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Abstract. A new modified method based on the Gaussian elimination method for solution of linear system of equations 

in the projective space is formulated. It is based on application of projective extension of the Euclidean space and use of 

homogeneous coordinates. It leads to an elimination of division operation and higher precision due to division operation 

elimination. The approach is based on understanding that a solution of the linear system      is equivalent to the 

extended cross-product, i.e.          . As it can be seen there no division is needed. Use of the projective 

representation enables to avoid division operation and use advantages of the matrix-vector architectures. Division 

operations have to be used only if the final result of computation has to be in the Euclidean representation. The proposed 

method was implemented in C# and C++ and experimentally verified. It is especially convenient for computations on 

GPUs based architectures. 
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INTRODUCTION 

Many physical and computational problems result into a solution of linear system of equations     . There 

are many methods already developed. However, two fundamental classes can be distinguished. Explicit methods, 

e.g. Gaussian elimination method [1], [6], are of       computational complexity in general, while iterative 

methods are of        computational complexity, where:   is a matrix size and   is number of iterations. Another 

group of problems lead to homogeneous system of equations, i.e.     . The solution of      can be converted 

to a problem      , where    is a vector in the projective space. Iterative methods are preferred as an approximate 

solution is usually required and in this case they are faster if a solution converges faster due to stability issues.  

A solution of a linear system of equations      can be transformed to           , using the extended 

cross-product [10], [11], where    is a vector in the projective space. This evokes a question: “Why a solution of a 

linear system of equations requires division operations”?  

It is known that the precision of computation is given by rules as stored values   resp.   actually represents all 

values in intervals, i.e.        , resp.         . The precision of operations is given as [1], [9] 

It can be seen that the division operation causes significant imprecision in computations except of 

addition/subtraction with numbers with significantly different exponents.  

The mutual conversions between the Euclidean space and the projective space, i.e. the projective extension of the 

Euclidean space, is given as 

where:            are homogenous coordinates of the Euclidean coordinates       if we consider that geometrically. 

In mathematics a different notation                     is used, where     is the homogeneous coordinate, i.e. the    

value,        , and         etc. There are different notations used and in computer graphics and related fields the 

first notation is common. 

GAUSSIAN ELIMINATION METHOD 

The Gaussian elimination method for solving linear system of equations      relies on a strategy of the 

gradual upper triangular matrix generation. When done, there is a backward cycle computing the   vector values.   

 

                                        
                                            

                                                   if       
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         and                (2) 
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The Gaussian elimination method can be described as [3]: 

for k := 1 to n-1 do 
{ # Find pivot for column k # 
 ii := max_arg (abs(a[i, k]), i = k ... n);    #Finds the maximum pivot # 
 if abs(a[ii, k]) ≤ eps then {ERROR ("Matrix is singular!"); exit } 
 swap_rows (k, ii);      # swaps rows k, ii # 
 # for all rows below pivot # 
 for i := k + 1 to n do 
 { # for all remaining elements in the current row # 
  for j := k + 1 to n+1 do 
   a[i, j] := a[i, j] - a[k, j] * (a[i, k] / a[k, k]); 
  # fill lower triangular matrix with zeros if needed # 
  a[i, k] := 0 
 } 
}; 
for i := n downto 1 do                   # backward cycle # 
{ s:=0; 
 for j := i+1 to k do 
  s := s + a[i,j] * x[j]; 
 x[i] := (a[i,n+1) - s) / a[i,i]; 
} 

Algorithm 1. Gaussian elimination  

where: a[i,j] are elements of the extended matrix, i.e. a matrix which last column is the   vector. It can be seen that 

the there is a division by the a[k,k] diagonal element, which can lead to division by a value equal or close to zero. 

The Gaussian elimination has       computational complexity as the pivot finding is of      complexity only [4]. 

Also there is a question what is the eps value, i.e. value saying that the matrix is close to singular.  

PROJECTIVE MODIFICATION OF THE GAUSSIAN ELIMINATION METHOD 

The Gauss elimination method for solving linear needs to find a maximum pivotal element for a denominator in 

order to avoid the division operation by a value closed to or equal to zero. It is possible to use projective 

representation [8], [13], [12]. Let us consider the following data structure constructions: 

 projective scalar           
 projective vector                 

 matrix of projective vectors     

                
                
    

                

