
Summation Problem Revisited - More Robust Computation

VACLAV SKALA

Department of Computer Science and Engineering

University of West Bohemia

Univerzitni 8

CZECH REPUBLIC

skala@kiv.zcu.cz http://www.VaclavSkala.eu

Abstract: - Numerical data processing is a key task across different fields of computer technology use.

However even simple summation of values is not precise due to the floating point representation use. This

paper presents a practical algorithm for summation of values convenient for medium and large data sets. The

proposed algorithm is simple, easy to implement. Its computational complexity is O(N) in the contrary of the

Exact Sign Summation Algorithm (ESSA) approach with O(N
2
) run-time complexity. The proposed algorithm

is especially convenient for cases when exponent data differ significantly and many small values are summed

with higher values.

Key-Words: - Numerical precision; floating point representation; linear algebra; matrix multiplication;

summation; sign of sum; IEEE 758; robustness; stability; hashing.

1 Introduction
Numerical computation is used in many

applications. Computer power is doubled every 18

months; memory capacity grows fast as well.

However numerical representation is still restricted

to floating point representation which has been

standardized as IEEE 578 in 2008. There are many

examples, how numerical non-robustness caused

several disasters, e.g. North Sea Sleipner oil

platform collapse, Tacoma Bridge collapse, Patriot

missile failure, Ariana 5 rocket failure etc. All these

catastrophes were somehow connected with

numerical problems, instability and non-robustness

of numerical computations.

However, there is no enough attention paid in

education, engineering practice and software

development. Robustness and precision of

computation is becoming a challenging issue as with

a growing computer power and memory capacity

problems solved are becoming close to ill

conditioned and huge data are to be processed.

Nowadays, mostly 64 bit architecture is used

enabling large memory and processing of large data

sets, vectors or matrices. Tab.2 presents the IEEE

754-2008 standard. It should be noted that the

standard specifies some special values, and their

representation: positive infinity (+∞), negative

infinity (−∞), a negative zero (−0) distinct from

ordinary ("positive") zero, and "not a number"

values (NaNs).

Decimal

usage

Binary

usage

GigaByte [GB] 10
9
 2

30

TeraByte [TB] 10
12

 2
30

PentaByte [PB] 10
15

 2
30

ExaByte [EB] 10
18

 2
30

ZettaByte [ZB] 10
21

 2
30

YottaByte [YB] 10
24

 2
30

???? ?? 2
64

Table 1: Memory capacities

Unfortunately representations for rational numbers

are limited to a single or double precision in many

languages and quadruples or extended precisions are

not generally supported by programming languages

directly. It can be shown that for many even simple

problems this is a severe limitation. Of course due to

the precision of computation, there is a possibility to

use an exact computation or interval arithmetic, but

it leads to slow computations in general.

This paper presents a new approach to

Summation and Sign of Sum problems that are

fast, easy to implement.

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 56

Name Bits
Digits

E min E max
Exp Mant.

Half 16 5 10+1 −14 15

Single 32 8 23+1 −126 127

Double 64 11 52+1 −1022 1023

Extend. 80 15 64+1 −16382 16383

Quad 128 15 112+1 −16382 16383

IEEE 754-2008 Standard

Table 2

2 Summation
Please, leave two blank lines between successive

There is a “very simple” problem, which is used in

many textbooks, summation of a sequence of

numbers, i.e.

 (1)

However, there are simple well known examples of

summation incorrectness [15] (single precision is

used):

 (2)

or

It can be seen that in the both cases the result should

be one, i.e. . The correctness in summation is

very important in power series computations, matrix

multiplications and solution of linear system of

equations. The problem is even more complicated as

results generally depend on the order of

computation, e.g. how the values are actually order

in the given data set.

 (4)

or if the reverse order is used

 (5)

If values are ordered we can get a slightly better

estimation as . It means that even

a very simple summation is not precise and reliable.

