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Abstract: - Numerical data processing is a key task across different fields of computer technology use. 

However even simple summation of values is not precise due to the floating point representation use. This 

paper presents a practical algorithm for summation of values convenient for medium and large data sets. The 

proposed algorithm is simple, easy to implement. Its computational complexity is O(N) in the contrary of the 

Exact Sign Summation Algorithm (ESSA) approach with O(N
2
) run-time complexity. The proposed algorithm 

is especially convenient for cases when exponent data differ significantly and many small values are summed 

with higher values. 
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1 Introduction 
Numerical computation is used in many 

applications. Computer power is doubled every 18 

months; memory capacity grows fast as well. 

However numerical representation is still restricted 

to floating point representation which has been 

standardized as IEEE 578 in 2008. There are many 

examples, how numerical non-robustness caused 

several disasters, e.g. North Sea Sleipner oil 

platform collapse, Tacoma Bridge collapse, Patriot 

missile failure, Ariana 5 rocket failure etc. All these 

catastrophes were somehow connected with 

numerical problems, instability and non-robustness 

of numerical computations.  

However, there is no enough attention paid in 

education, engineering practice and software 

development. Robustness and precision of 

computation is becoming a challenging issue as with 

a growing computer power and memory capacity 

problems solved are becoming close to ill 

conditioned and huge data are to be processed. 

Nowadays, mostly 64 bit architecture is used 

enabling large memory and processing of large data 

sets, vectors or matrices. Tab.2 presents the IEEE 

754-2008 standard. It should be noted that the 

standard specifies some special values, and their 

representation: positive infinity (+∞), negative 

infinity (−∞), a negative zero (−0) distinct from 

ordinary ("positive") zero, and "not a number" 

values (NaNs). 

 
Decimal 

usage 

Binary 

usage 

GigaByte [GB] 10
9
 2

30
 

TeraByte [TB] 10
12

 2
30

 

PentaByte [PB] 10
15

 2
30

 

ExaByte [EB] 10
18

 2
30

 

ZettaByte [ZB] 10
21

 2
30

 

YottaByte [YB] 10
24

 2
30

 

   

???? ?? 2
64

 

Table 1: Memory capacities 

 

Unfortunately representations for rational numbers 

are limited to a single or double precision in many 

languages and quadruples or extended precisions are 

not generally supported by programming languages 

directly. It can be shown that for many even simple 

problems this is a severe limitation. Of course due to 

the precision of computation, there is a possibility to 

use an exact computation or interval arithmetic, but 

it leads to slow computations in general.  

This paper presents a new approach to 

Summation and Sign of Sum problems that are 

fast, easy to implement.  
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Name Bits 
Digits 

E min E max 
Exp Mant. 

Half 16 5 10+1 −14 15 

Single 32 8 23+1 −126 127 

Double 64 11 52+1 −1022 1023 

Extend. 80 15 64+1 −16382 16383 

Quad 128 15 112+1 −16382 16383 

IEEE 754-2008 Standard  

Table 2 

 

 

2 Summation 
Please, leave two blank lines between successive  

There is a “very simple” problem, which is used in 

many textbooks, summation of a sequence of 

numbers, i.e.  

      

 

   

 (1) 

However, there are simple well known examples of 

summation incorrectness [15] (single precision is 

used): 

                           

   

   

 (2) 

or 

It can be seen that in the both cases the result should 

be one, i.e.     . The correctness in summation is 

very important in power series computations, matrix 

multiplications and solution of linear system of 

equations. The problem is even more complicated as 

results generally depend on the order of 

computation, e.g. how the values are actually order 

in the given data set.  

    
 

 
           

   

   

 (4) 

or if the reverse order is used 

    
 

 
           

 

     

 (5) 

If values    are ordered we can get a slightly better 

estimation as          . It means that even 

a very simple summation is not precise and reliable. 

The problem gets even worse if summation is made 

for large interval of values. This example is not an 

“academic” problem one as it occurs in the matrix 

multiplication operation as today’s matrices are 

quite large. The typical problem is the Fourier 

transform used in many computational packages and 

especially in physics and optics and it leads to large 

matrices, e.g. in digital holography [6], [9], radial 

basis function interpolation [14] or simplification of 

dynamic triangular meshes [16]. 

Another example of numerical imprecision is a 

computation of a function value. It is one of the 

basic common operations in engineering problems. 

However many programmers are not aware of the 

danger in the coding process. There seems to be two 

the most dangerous cases: 

 division by a value close to zero, e.g. in an 

intersection computation of two nearly 

parallel lines 

 addition or subtraction of two values with 

significantly different absolute value, e.g. 

recently mentioned       . 

