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Abstract 

The surface reconstruction problem from sets of planar parallel slices representing cross sections 
through 3D objects is presented. The final result of surface reconstruction is always based on the correct 
estimation of the structure of the original object. This paper is a case study of the problem of the structure 
determination. We present a new approach, which is based on considering mutually orthogonal sets of slices. 
A new method for surface reconstruction from orthogonal slices is described and the benefit of orthogonal 
slices is discussed too. The properties and sample results are presented as well. 
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1. Introduction 
 
The crucial task of the surface reconstruction 
from slices is a correct estimation of the 
original object structure, i.e. the solution of the 
contour correspondence problem. Most of the 
existing methods simply consider the overlap 
of contours in a pair of consecutive parallel 
slices as the only correspondence criterion. 
Therefore, they produce unacceptable structure 
estimation when the angle between the axis of 
the object and the normal of the slices 
increases.  

Higher density of slices can help to 
solve this problem, but it is not always 
possible because of the resolution limit of the 
scanning device, etc. It is obvious that other 
slices in non-parallel planes offer an additional 
information. In this paper we will concentrate 
on the benefit of orthogonal slices for the 
reconstruction process. In comparison to the 
existing methods, our currently achieved 
results show, that for a set of objects the 
resultant surface is significantly more accurate 
with respect to the similarity to the original 
surface. 

The concept of the new proposed 
method is presented and results of 

comparisons with the existing methods are 
discussed as well. 
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Figure 1: Problematic cases when solving the contour 
correspondence problem. Expected problems using the 
overlapping criterion: A, B, C, D; generalized 
cylinders: B, D; MST: C, D; Reeb graph based 
methods: D. 
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2. Brief survey of existing methods 
  
Several methods for surface reconstruction 
from slices have been developed since about 
1970. In this section we will classify them 
according to their approach to solving the 
contour correspondence problem. For more 
extensive study of the existing methods from 
the other  viewpoints, see [2, 4, 6, 7]. 

The simplest methods estimate the 
contour correspondence locally between each 
consecutive pair of contours. Typically, 
contours that overlap each other are 
considered as correspondent. This works if the 
density of slice is high, i.e. the distance 
between slices is low, and the axis of the input 
object is nearly perpendicular to the slices 
planes.  

A more advanced method uses 
generalized elliptical cylinder to solve the 
correspondence problem [1, 11, 12]. Contours 
are first classified as elliptical or complex by 
determining how well the vertices of their 
perimeter can be fit by an ellipse. If the fit is 
too poor, a contour is classified as complex, 
and can not be incorporated into an elliptical 
cylinder. Then the ellipses are grouped to the 
cylinders. When as many contours as possible 
have been organized into cylinders, then the 
algorithm uses the geometric relationship 
between cylinders to group them into objects. 
This method is most useful for elongated 
smooth objects with roughly elliptical cross 
section. 

Apparently the best existing 
approaches that have been published are two 
graph-based methods. The first of them 
presented by Skinner [10] computes a 
minimum spanning tree based on contour 
shape and position. In the first step a graph is 
constructed by representing each contour as a 
node and connecting each node to all nodes 
representing contours in adjacent sections. The 
best fitting ellipse is computed for each 
contour. The cost of an edge of the graph 
relies on the mutual position and size of two 
ellipses: 
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where (xi, yi, zi), (xj, yj, zj) represent the 
centers of the ellipses of contours i, j, 
respectively, and ai, bi, aj, bj are their major 
and minor axis lengths. 

The minimum spanning tree computed 
for the graph represents the solution to the 
correspondence problem. The method works 
well for naturally tree-structured objects, the 
main limitation is its inability to solve the 
correspondence problem correctly for general 
graph topologies, e.g. genus > 0. 
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Figure 2: A) Data set of slices of the cochlea.  Using the 
Reeb graph it is possible to detect and represent the 
right contour correspondence. The advantage consists in 
the possibility of considering the correspondence 
among contours of one slice (B). Taken from [8]. 