The problem gets even worse if summation is made

for large interval of values. This example is not an

“academic” problem one as it occurs in the matrix

multiplication operation as today’s matrices are

quite large. The typical problem is the Fourier

transform used in many computational packages and

especially in physics and optics and it leads to large

matrices, e.g. in digital holography [6], [9], radial

basis function interpolation [14] or simplification of

dynamic triangular meshes [16].

Another example of numerical imprecision is a

computation of a function value. It is one of the

basic common operations in engineering problems.

However many programmers are not aware of the

danger in the coding process. There seems to be two

the most dangerous cases:

 division by a value close to zero, e.g. in an

intersection computation of two nearly

parallel lines

 addition or subtraction of two values with

significantly different absolute value, e.g.

recently mentioned .

As the result of this, the summation (repeated

addition) result depends on the order of summation

in general.

Let us explore one very interesting case [9] and

some other interesting comments [2], [10].

(6)

The question is, what is the value of the function, if

different floating point precisions are used and if it

is evaluated at , .

 in single precision

 in double precision

 in extended precision

However even the result in the extended precision is

incorrect and even the sign of the value itself is

incorrect. The correct result is “somewhere” in the

interval of

if approx. 40 digits were used [10].

 (3)

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 57

Of course this function is constructed in a special

way, but it demonstrate that

 simple increase of precision does not

guarantee the correctness of the result

 roundoff error has significant influence to

for a limited floating point computation.

Detailed analysis of this function can be found in [2]

and the correct result is

 (7)

Unfortunately precision of the numerical results is

significantly influenced by compiler’s properties

and options used, as the optimization of the code is

not considering the numerical stability issues but

optimize the speed of computation.

2.1 Summation Problem

The summation is a computation of the sum of a

sequence of values , i.e.

 (8)

From a mathematical point of view it is a trivial

problem, from a programmer’s naïve approach it is

a simple sequence of code, however the problem

gets complicated if floating point is used and values

of differs in magnitude. The “Compensated

summation” algorithm [3] [7] tries to solve this

problem efficiently. Assuming then one

computational step can be described as follows:

(9)

It can be seen that is an error of computation as if

 and differs then part of the mantissa of is lost.

From the “pure” mathematical point of view

as the sequence above is actually an identity,

i.e. and .

However it should be noted that if

 (10)

then the relative error of the summation cannot be

guaranteed [7,p.3].

2.2 The Compensated Sum algorithm

procedure Compensated_Sum

(Input: vector double a[1:n], int64 n;

Output: double S, error);

{ double: temp, q;

 S := 0; error := 0;

 for i := 1 to n do

 { temp := S;

 q := a[i] + error;

 # compensated sum #

 S := temp + q;

 # cumulative sum #

 error := (temp - S) + q;

 # error estimate #

 }

} # end of Compensated_Sum #

Algorithm 1

The values of the vector have to be ordered

which requires complexity and several

operations are used instead of one, i.e. instead

of only. Unfortunately, this approach is

not practical for large data sets, e.g. for .

3 Non-Traditional Floats Operations
Current programming languages offer standard data

types and numerical operations including floating

point representation. The IEEE 578 floating point

representations, see Tab.2, are highly optimized,

now. However some operations very often used in

computational practice are not implemented

efficiently in many programming languages. The

influence of basic numerical operations to a

numerical precision is well known and can be

formalized using the interval arithmetic as follows.

3.1 Precision of Operations

Let as assume that we have two numbers and ,

where: , , i.e. all values between

a and b are represented by the same value in the

floating point representation. The following

interpretation of the basic arithmetic operations

demonstrate how the actual precision is defined.

]

 if

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 58

The division operation is the longest one, except of

comparison operation, and the worst one from the

precision point of view.

However, the operations like “divide by 2” or

“multiply by 2” often used are mostly translated to a

binary code as a general division or multiplication

operation. Therefore there is a natural question how

it could be implemented efficiently and robustly. It

should be noted that optimization made by a

compiler is targeted to optimization of speed of

computation regardless to precision and robustness.

This might be very dangerous in some applications.