As the result of this, the summation (repeated 

addition) result depends on the order of summation 

in general.  

Let us explore one very interesting case [9] and 

some other interesting comments [2], [10]. 

 

                
                       

              
(6) 

The question is, what is the value of the function, if 

different floating point precisions are used and if it 

is evaluated at         ,         . 

                  in single precision 

                    in double precision 

 
                                      

                         in extended precision 

However even the result in the extended precision is 

incorrect and even the sign of the value itself is 

incorrect. The correct result is “somewhere” in the 

interval of 

                                 

                                                                 
                                

                                                                 
 

if approx. 40 digits were used [10].  

 

                           

   

   

 (3) 
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Of course this function is constructed in a special 

way, but it demonstrate that 

 simple increase of precision does not 

guarantee the correctness of the result 

 roundoff error has significant influence to 

for a limited floating point computation. 

Detailed analysis of this function can be found in [2] 

and the correct result is 

           
 

  
  

     

     
 (7) 

Unfortunately precision of the numerical results is 

significantly influenced by compiler’s properties 

and options used, as the optimization of the code is 

not considering the numerical stability issues but 

optimize the speed of computation. 

 

 

2.1 Summation Problem 

The summation is a computation of the sum of a 

sequence of values              , i.e. 

      

 

   

 (8) 

From a mathematical point of view it is a trivial 

problem, from a programmer’s naïve approach it is 

a simple sequence of code, however the problem 

gets complicated if floating point is used and values 

of     differs in magnitude. The “Compensated 

summation” algorithm [3] [7] tries to solve this 

problem efficiently. Assuming          then one 

computational step can be described as follows: 

 

         

           

         

(9) 

It can be seen that   is an error of computation as if 

  and   differs then part of the mantissa of    is lost. 

From the “pure” mathematical point of view     

as the sequence above is actually an identity, 

i.e.               and         . 

However it should be noted that if  

      

 

   

     

 

   

  (10) 

then the relative error of the summation cannot be 

guaranteed [7,p.3].  

 

2.2 The Compensated Sum algorithm  

 

procedure Compensated_Sum  

(Input: vector double a[1:n], int64 n;  

Output: double S, error); 

{   double: temp, q; 

 S := 0; error := 0; 

 for i := 1 to n do 

 {  temp := S;  

  q := a[i] + error; 

   # compensated sum # 

  S := temp + q;  

  # cumulative sum # 

  error := (temp - S) + q;   

  # error estimate # 

 } 

} # end of Compensated_Sum # 

Algorithm 1 

 

The values of the   vector have to be ordered 

which requires         complexity and several 

operations are used instead of one, i.e. instead 

of          only. Unfortunately, this approach is 

not practical for large data sets, e.g. for      . 

 

 

3 Non-Traditional Floats Operations 
Current programming languages offer standard data 

types and numerical operations including floating 

point representation. The IEEE 578 floating point 

representations, see Tab.2, are highly optimized, 

now. However some operations very often used in 

computational practice are not implemented 

efficiently in many programming languages. The 

influence of basic numerical operations to a 

numerical precision is well known and can be 

formalized using the interval arithmetic as follows.  

 

 

3.1 Precision of Operations 

Let as assume that we have two numbers   and  , 

where:        ,        , i.e. all values between 

a and b are represented by the same value in the 

floating point representation. The following 

interpretation of the basic arithmetic operations 

demonstrate how the actual precision is defined. 

                     ] 

                       
                            

                  
                                     

                 if       
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The division operation is the longest one, except of 

comparison operation, and the worst one from the 

precision point of view.  

However, the operations like “divide by 2” or 

“multiply by 2” often used are mostly translated to a 

binary code as a general division or multiplication 

operation. Therefore there is a natural question how 

it could be implemented efficiently and robustly. It 

should be noted that optimization made by a 

compiler is targeted to optimization of speed of 

computation regardless to precision and robustness. 

This might be very dangerous in some applications. 

Let us introduce the union construction. It is 

actually well known equivalence construction from 

the Fortran programming language which enables to 

use the same referred memory differently. The 

construction can be described for our purposes as 

follows: 

 

union (double: d; uint16 aa, bb, cc, dd): q;  

# in the case of double precision # 

resp. 

 

union (float: d; uint16 aa, bb): q; 

# in the case of single precision # 

 

It actually means that memory element   can be 

seen as a double or as 4 consecutive memory 

elements of uint16, resp. as 2 consecutive memory 

elements of uint16 in the case of a float, i.e. in the 

single precision case. This construction, i.e. bit 

manipulation with exponent or mantissa, is 

considered as “dangerous” but it is actually very 

useful one.  

