
A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 1

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3

Václav Skala1
Department of Informatics and Computer Science

University of West Bohemia
Univerzitní 22, Box 314, 306 14 Plzen

Czech Republic
e-mail: skala@kiv.zcu.cz http://herakles.zcu.cz/~skala

Abstract

 A new algorithm for line clipping against convex polyhedron is given. The suggested algorithm
is faster for higher number of facets of the given polyhedron than the traditional Cyrus-Beck's and
others algorithms with complexity O N() . The suggested algorithm has O N() complexity in the worst
case and expected O N() complexity. The speed up is achieved because of "known order" of
triangles. Some principal results of comparisons of selected algorithms are presented and give some
imagination how the proposed algorithm could be used effectively.

Keywords: Line Clipping, Convex Polyhedron, Computer Graphics, Algorithm Complexity,

Geometric Algorithms.

1. Introduction

 A problem of line clipping against convex polyhedron in E3 can be solved by Cyrus-Beck's
(CB) algorithm [CYR79a] for three dimensional case. Many algorithms for line clipping in E2 and E3
have been published so far, with O N() or O N(lg) complexities. The O N(lg) complexity in E2 is
achieved because of convexity feature of the given polygon and the known order of vertices or edges.
For comparisons and references see [SKA93a], [SKA94a]. If preprocessing is used the processing
complexity can be decreased to O(1), see [SKA96b], [SKA96c].

 Figure 1

1 Supported by the grant UWB-156/1995-6

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 2

 Nevertheless algorithms for E3 case are mostly based on the CB algorithm modified for E3 and
restricted to convex polyhedra, to orthogonal or pyramidal volumes, see [FOL90a], or based on direct
intersection computation of a polyhedron facet (triangle) and the clipped line p, see fig.1. Because the
line clipping against a convex polyhedron in E3 is a bottleneck of many applications it would be
desirable to use the fastest algorithm for clipping even it is of complexity O N() . It is necessary to
point out that a number of facets N is expected to be high especially if sphere or cylindrical volumes
are approximated by polyhedra.

2. Cyrus - Beck's algorithm

 The main disadvantage of the CB algorithm is a direct line intersection computation for all
planes which form the boundary of the given convex polyhedron. It means that N - 2 of intersection
computations are wasted if N is a number of facets of the given convex polyhedron. That is a very
substantial because the average number of facets of the given polyhedron is high (a number of facets
might easily reach for a sphere approximation value 104).
 The efficiency of the CB algorithm is determined by a simple algorithm for direct intersection
computation of a line with a plane in E3. It is obvious that with growing number of facets of the given
polyhedron the efficiency of the CB algorithm decreases as many invalid intersection points are
computed, see alg.1 for shorten version of the CB algorithm.

procedure Clip_3D_CB (xA , xB);
begin { ni is a normal vector of the i-th facet }
 { and ni must point out of the convex polyhedra }
 { !! all normal vectors ni are precomputed !! }
 tmin := 0.0; tmax := 1.0; s := xB - xA;
 { for the line clipping tmin:= -∞; tmax := ∞; }
 i := 1 ;
 for i:= 1 to n do { N is a number of facets }
 begin
 ξ := sTni; si := xi - xA;
 if ξ <> 0.0 then
 begin t := si

Tni / ξ;
 if ξ > 0.0 then tmax := min (t , tmax)
 else tmin := max (t , tmin)
 end
 else Special case solution;{ line is parallel to a facet }
 i := i + 1
 end;
 if tmin > tmax then EXIT; { !! < tmin, tmax > = ∅ }
 { recompute end-points of the line segment if changed }
 { for lines points xA , xB must be always recomputed }
 if tmax < 1.0 then xB := xA + s tmax;
 if tmin > 0.0 then xA := xA + s tmin;
 SHOW_LINE (xA , xB);
end { Clip_3D_CB };

