ns + nCT + nLS [3]. In the matrix equation (15), we introduced the block diagonal global
matrices

Λ = diag[mΛs] ∈ Rm,m, V = diag[mVs] ∈ Rn,m,

MX = diag[M
(s)
F,XT

(s)
X ], KX = diag[KF,XT

(s)
X ] ∈ Rn,48, X = L, U

and the global vectors

QX(t) = [qT
X , . . . , q

T
X ]

T , Q̈X(t) = [q̈T
X , . . . , q̈

T
X ]

T ∈ R48, X = L, U

describing the kinematical excitation given by FA supporting plates motion. These vectors
QX(t), Q̈X(t) are assembled, as a result of eight FA subsystems, from eight times repeating
support plate displacement and acceleration vectors.

In consequence of slightly damped FA components we consider modal damping of the
subsystems characterized in the space of modal coordinates xs by diagonal matrices Ds =

diag[2D
(s)
ν Ω

(s)
ν ], where D

(s)
ν are damping factors of natural modes and Ω

(s)
ν are eigenfrequen-

cies of the mutually uncoupled subsystems. The damping of spacer grids can be approximately
expressed by damping matrix BC = βKC proportional to stiffness matrix KC . The conserva-
tive condensed model (15) can be completed in the form

ẍ(t)+(D+βV TKCV )ẋ(t)+(Λ+V TKCV )x(t) = −V T
∑

X=L,U

[MXQ̈X(t)+KXQX(t)] , (16)

where D = diag[Ds].
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4. Seismic response of the fuel assembly components

The FA seismic response in modal coordinates x(t) can be investigated by integration of motion
equations (16) in time domain transformed into 2m differential equations of the first order

ż(t) =

[
ẋ(t)

ẏ(t)

]
=

[
y(t)

−B̃y(t)− K̃x(t) + f̃(t)

]
, (17)

where corresponding to (16)

B̃ = D+βV TKCV , K̃ = Λ+V TKCV , f̃ (t) = −V T
∑

X=L,U

[MXQ̈X(t)+KXQX(t)] .

These equations are solved at zero initial conditions x(0) = 0, y(0) = ẋ(0) = 0 using standard
software ODE in MATLAB code. We then calculate the displacements and velocities of the free
subsystem nodes according to (13)

q
(s)
F (t) = mVsxs(t), q̇

(s)
F (t) = mV sẋs(t) (18)

for selected subsystem s = 1, . . . , 6, CT, LS.
The components of the rod segment vectors q(s)

F (s = 1, . . . , 6) defined in (5) are absolute
lateral displacements ξ(s)r,g , η(s)r,g and bending angles ϑ(s)

r,g , ψ(s)
r,g of the fuel rod r cross-section [3]

in segment s on the level of spacer grid g (see Fig. 1 and Fig. 5). Corresponding lateral dis-

placements ξ
(s)

r,g, η(s)r,g of the non-deformed fuel rods can be expressed by means of the lower
supporting plate motion defined in (3) in the form[

ξ
(s)

r,g

η(s)r,g

]
=

[
C

(s)
r S

(s)
r 0 −zgS

(s)
r zgC

(s)
r xCS

(s)
r − yCC

(s)
r

−S
(s)
R C

(s)
r 0 −zgC

(s)
r −zgC

(s)
R xCC

(s)
r + yCS

(s)
r + rr

]
qL , (19)

where

C(s)
r = cos

[
αr +

π

6
+ (s− 1)

π

3

]
, S(s)

r = sin
[
αr +

π

6
+ (s− 1)

π

3

]
,

r = 1, . . . , 55; s = 1, . . . , 6 ,

xC , yC are coordinates of the FA centre CL in the reactor core, zg is vertical coordinate of the
spacer grid g in xL, yL, zL and rr, αr are polar coordinates of the selected fuel rod r in segment
s. The fuel rod lateral deformations on the level of spacer grid g are

d(s)r,g =

√
(ξ

(s)
r,g − ξ

(s)

r,g)
2 + (η

(s)
r,g − η(s)r,g)

2 , r = 1, . . . , 55; g = 1, . . . , 8 ; s = 1, . . . , 6 . (20)