 

 

3.2 Exponent Extraction 

In some computational cases we need to extract the 

binary exponent EXP of the given value q the union 

construction can be used efficiently.  

General construction for a single or double 

precision is defined as  

 

EXP := ((q.aa land MASK) shr m) land MASK_1; 

# land not needed if uint is unsigned int # 

where: land is bitwise and operation, shr is shift 

right, MASK is a binary 16 bits mask and   is the 

argument for the shift operation. In this way we can 

manipulate with the exponent, i.e. read or rewrite it. 

It should be noted that the exponent value of the 

given of a value in the floating point representation 

is stored as a binary exponent with a shifted zero 

and MASK_1 removes the mantissa bit. 

The sequence above is simple, but special cases 

are not considered. Tab.3 presents corresponding 

values for different precision and  

 Mask_2 = ~ MASK (11) 

where ~ means bitwise negation. 

 

 

3.3 Exponent Change 

It is useful to have also operation for the exponent 

change, resp. it’s rewriting. This is potentially 

dangerous operation as the exponent is to be 

overwritten. Therefore it is a little bit complicated 

operation as some attention must be paid to the 

correctness of the implementation. Note that the 

following construction for the exponent rewriting by 

a new exponent value EXP does not handle all the 

possible cases, but it is valid in principle. 

q.aa := (q.aa land MASK_2) lor (EXP shl m) 

where: shl operation means shift left.  

Now, an efficient implementation of the floating 

point division by 2 and multiplication by 2 is 

becoming simple and fast. 

 

 

3.4 Division and Multiplication by 2 in the 

Floating Point Representation 

The division operation leads to principal loss of 

precision and to instability in general. Therefore 

there is a legitimate question if and why imprecise 

general division operation must be used. The same 

question is also valid for multiplication operation. 

Analyzing the floating point representation it is 

clear that the exponent value EXP is decreased by 1 

in the case of the division operation by 2, while in 

the case of multiplication by 2, the value EXP is 

increased by 1. Of course the “underflow” and 

“overflow” of the exponent has to be checked.  

 

Precision MASK MASK_1 MASK_2 m  Exp_Val 

Single &7F80 &00FF &807F 7  255 

Double &7FF0 &07FF &800F 4  2047 

Table 3: Mask for non-traditional operations with floating numbers 
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The above presented operations can be used for a 

new summation algorithm based on bucketing of 

exponents and for simple but not exact Sign of Sum 

problem solution, which is fast and gives good 

precision, as well. As the interval of exponents, see 

tab.3, is relatively small in relation to an expected 

number of items to be processed (we expect large 

sets to be processed), additional memory 

requirements and processing time are acceptable. 

The given approach can be used easily for more 

precise large matrix multiplication, too. 

 

 

4 Sign of Sum Problem 
There is a well known Sign of Sum problem, which 

solves exactly the problem [11], [12]. However, the 

values have to be sorted, which is of            

complexity and the algorithm itself is of       
complexity [12], [5], which is not acceptable for 

large data sets. The algorithm relies on splitting 

input to two groups positive are stored in    while 

negative values are stored in   and final sum is then 

computed as 

          

 

   

    

 

   

 (12) 

 

4.1 Exact Sign of Sum Algorithm (ESSA) 

 

Input: ai, bj (i = 1, ... , k, j = 1, . . . , ℓ  - renamed 

inputs ak+i as −bi , i = 1, ... , ℓ = n−k) 

Output: The sign of S =          

1. (BASIS) Terminate with the correct output in the 

following cases: 

1.1 if k = ℓ = 0 then S = 0. 

1.2 if k > ℓ = 0 then S > 0. 

1.3 if ℓ > k = 0 then S < 0. 

1.4 if a1 ≥ ℓ 2
F1+1

 then S > 0. 

1.5 if b1 ≥ k 2
E1+1

 then S < 0. 

2. (AUXILIARY VARIABLES) 

a′ = a′′ = b′ = b′′ = 0; 

3. (PROCESSING THE LEADING SUMMANDS) 

CASE E1 = F1: 

If a1 ≥ b1 then a′ ← a1 − b1 

Else b′ ← b1 − a1; 

CASE E1 > F1: 

u ← 2
F1+1

; 

a′ ← a1 − u, a′′ ← u − b1; 

CASE E1 < F1: 

v ← 2
E1+1

; 

b′ ← b1 − u, b′′ ← u − a1; 

4. (UPDATE BOTH LISTS) 

Discard a1, b1 from list. 

Insert a′, a′′ into the a-list (only non-zero values 

need to be inserted). 

Insert b′, b′′ into the b-list (only non-zero values 

need to be inserted). 