Algorithm 1

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 3

 Let us consider only triangular facets of the given convex polyhedron in the following
(generally it is not necessary). For the given line p (line p varies!) it is necessary to find an effective
test whether the line p intersects the triangle, see fig.2.
 The intersection points of the line and the triangular facet can be directly computed as
a solution of the following linear parametric equations

 x(t) = xA + s t t ∈(-∞ , ∞) (α)
 x(p,q) = xO + s1 p + s2 q p , q ∈ < 0 , 1 > & p + q ≤ 1 (β)

e.g. in the matrix form

 [] s | s | - s x x1 2 A O.
p
q
t

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −

where α is an equation for a given line,
 β is an equation for a given triangular facet, see fig.2.

Figure 2

Because all direct tests are nearly as complex as computations made in the CB algorithm it is
necessary to find an effective method for selection of facets that might be intersected by a line p.

Figure 3

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 4

3. Algorithm based on planes

 This algorithm [SKA96a] is based on the idea that a line p can be defined as an intersection of
two non-collinear planes ρ1 and ρ2, see alg.2. It can be seen that if the line p intersects the given
triangle then planes ρ1 and ρ2 intersect the given triangle, too, but not vice versa, see fig.3. The line p'
that is defined as the intersection of ρ3 and ρ4 planes does not intersect the triangle.
 It is possible to test all triangles (facets) of the given polyhedra against ρ1 and ρ2 planes. If both
planes ρ1 and ρ2 intersect the given triangle (facet) then compute the detailed intersection test. The
intersection of the given plane ρi and the triangle exists if and only if two vertices xA and xB of the
triangle exist so that

 sign(Fi(xA)) ≠ sign(Fi(xB))

where Fi(x) = Ai x + Bi y + Ci z + Di is an equation for the i-th plane ρi, i=1,2.

 The substantial advantage is that ρ1 and ρ2 planes can be taken as parallel with any coordinate
axes. Those planes are usually called „diagonal“. In that case the functions Fi(x) can be simplified so
that
 F1(x) = A1 x + C1 z + D1 for plane ρ1
 F2(x) = B2 y + C2 z + D2 for plane ρ2

It is possible to divide F1(x) by A1 ≠ 0. Using this approach we save one addition and two
multiplication, similarly for F2(x), per facet.
 Unfortunately there is some principal inefficiency in this proposed solution as the separation
function F1(x), resp. F2(x) are computed more times than needed because every vertex is shared by
many triangles. Therefore it is convenient if the values sign(F1(ixk)) are precomputed (ixk is the k-th
vertex of the i-th facet) and stored in a separate vector, see alg 3. This modification significantly
improves the efficiency of the algorithm. It is possible to select planes ρ1 and ρ2 as two „diagonal “
planes in order to avoid singular cases, see [SKA96a] for detail description and comparison. This
algorithm is still of O(N) complexity.

procedure CLIP_3D_MOD (xA , xB);
begin
 tmin := 0.0; tmax := 1.0; i := 1; s := xB - xA;
 { for the line clipping tmin:= -∞; tmax := ∞; }
 { ρ1 : F1(x) = A1 x + C1 z+ D1 = 0 ρ2 : F2(x) = B2 y + C2 z+ D2 = 0 }
 for k := 1 to Nv do { Nv number of vertices }
 Qk := sign(F1(xk)); { Qk is a vector of int or char types }
 for i :=1 to N do
 begin
 { ixk means a k-th vertex of the i-th triangle }
 { INDEX(i,k) gives the index of k-th vertex of the i-th triangle, i.e. ixk = xINDEX(i,k) }
 if QINDEX(i,0) = QINDEX(i,1) then
 if QINDEX(i,0) = QINDEX(i,2) then goto 1;
 { do nothing ρ1 does not intersect the i-th triangle }
 if sign(F2(xINDEX(i,0))) = sign(F2(xINDEX(i,1))) then
 if sign(F2(xINDEX(i,0))) = sign(F2(xINDEX(i,1))) then goto 1;
 { both planes ρ1, ρ2 intersect the i-th triangle }
 { detailed test finds a value tmin and tmax using a single step of the CB algorithm }
 { ----------------------------------- }