Let us introduce the union construction. It is

actually well known equivalence construction from

the Fortran programming language which enables to

use the same referred memory differently. The

construction can be described for our purposes as

follows:

union (double: d; uint16 aa, bb, cc, dd): q;

in the case of double precision #

resp.

union (float: d; uint16 aa, bb): q;

in the case of single precision #

It actually means that memory element can be

seen as a double or as 4 consecutive memory

elements of uint16, resp. as 2 consecutive memory

elements of uint16 in the case of a float, i.e. in the

single precision case. This construction, i.e. bit

manipulation with exponent or mantissa, is

considered as “dangerous” but it is actually very

useful one.

3.2 Exponent Extraction

In some computational cases we need to extract the

binary exponent EXP of the given value q the union

construction can be used efficiently.

General construction for a single or double

precision is defined as

EXP := ((q.aa land MASK) shr m) land MASK_1;

land not needed if uint is unsigned int #

where: land is bitwise and operation, shr is shift

right, MASK is a binary 16 bits mask and is the

argument for the shift operation. In this way we can

manipulate with the exponent, i.e. read or rewrite it.

It should be noted that the exponent value of the

given of a value in the floating point representation

is stored as a binary exponent with a shifted zero

and MASK_1 removes the mantissa bit.

The sequence above is simple, but special cases

are not considered. Tab.3 presents corresponding

values for different precision and

 Mask_2 = ~ MASK (11)

where ~ means bitwise negation.

3.3 Exponent Change

It is useful to have also operation for the exponent

change, resp. it’s rewriting. This is potentially

dangerous operation as the exponent is to be

overwritten. Therefore it is a little bit complicated

operation as some attention must be paid to the

correctness of the implementation. Note that the

following construction for the exponent rewriting by

a new exponent value EXP does not handle all the

possible cases, but it is valid in principle.

q.aa := (q.aa land MASK_2) lor (EXP shl m)

where: shl operation means shift left.

Now, an efficient implementation of the floating

point division by 2 and multiplication by 2 is

becoming simple and fast.

3.4 Division and Multiplication by 2 in the

Floating Point Representation

The division operation leads to principal loss of

precision and to instability in general. Therefore

there is a legitimate question if and why imprecise

general division operation must be used. The same

question is also valid for multiplication operation.

Analyzing the floating point representation it is

clear that the exponent value EXP is decreased by 1

in the case of the division operation by 2, while in

the case of multiplication by 2, the value EXP is

increased by 1. Of course the “underflow” and

“overflow” of the exponent has to be checked.

Precision MASK MASK_1 MASK_2 m Exp_Val

Single &7F80 &00FF &807F 7 255

Double &7FF0 &07FF &800F 4 2047

Table 3: Mask for non-traditional operations with floating numbers

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 59

The above presented operations can be used for a

new summation algorithm based on bucketing of

exponents and for simple but not exact Sign of Sum

problem solution, which is fast and gives good

precision, as well. As the interval of exponents, see

tab.3, is relatively small in relation to an expected

number of items to be processed (we expect large

sets to be processed), additional memory

requirements and processing time are acceptable.

The given approach can be used easily for more

precise large matrix multiplication, too.

4 Sign of Sum Problem
There is a well known Sign of Sum problem, which

solves exactly the problem [11], [12]. However, the

values have to be sorted, which is of

complexity and the algorithm itself is of
complexity [12], [5], which is not acceptable for

large data sets. The algorithm relies on splitting

input to two groups positive are stored in while

negative values are stored in and final sum is then

computed as

 (12)

4.1 Exact Sign of Sum Algorithm (ESSA)

Input: ai, bj (i = 1, ... , k, j = 1, . . . , ℓ - renamed

inputs ak+i as −bi , i = 1, ... , ℓ = n−k)

Output: The sign of S =

1. (BASIS) Terminate with the correct output in the

following cases:

1.1 if k = ℓ = 0 then S = 0.

1.2 if k > ℓ = 0 then S > 0.

1.3 if ℓ > k = 0 then S < 0.

1.4 if a1 ≥ ℓ 2
F1+1

 then S > 0.

1.5 if b1 ≥ k 2
E1+1

 then S < 0.