Update the values of k, ℓ and return to Step 1. 

Algorithm 2 

(Taken from [5, lecture 4, p6]) 

It can be seen that the algorithm is quite complex 

and requires data ordering as well. However, there 

are many cases when we do not need EXACT 

computation, but as precise computation as possible. 

In this case a modified summation algorithm based 

on hashing can be used with high computational 

efficiency. Sign of Sum algorithm precision is The 

summation problem for large data sets is becoming 

quite difficult. Let us consider the case, when the 

number of values        and we do not want to 

use ESSA (Exact Sum Sign Algorithm) approach 

due to its complexity. Sorting values is not 

acceptable due to time response etc. The algorithm 

must be fast and easy to implement as large data sets 

are to be processed. In the following double floating 

point representation will be used, unless otherwise 

noted. 

  

 

Figure 1: IEEE floating number representation 
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In the double precision case the mantissa is 

represented by 52 bits, while exponent is 

represented by 11 bits with the shifted zero, i.e. if 

EXP = 0 then a value stored actually is          
       (in reality the mantissa has 1 “invisible” bit 

more).  

As there are only 2048 values for EXP, the EXP 

value can be considered as the address to the hash 

table, where the cumulative sum for each binary 

exponent value is stored. Now, the Hash 

Summation algorithm can be described as follows: 

important in geometry when long and thin shapes 

are processed, e.g. in surface extraction from 

implicitly defined objects [1] [16]. 

 

 

4 Hashing techniques 
Hashing technique is used in many applications [8], 

[13], [15]. One of the advantages is that retrieval 

complexity is         if a good hash function is 

used regardless number of items stored, i.e. design 

of the hash function is critical to run-time 

efficiency. Principle of the hashing technique is 

presented in Fig.2.  

 

In the case of the Summation algorithm 

application of the hash function is quite simple. The 

value of the      input element, i.e.    , is stored 

directly in the TAB table directly, while the address 

to the hash table is given by the binary exponent of 

the value stored. As the range of exponents is 

               the hash table has 2048 positions 

only in the case of double precision, that acceptable 

length even for medium and large data sets.  

 

 

5 Hash Based Sign Of Sum 
The summation problem for large data sets is becoming 

quite difficult. Let us consider the case, when the number 

of values        and we do not want to use ESSA 

(Exact Sum Sign Algorithm) approach due to its 

complexity. Sorting values is not acceptable due to time 

response etc. The algorithm must be fast and easy to 

implement as large data sets are to be processed. In the 

following double floating point representation will be 

used, unless otherwise noted. In the double precision case 

the mantissa is represented by 52 bits, while exponent is 

represented by 11 bits with the shifted zero, i.e. if 

EXP = 0 then a value stored actually is          
       (in reality the mantissa has 1 “invisible” bit 

more). As there are only 2048 values for EXP, the EXP 

value can be considered as the address to the hash table, 

where the cumulative sum for each binary exponent value 

is stored. Now, the Hash Summation algorithm can be 

described as follows: 

procedure Hash_Summation  

(In: double a[1:n], uint64 n; Out: double S); 

{   

# version for double precision #  

# -------------------------------------------------------- # 

# Hardware constants for double IEEE 578/2008 # 

# sign bit is to be eliminated # 

# and part of the mantissa # 

# MASK values &7FF0 for double # 

# &7F80 for single precision # 

# -------------------------------------------------------- # 

const uint16 MASK = &7FF0;  

const uint16 Exp_Size = 2047, Exp_Zero = 1028; 

const int16 m=4; 

const int16 N=1000;  #max. level of recursion# 

 

  

 

Figure 2: Hash function data structure in principle 
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# --------------------------------------------------------- # 

uint16 addr, rek_lev; 

double q_new; 

double TAB[0 : Exp_Size]; 

uint LEVEL [0 : N]; #recursion levels # 

type eqv =  

union (double: d; uint16: aa, bb, cc, dd);  

# a new type definition # 

 

uint16 function Exponent (eqv val) inline; 

{ return ( (val.aa and MASK) shr m)  

# mask and shift to the right # 

}; 

# ----------- RECURSIVE CASE -------- # 

procedure ADD (eqv val; uint16 exp_val); 

{ eqv val_old,q; 

 uint16 exp_q; 

 val_old := TAB[exp_val]; 

 TAB[exp_val] := 0; 

 q := val + val_old; # new value # 

 exp_q := Exponent(q); # new value exponent # 

 # if exponents are equal then store # 

 # the value directly else call ADD recursively # 

 if exp_q = exp_val then  

 { TAB[exp_q] := val;  