 
The second graph based method  

presented by Shinagawa [8, 9] uses surface 
coding based on Morse Theory to construct a 
Reeb graph [14] representing the contour 
connectivity. Each contour represents a node 
in the graph, edges of the graph represent the 
contour correspondence relation. Edges are 
added to the graph in the manner to avoid 
making connections that would result in a 
surface that is not a 2-manifold. For each pair 
of contours that can be legally connected, a 
weight function is evaluated, and its value is 
used to establish a priority for connecting that 
pair of contours. The algorithm proceeds by 
making the highest priority connections in 
regions where the number of contours in each 
section does not change, and then adds 
connections in order of decreasing priority 
with respect to the a priori knowledge of the 
number of connected components and the 
topological genus. 
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It is necessary to note that all the 
existing solutions just estimate the contours 
correspondence, i.e. the structure of the 
original object, should be emphasized. In 
Figure 1 there are some typical example data 
sets to illustrate capabilities of the approaches 
mentioned in this section. 
 
3. Orthogonal slices 
 
One set of parallel planar slices is one of the 
well-known boundary representations of a 3D 
object. Usually the planes of such slices set are 
perpendicular to the z-axis, and thus called z-
slices.  

If we slice an object by more then one 
set of parallel slices and moreover when these 
sets are mutually orthogonal, we get 
orthogonal sets of slices.  Consider now that 
we have z-slices, x-slices and y-slices of an 
object, see Figure 3. Note, that the contours 
are supposed to be polygonal, oriented  the 
way that when looking from the positive 
direction of the given slices set axis, the 
contours have the interior on its left side and 
the exterior on the right side, see Figure 4. 
 
3.1 Contour correspondence 
 
The main advantage of orthogonal slices 
consists in the approach how the contour 
correspondence can be determined. It is 
important to emphasize that two orthogonal 
contours which intersect each other comes 
aparently from one and the same surface 
component of the input object. It means that 
the intersection of contours is very important 
since it provides accurate information about 
the correct structure, see Figure 5. 

It is obvious that if the slices in the 
orthogonal sets sample the object sufficiently, 
then the intersections of contours from the 
orthogonal slices identify the correspondence 
relation accurately, i.e. the correct structure of 
the original object. 

 
4. The algorithm 
 
The planes of slices divide space into a set of 
spatial cells of a spatial grid M. In Figure 3 
can be seen three mutually orthogonal planes 

of grid M. We distinguish two kinds of cells of 
M, the surface-crossing and the surface-
passing cells. There are parts of contours on 
some sides of a surface-crossing cell, which 
means that the resultant surface intersects the 
cell, see Figure 6. 

 

 
Figure 3: An example of three orthogonal slices sets. 

 

 
Figure 4: Correct contour orientation. 

 

 
Figure 5: The mutual crossings of orthogonal contours 
define the correspondence relation. 

 

 

Figure 6: A surface-crossing cell. Parts of contours on 
the sides of the cell together with node points form 
spatial polygons. Node points are denoted as white 
circles. Each edge of G is adjacent with two cells of M. 
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The intersection of two orthogonal 
slices consisting of curvilinear contours is a set 
of points and we call them node points, see 
Figure 7. Now we focus on surface-crossing 
cell. An important observation is that parts of 
input contours and the node points form 
spatial polygons. Each such polygon is 
enclosed in a surface-crossing cell, its patch is 
part of the resultant surface, see Figure 6.  
 
4.1 The correspondence problem 
 
At this moment we suppose that the 
correspondence of contours is identified 
sufficiently by the intersections of orthogonal 
contours as it has been discussed in 
section 3.1.  

Consider the intersection of two 
contours as the relation of correspondence. 
Note that the number of components of a 
graph constructed of such a relation 
corresponds to the number of disjoint 
components of the resultant surface. 

 
4.2 Node points computation 
 
A node point is geometrically the intersection 
of two contours. Topologically it is the 

representation of a contour correspondence 
relation. It holds that each node point must lie 
on the edge of the grid M. Since the contours 
are supposed as polygonal curves, we cannot 
compute the intersections of two orthogonal 
sections directly. We obtain them in two 
phases.  
 