2. (AUXILIARY VARIABLES)

a′ = a′′ = b′ = b′′ = 0;

3. (PROCESSING THE LEADING SUMMANDS)

CASE E1 = F1:

If a1 ≥ b1 then a′ ← a1 − b1

Else b′ ← b1 − a1;

CASE E1 > F1:

u ← 2
F1+1

;

a′ ← a1 − u, a′′ ← u − b1;

CASE E1 < F1:

v ← 2
E1+1

;

b′ ← b1 − u, b′′ ← u − a1;

4. (UPDATE BOTH LISTS)

Discard a1, b1 from list.

Insert a′, a′′ into the a-list (only non-zero values

need to be inserted).

Insert b′, b′′ into the b-list (only non-zero values

need to be inserted).

Update the values of k, ℓ and return to Step 1.

Algorithm 2

(Taken from [5, lecture 4, p6])

It can be seen that the algorithm is quite complex

and requires data ordering as well. However, there

are many cases when we do not need EXACT

computation, but as precise computation as possible.

In this case a modified summation algorithm based

on hashing can be used with high computational

efficiency. Sign of Sum algorithm precision is The

summation problem for large data sets is becoming

quite difficult. Let us consider the case, when the

number of values and we do not want to

use ESSA (Exact Sum Sign Algorithm) approach

due to its complexity. Sorting values is not

acceptable due to time response etc. The algorithm

must be fast and easy to implement as large data sets

are to be processed. In the following double floating

point representation will be used, unless otherwise

noted.

Figure 1: IEEE floating number representation

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 60

In the double precision case the mantissa is

represented by 52 bits, while exponent is

represented by 11 bits with the shifted zero, i.e. if

EXP = 0 then a value stored actually is
 (in reality the mantissa has 1 “invisible” bit

more).

As there are only 2048 values for EXP, the EXP

value can be considered as the address to the hash

table, where the cumulative sum for each binary

exponent value is stored. Now, the Hash

Summation algorithm can be described as follows:

important in geometry when long and thin shapes

are processed, e.g. in surface extraction from

implicitly defined objects [1] [16].

4 Hashing techniques
Hashing technique is used in many applications [8],

[13], [15]. One of the advantages is that retrieval

complexity is if a good hash function is

used regardless number of items stored, i.e. design

of the hash function is critical to run-time

efficiency. Principle of the hashing technique is

presented in Fig.2.

In the case of the Summation algorithm

application of the hash function is quite simple. The

value of the input element, i.e. , is stored

directly in the TAB table directly, while the address

to the hash table is given by the binary exponent of

the value stored. As the range of exponents is

 the hash table has 2048 positions

only in the case of double precision, that acceptable

length even for medium and large data sets.

5 Hash Based Sign Of Sum
The summation problem for large data sets is becoming

quite difficult. Let us consider the case, when the number

of values and we do not want to use ESSA

(Exact Sum Sign Algorithm) approach due to its

complexity. Sorting values is not acceptable due to time

response etc. The algorithm must be fast and easy to

implement as large data sets are to be processed. In the

following double floating point representation will be

used, unless otherwise noted. In the double precision case

the mantissa is represented by 52 bits, while exponent is

represented by 11 bits with the shifted zero, i.e. if

EXP = 0 then a value stored actually is
 (in reality the mantissa has 1 “invisible” bit

more). As there are only 2048 values for EXP, the EXP

value can be considered as the address to the hash table,

where the cumulative sum for each binary exponent value

is stored. Now, the Hash Summation algorithm can be

described as follows:

procedure Hash_Summation

(In: double a[1:n], uint64 n; Out: double S);

{

version for double precision #

-- #

Hardware constants for double IEEE 578/2008 #

sign bit is to be eliminated #

and part of the mantissa #

MASK values &7FF0 for double #

&7F80 for single precision #

-- #

const uint16 MASK = &7FF0;

const uint16 Exp_Size = 2047, Exp_Zero = 1028;

const int16 m=4;

const int16 N=1000; #max. level of recursion#

Figure 2: Hash function data structure in principle

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 61

--- #

uint16 addr, rek_lev;

double q_new;

double TAB[0 : Exp_Size];

uint LEVEL [0 : N]; #recursion levels #

type eqv =

union (double: d; uint16: aa, bb, cc, dd);

a new type definition #

uint16 function Exponent (eqv val) inline;