  LEVEL[rek_lev] +:= 1;  

  rek_lev:=0  

 } 

 else  
 { rek_lev +:= 1;  

  ADD(q, exp_q) 

 } 

}; 

 

 # TAB initialization # 

 for i := 0 to Exp_Size do 

  TAB[i] := 0; 

 for i := 0 to N do 

  LEVEL[i] := 0; 

  

 for i : = 1 to n do  

 { q := a[i]; # conversion to the eqv type # 

  rek_lev := 0; 

  ADD (q, Exponent(q)); 

 }; 

 # Final summation # 

 S := TAB[Exp_Zero];  

 # the lowest exponents first # 

 for i : = 1 to Exp_No do  

 { S+:=TAB[Exp_Zero+i]+TAB[Exp_Zero-i]; 

 }; 

} # end of Hash_Summation # 

Recursive algorithm 

Algorithm 2 

However, this algorithm is recursive that leads to a 

higher computational complexity due to subsequent 

recursive calls. Simple non-recursive modification 

stores values directly in the TAB table which leads 

to cases where values are stored in non-exact 

positions in the TAB table; position can differ by 

 k, where k=1 or k=2 usually. 

 

# ----------- NON-RECURSIVE CASE -------- # 

eqv: q; 

double function GET (eqv q); 

{ q.d := a[i]; 

 # position in TAB # 

 addr := (q.aa and MASK) shr m;  

# mask and shift to the right # 

 q_new := q.d + TAB[addr];  

 # a new value of the partial sum # 

}; 

 

for i : = 1 to n do  

{ q.d := a[i];  

 # position in TAB # 

 addr := (q.aa and MASK) shr m;  

 # mask and shift to the right # 

 q_old := TAB[addr]; TAB[addr] := 0; 

 q_new := q.d + TAB[addr];  

 # a new value of the partial sum # 

 TAB[addr] := q_new; 

# additional sequence should be placed here # 

# if code to be optimized # 

}; 

 

 S := TAB[Exp_Zero];  

 # the lowest exponents first # 

 for i : = 1 to Exp_No do  

 { S+:=TAB[Exp_Zero+i]+TAB[Exp_Zero-i]; 

 }; 

 # end of Hash_Summation # 

Algorithm 3  

 
  

 
Typical example of the recursion level for 10

7
 

items; No.of calls *1000 

Figure 3 
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This is actually bucketing algorithm and can be 

easily improved as after some iterations the 

exponent of the value stored in the table TAB has 

higher value than expected and therefore should be 

stored in a different position in the table TAB. The 

additional sequence, showing the principle only, is 

simple but not optimal one: 

 

# q_new–value not stored in the proper position? # 

q.d := TAB[addr]; 

addr_new := (q.aa land MASK) shr m; 

if addr_new ≠ adr then  

# value actually stored has different exponent # 

{ if addr_new >= 0  

 or addr_new <= Exp_Val then  

 # except of the 0 and Exp_Val exponent # 

 { TAB[addr] := 0.0;  

  TAB[addr_new] := q.d; 

 } ; 

} 

Algorithm 4 

There should be an iterative “propagation” of the q 

value up or down within the TAB to the correct 

position, but there is a small probability that the q 

value would propagate repeatedly up or down. 

However, it will be partially corrected in the 

following steps of this algorithm. Also the code 

would be much more complicated and run-time 

efficiency would be lower. 

 

 

6 Experimental Results 
The proposed algorithms have been successfully tested 

with different functions, e.g. 

 

   

 

   

 
      

 
 (13) 

    
 

   

 
        

 
 (14) 

  
 

      
  

 

   

 (15) 

for       etc. For simplicity the single precision was 

used in experiments. 

Also the following functions were tested 

 
                  

 

   

 

                

(16) 

   

 
 

 

      

 

   

    
 

 
 

 

   
  

 

   

   
 

   
 

(17) 

   

  
 

      
  

 

   

 (18) 

   

 

     
 

 
 
  

 

 

   

 
 

 
    

  

 
 

  

   

 

   

 

    
 

 
   

 

  
 

 

     

(19) 

   

 

            

     

 
  

   

          
  

 
        

   
(20) 

 

Extendex Rosenbrock function [3] 

    
   

 
 

            
 

 

 

 

   

 (21) 

Table 7 

 

 

7 Conclusion 
 

A new approach to the Summation problem solution 

for large data sets has been presented. It is based on 

bucketing principle which helps to “re-sort” given 

values to buckets with the same binary exponent. 

The algorithm is not convenient for the cases when 

data have the similar binary exponent in the floating 

point representation, e.g. if data are from an 

interval            , as all data would fall 

into the same bucket.  
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