 , i.e. each row is a projective vector 

Now a projective reformulation of the Gaussian elimination of the linear system      can be made. Let an 

extended matrix    , i.e. containing the   vector, is defined as a matrix of projective vectors  

where:       is the homogeneous value for the whole i
th

 row (for a simplicity let         for all  ),         represents 

the   vector and      
     

     
 for all  ,  . The computational step of the Gaussian elimination can be modified to: 

where:   means projectively equivalent.   
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It can be seen that the precision of computation is better due to fraction representation with the floating point 

representation, but exponents tend to grow or decreases that could lead to an exponent overflow or underflow. The 

special routine “Normalize_row_exponents” has to be called at the end of each row computation. It subtracts 
exponent of the homogeneous value       from the other       values in the given row. This is actually made by 

bitwise masking operations. It should be noted that            is a common factor for the whole i
th

 row.  

for k := 1 to n-1 do                 # the principal algorithm – no optimization;              # 

{ ii := max_arg_projective (abs(a[i, k]), i = k ... n);    #Finds the maximum pivot # 
 if  bs       k   ≤ eps then {ERROR ("Matrix is singular!"); exit } 
 swap_rows (k, ii);      # swaps rows k, ii # 
 # for all rows below pivot # 
 par for i := k+1 to n do # cycle steps can be performed in parallel # 
 { for j := k+1 to n+1 do 
   a[i,j] := a[i,j] * a[k,k] - a[i,k] * a[k,j]; 
  a[i,0] := a[i,0] * a[k,k]; 
  # normalize exponents of the ith row according to a[i,0] exponent value # 
  Normalize_row_exponents (a[i,j], j = k+1 ... n) 
 } 
}; # this MUST be done completely in the projective representation # 
for i := n downto 1 do    # this MUST be done completely in the projective representation # 
{ s:=0; #symbolic code only # 
 for j := i+1 to k do 
  s := s + a[i,j] * x[j]; 
 x[i] := (a[i,n+1) - s) / a[i,i]; 
} 

Algorithm 2. Proposed projective modification of the Gaussian elimination 

The “m x_ rg_pro ect ve” procedure f nds m x mum pivot. This is a little bit tricky as it has to be made in the 
projective representation and it is based on a test                         - no division is needed. 

ALGORITHM COMPLEXITY ANALYSIS 

The proposed modification actually converts the division operation to a multiplication and the division operation 

is actually hidden into the homogeneous coordinate. Let us consider the relative timing of operations in the floating 

point representation, see Table 1. 

TABLE 1. Relative timing of floating operations for a 1,5GHz Intel CPU based on clocks 

Timing ± * / < := 

Clocks 31 31 78 149 16 

It means that the division operation is approx. 2 times slower than multiplication in the floating point 

representation. In both cases the algorithms are of       computational complexity. However in the proposed 

algorithm the division is replaced by a multiplication and update of the homogeneous value is made for each row, 

i.e. with       computational complexity only. The exponent normalization is fast as it is actually implemented as 

a bitwise and/or operation. If this operation would be supported by hardware, timing is negligible.  

TABLE 2. Main computational complexities  

Gaussian elimination Proposed algorithm 

for j := k+1 to n+1 do            #       # 
a[i,j] := a[i,j] - a[i,k] * a[k,j] / a[k,k]; 

 

for j := k+1 to n+1 do               #       # 
a[i,j] := a[i,j] * a[k,k] - a[i,k] * a[k,j]; 

a[i,0] := a[i,0] * a[k,k];              #       # 
Normalize (a[i,j], k+1, n)         #       # 

Table 2 presents principal computational complexities showing that the proposed algorithm is to be faster. It should 

be noted that implementation of the “Norm l ze_row_exponents” procedure  s   l ttle b t tr cky as it modifies 
exponent value directly in the floating point representation and low-level programming is needed.  
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EXPERIMENTAL RESULTS 

The proposed modification was tested and properties experimentally proved on Hilbert’s matrix inversion. 

The Hilbert’s matrix is given as  

and the inversion is exactly given as  

This gives us an advantage of precision and stability evaluation as the conditional number of the       Hilbert 

matrix grows as                 . 

The experimental results proved speed up higher than 10% in spite of the fact that the 

“Norm l ze_row_exponents” procedure w s not optimized as it depends on implementation of the floating 
point representation and hardware used. As far as the stability issues are concerned the stability of Hilbert 
matrix inverse was order of magnitude better than the original Gaussian elimination.  

CONCLUSION 

A new modification of Gaussian elimination method based on projective representation was introduced. The 

proposed approach uses projective extension of the Euclidean representation and generally eliminates division 

operation, which is the slowest operation in the floating point representation except of the comparison operation. As 

a projective scalar value is represented as two rational numbers in the floating point representation, the final 

precision is nearly equivalent to double length mantissa use, similarly for projective vectors.  

The proposed modification was tested and verified by the inverse Hilbert’s matrix computation. Higher precision 

and speed-up of computation were proved. The proposed projective modification is also convenient for parallel 

processing and use on GPU similar architectures. Other interesting applications of the projective representation can 

be found in [7], [10], [11]. 
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