{ return ((val.aa and MASK) shr m)

mask and shift to the right #

};

----------- RECURSIVE CASE -------- #

procedure ADD (eqv val; uint16 exp_val);

{ eqv val_old,q;

 uint16 exp_q;

 val_old := TAB[exp_val];

 TAB[exp_val] := 0;

 q := val + val_old; # new value #

 exp_q := Exponent(q); # new value exponent #

 # if exponents are equal then store #

 # the value directly else call ADD recursively #

 if exp_q = exp_val then

 { TAB[exp_q] := val;

 LEVEL[rek_lev] +:= 1;

 rek_lev:=0

 }

 else
 { rek_lev +:= 1;

 ADD(q, exp_q)

 }

};

 # TAB initialization #

 for i := 0 to Exp_Size do

 TAB[i] := 0;

 for i := 0 to N do

 LEVEL[i] := 0;

 for i : = 1 to n do

 { q := a[i]; # conversion to the eqv type #

 rek_lev := 0;

 ADD (q, Exponent(q));

 };

 # Final summation #

 S := TAB[Exp_Zero];

 # the lowest exponents first #

 for i : = 1 to Exp_No do

 { S+:=TAB[Exp_Zero+i]+TAB[Exp_Zero-i];

 };

} # end of Hash_Summation #

Recursive algorithm

Algorithm 2

However, this algorithm is recursive that leads to a

higher computational complexity due to subsequent

recursive calls. Simple non-recursive modification

stores values directly in the TAB table which leads

to cases where values are stored in non-exact

positions in the TAB table; position can differ by

 k, where k=1 or k=2 usually.

----------- NON-RECURSIVE CASE -------- #

eqv: q;

double function GET (eqv q);

{ q.d := a[i];

 # position in TAB #

 addr := (q.aa and MASK) shr m;

mask and shift to the right #

 q_new := q.d + TAB[addr];

 # a new value of the partial sum #

};

for i : = 1 to n do

{ q.d := a[i];

 # position in TAB #

 addr := (q.aa and MASK) shr m;

 # mask and shift to the right #

 q_old := TAB[addr]; TAB[addr] := 0;

 q_new := q.d + TAB[addr];

 # a new value of the partial sum #

 TAB[addr] := q_new;

additional sequence should be placed here #

if code to be optimized #

};

 S := TAB[Exp_Zero];

 # the lowest exponents first #

 for i : = 1 to Exp_No do

 { S+:=TAB[Exp_Zero+i]+TAB[Exp_Zero-i];

 };

 # end of Hash_Summation #

Algorithm 3

Typical example of the recursion level for 10

7

items; No.of calls *1000

Figure 3

0

50

100

150

1 2 3 4 5

Recursion Level for 107 Items

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 62

This is actually bucketing algorithm and can be

easily improved as after some iterations the

exponent of the value stored in the table TAB has

higher value than expected and therefore should be

stored in a different position in the table TAB. The

additional sequence, showing the principle only, is

simple but not optimal one:

q_new–value not stored in the proper position? #

q.d := TAB[addr];

addr_new := (q.aa land MASK) shr m;

if addr_new ≠ adr then

value actually stored has different exponent #

{ if addr_new >= 0

 or addr_new <= Exp_Val then

 # except of the 0 and Exp_Val exponent #

 { TAB[addr] := 0.0;

 TAB[addr_new] := q.d;

 } ;

}

Algorithm 4

There should be an iterative “propagation” of the q

value up or down within the TAB to the correct

position, but there is a small probability that the q

value would propagate repeatedly up or down.

However, it will be partially corrected in the

following steps of this algorithm. Also the code

would be much more complicated and run-time

efficiency would be lower.

6 Experimental Results
The proposed algorithms have been successfully tested

with different functions, e.g.