As an illustration, the time behaviour of lateral deformations of the chosen fuel rod r = 31
in segment s = 3 on the level of the lower (for g = 1) and upper (for g = 8) spacer grid of the
FA outside in the WWER 1000 reactor core (xC = 0.59, yC = 1.431 [m]) is presented in Fig. 7.
The condensed FA model (16) with 960 DOF (ms = 150, mCT = 20, mLS = 40) was used for
numerical integration of equations (17).
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Fig. 7. Lateral seismic deformations of fuel rod

The components of the load-bearing skeleton vector qLS defined in (5) are absolute lateral
displacements ξ(s)AP,g, η

(s)
AP,g of centre of gravity, torsional angles ϕ(s)

AP,g and bending angles ϑ(s)
AP,g,

ψ
(s)
AP,g of the angle pieces APs, s = 1, . . . , 6 cross-section [3] on the level of spacer grid g (see

Fig. 1 and Fig. 6). Corresponding lateral displacements ξ
(s)

AP,g in radial direction of the non-
deformed angle pieces can be expressed similar as for fuel rods by means of lower supporting
plate motion defined in (3) as

ξ
(s)

AP,g = [C(s), S(s), 0,−zgS
(s), zgC

(s), xCS
(s) − yCC

(s)]qL , (21)

where new C(s) = cos
[
π
6
+ (s− 1)π

3

]
, S(s) = sin

[
π
6
+ (s− 1)π

3

]
. The other quantity sense is

same as in (19). The angle pieces lateral deformations in radial direction on the level of spacer
grid g are

d
(s)
AP,g = |ξ(s)AP,g − ξ

(s)

AP,g|, s = 1, . . . ; g = 1, . . . , 8 . (22)

As an illustration, the time behaviour of lateral deformations of the chosen angle piece s = 3
on the level of spacer grids g = 1, 8 of the identical FA as in case of chosen fuel rod is presented
in Fig. 8.
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Fig. 8. Lateral seismic deformations of angle piece

Maximum lateral seismic deformations of fuel rods and angle pieces, in consequence of
linking of these component with lower supporting plate, are on the highest level of spacer grids
(g = 8). Outer radial deformations of the fuel assembly are determined by radial deformations
of the angle pieces. The same condensed mathematical model was applied.

On the basis of lateral deformations on the level of all spacer grids we can relatively easily
calculate the maximum stress of fuel assembly components excited by seismic events. The
software developed in MATLAB code according to presented method makes possible to study
an influence of the fuel assembly and reactor design parameters on seismic deformations of
fuel assembly components. The publications dealing with seismic response of fuel assembly
components have not been seen yet. The strength criterions of the fuel rods in a general form
are presented in [7]. There are many procedures that can be used in the seismic engineering
with the aim to mitigate the earthquake impacts [6]. Their description is outside a framework
of this paper. The same condensed mathematical model was applied in this work.

5. Conclusion

The described method based on mathematical modelling and computer simulation of vibrations
in time domain enables to investigate the seismic deformations of all nuclear fuel assembly
components. The fuel assembly seismic vibrations are caused by spatial motion of the two
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horizontal supporting plates an the reactor core transformed into displacements and accelera-
tions of the kinematically excited nodes of the fuel assembly components — fuel rods, guide
thimbles, centre tube and skeleton angle pieces. The seismic motion of the supporting plates is
investigated by numerical integration method in the previous analysis stage at the global reac-
tor model whereof fuel assemblies are replaced by one dimensional continuums of beam type.
Seismic excitation is described by synthetic accelerograms of the reactor hall translation motion
on the level of the reactor pressure vessel seating.

The fuel assembly mathematical model has, in consequence of great number of fuel rods,
too large DOF number for calculation of seismic response. Therefore, it is compiled fuel assem-
bly condensed model based on reduction of the subsystems eigenvectors conducive to seismic
response by modal synthesis method.

The developed software in MATLAB is conceived in such a way that enables to choose
an arbitrary fuel assembly component — fuel rod, guide thimble, centre tube or angle piece
of load-bearing skeleton — for calculation its deformation on the level of spacer grids. The
presented method was applied for the Russian TVSA-T fuel assembly in the WWER 1000/320
type reactor in NPP Temelı́n.
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[12] Zeman, V., Hlaváč, Z., Dynamic response of nuclear fuel assembly excited by pressure pulsations,
Applied and Computational Mechanics 6 (2) (2012) 219–230.

46