 
A B 

Figure 7: A) An input contour, the lattice represents 
positions of orthogonal slices planes. B) The contour 
formed by its node points (black spots). 
 

In the first step intersections of each 
contour and the grid M are computed. These 
intersections are added among the current 
contour vertices on the appropriate position. 
They are registered on the corresponding edge 
of the grid M simultaneously. Our algorithm 
works on the same principle as the Cohen-
Sutherland’s line clipping algorithm [3]. 

An intersection of a slice plane and all 
other orthogonal slice planes forms a lattice 
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Figure 8: Polygon size (number of edges) histogram. 
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with cells, see Figure 7. Each node point arises 
as the intersection of a contour and a side of a 
cell. Since the contour is supposed to be 
polygonal, a node point is simply computed as 
an intersection of two segments. Singular 
cases when a contour crosses a cell at its 
corner are handled separately [13]. 

In the second step the node point 
construction is completed. The correspondent 
vertex, which is a member of the orthogonal 
contour and also a member of the same edge 
of M, must be found. As it was said before it is 
done very fast searching the auxiliary 
registrations of contour intersections on the 
appropriate edge of M. Each two nearest 
intersections coming from orthogonal contours 
registered on an edge of M are qualified as 
correspondent vertices building together a 
node point. 
 
4.3. Constructing the surface 
 
Now suppose graph G, whose set of vertices 
consists of a set of the node points and whose 
edges represent the parts of contours between 
two node vertices. Note that the geometrical 
shape of the edges still corresponds to the 
appropriate parts of contours. Now the task is 
to find such cycles of graph G, which have the 
property that their geometrical representation 
lies within one cell of M. Those cycles 
represents spatial polygons that lie on the 
surface.  

We suppose each edge e of G is 
adjacent with cells B1 and B2, see Figure 6. 
Each cell from {B1, B2} includes one cycle c 
of our interest, which is adjacent with e (that 
results from the consideration of 2-manifold 
objects). The circle c represents the spatial 
polygon being searched. Thus for each e two 
cycles e

Bc
1
, e

Bc
2
 must be searched and then 

polygons 
1cp , 

2cp  correspondent to those 
cycles are constructed. 

As soon as all polygons are obtained, 
we can start to patch them. We can use any 
arbitrary patching technique. Note that the 
number of sides of such polygon can be high, 
but in cases of our data sets it is in range 2 – 
10, see the graph in Figure 8.  

The proposed method starts with 
finding a suitable point in the center of each 

polygon. Then using the center point each 
polygon is divided into set of quadrilaterals, 
which are easier to patch, see Figure 9. 

 

 
Figure 9: Partition of a generic polygon in the set of 
quadrilaterals. Requires the central point C 
determination. 
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Figure 10: Results of the surface reconstruction. A) An 
input data set (courtesy of Martin Čermák), B) VTK 
surface reconstruction from slices class, C) A common 
volume based method, D) Proposed method for surface 
reconstruction from orthogonal slices. 
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5. Results 
 
All the problematic data sets mentioned in 
section 1 and many more have been processed 
using: 

- surface reconstructing from slices class 
from VTK, 

- a common volume based method; see 
[5] for more details, 

- our proposed method for surface 
reconstruction from orthogonal slices.  

The results of the reconstruction of one data 
set are illustrated in Figure 10, the complete 
documentation and experimental results can be 
found at http://herakles.zcu.cz/research/slices.  
 
6. Conclusion and further research 
 
Our current research proves that the 
advantages of orthogonal slices in the process 
of surface reconstruction are significant. There 
is a set of objects for which the orthogonal 
slices are almost the only way to reconstruct 
them correctly. 

The proposed method supposes that the 
object is sampled well enough, so that the 
number of components of the correspondence 
graph G equals to the number of disjoint 
components of the original surface. 
 The main point of our further research 
is the solution of problems caused by under-
sampling, i.e. to deal with data sets that do not 
sample the input object sufficiently. 
Furthermore we would like to study the 
influence of contour inaccuracy on the node 
point computation. 
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