 (13)

 (14)

 (15)

for etc. For simplicity the single precision was

used in experiments.

Also the following functions were tested

(16)

(17)

 (18)

(19)

(20)

Extendex Rosenbrock function [3]

 (21)

Table 7

7 Conclusion

A new approach to the Summation problem solution

for large data sets has been presented. It is based on

bucketing principle which helps to “re-sort” given

values to buckets with the same binary exponent.

The algorithm is not convenient for the cases when

data have the similar binary exponent in the floating

point representation, e.g. if data are from an

interval , as all data would fall

into the same bucket.

Acknowledgments
The author would like to express his thanks to

students and colleagues at the University of West

Bohemia in Plzen and VSB Technical University in

Ostrava for their recommendations, constructive

discussions and hints that helped to finish this work.

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 63

Many thanks belong to the anonymous reviewers for

their valuable comments and suggestions that

improved this paper significantly. This research was

supported by the Ministry of Education of the Czech

Republic – projects No.LH12181 and LG13047.

References:

[1] Cermak,M., Skala,V.: Polygonisation of

disjoint implicit surfaces by the adaptive edge

spinning algorithm, Int.J.Computational

Science and Engineering, Vol.3, No.1, pp.45-

52, 2007

[2] Cuyt,A., Verdonk,B., Becuwe,S., Kuterna,P.: A

remarkable Example of Catastrophics

Cancellation Unraveled, Computing 66,

pp.309-320, 2011

[3] Dekker,T.J.: A floating point technique for

extending the available precision, Numerical

Mathematics, Vol.18, pp.621-632, 1997

[4] Dixon,L.C.W., Mills,D.J.: The effect of

rounding error on the variable precision,

Technical report No. 229, Hatfuield

Polytechnic, Hatfield, U.K., 1990

[5] Gavrilova,M., Gavrilov,D., Rokne,J.: New

algorithm for exact computation of the sign of

algebraic expressions, IEEE CCECE 96

conference, pp.314-317, 1996

[6] Hanak,I., Janda,M., Skala,V.: Detail-driven

digital hologram generation, The Visual

Computer, Vol.26, No.2., pp.83-96, 2010

[7] Higham,N.J.: Accuracy and Stability of

numerical algorithms, SIAM, Philadelphia,

1996

[8] Hradek,J., Skala,V.: Hash Function and

Triangular Mesh Reconstruction, Vol.29,

No.6., pp.741-751, Computers&Geosciences,

Pergamon Press, 2003

[9] Janda,M., Hanak,I., Skala,V.: HPO Hologram

Synthesis For Full-Parallax Reconstruction

Setup, 3DTV Conference proceedings, 2007

[10] Leclerc,A.P.: Efficient and Reliable Global

Optimization, PhD Thesis, Ohio State

University, 1992

[11] Mehlhorn,K., Yap,Ch.: Robust Geometric

Computation (Tentative title), 2004

[12] Ratschek,H., Rokne,J.: Exact computation of

the sign of a finite sum, Applied mathematics

and computation, Elsevier, Vol.99, No.2-3,

pp.99-127, 1999

[13] Skala,V., Hradek,J., Kuchar,M.: New Hash

Function Construction for Textual and

Geometrical Data Retrieval, Latest Trends on

Computers, Vol.2, pp.483-489, CSCC

conference, Corfu, Greece, 2010

[14] Skala,V: Progressive RBF Interpolation,

Afrigraph 2010, pp.17-20, ACM, 2010

[15] Skala,V.: A Unified Approach for Textual and

Geometrical Information Retrieval, 16
th

Conference on Computers ICCOMP12,

WSEAS, Kos, Greece, pp.143-148, 2012

[16] Vasa,L., Skala,V.: Combined Compression and

Simplification of Dynamic 3D Meshes, The

Journal of Computer Animation and Virtual

Worlds, Willey Interscience, Vol.20, No.4.,

pp.447-456, 2009

[17] Tucker,W.: Automatic Differentiation,

http://www.sintef.no/project/eVITAmeeting/20

10/vn2010.pdf <retrieved 2012-06-29>

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 64