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 5

 { ni must point out of the given convex polyhedron }
 ξ := sTni; si := xi - xA;
 if ξ <> 0.0 then
 begin t := si

Tni / ξ;
 if ξ > 0.0 then tmax := min (t , tmax)
 else tmin := max (t , tmin);
 end
 else Special case solution;{ line is parallel to a facet }
 { ----------------------------------- }
 1: i := i + 1;
 end;
 { if tmin > tmax then no intersection point exists }
 if tmin ≤ tmax then SHOW_LINE (x(tmin), x(tmax));
end { of CLIP_3D_MOD };
 Algorithm 2

Figure 4

4. Proposed method

 Finding a facet candidate for the intersection point is a quite complex task and without
knowing the "order" of facets an algorithm will be generally of O(N) complexity. Nevertheless we can
select any triangle (facet) τk on which the given line does not lie (it means that the definition of the
strating point of the search is O(1)). If we take any point inside of the triangle τk, i.e. a centriod of the
facet xT, and the given line we obtain a definition of a plane ρ1, see fig.4 on which the line lies. It can
be seen that we could develop more efficient strategy for testing triangles if we know facets that are
intersected by the plane ρ1. If non-convex polyhedron is considered then two or more separate “rings
of triangles“ are necessary to solve but only one will be detected and solve. Therefore we must
consider convex polyhedra only. Unfortunately the situation is not as simple as in algorithm for line
clipping with O N(lg) complexity in E2, see [SKA94a].
 In many applications, data structures that define a convex polyhedron contain information
about neighbours of the given triangular facet, see fig.5. It is obvious that we can easily detect which
edge of the given triangle τk is intersected by the plane ρ1. In the next step we can take its neighbour
which has a common edge with the triangle τk, etc. Only the facets reached by these neighbour
construction have to be taken into consideration, i.e. have to be tested against ρ2.
 Because of that "knowledge of order" we will have to test significantly less triangles than N,
but in the worst case we will have to test all N facets. It means that the algorithm is of O(N)
complexity in the worst case.

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 6

Figure 5

 Let us consider a surface of a convex polyhedron, e.g a sphere approximation, that is
intersected by a plane ρ1. A number of intersected facets by a plane can be estimated as N in
average. This algorithm is briefly described in alg.3 and it is necessary to point out that there are some
small obstacles in solving singular cases, especially when the plane ρ1 intersects the triangle in vertex
etc. The presented approach can be easily modified for non-triangular facets if get_next procedure is
modified properly.

procedure SQRT_CLIP (xA , xB);
begin tmin := 0.0; tmax := 1.0; s := xB - xA; { for the line clipping tmin:= -∞; tmax := ∞; }
 COMPUTE (xA, xB, k, ρ1); { finds a convenient facet τk and the plane ρ1 through xA , xB , xT }
 COMPUTE_ORTHOGONAL (xA , xB , ρ2);
 { computes coefficients of the orthogonal plane to ρ2 }
 k0 := -1; { set index of previous facet }
 while k ≠ k0 do
 begin { test the facet τk against the plane ρ2}
 if TEST (τk, ρ2) then
 begin { a single step of the CB algorithm }
 { nk must point out of the given convex polyhedron }
 ξ := sTnk; sk := xk - xA;
 if ξ <> 0.0 then
 begin t := sk

Tnk / ξ;
 if ξ > 0.0 then tmax := min (t , tmax) else tmin := max (t , tmin);
 end
 else Special case solution;{ line is parallel to a facet }
 end; { if tmin > tmax then no intersection point exists }
 i := k0; k0 := k; k := get_next (k , i);
 {get next facet to τk intersected by the plane ρ1;different from previous facet τk0 }
 end;
 if tmin ≤ tmax then SHOW_3D_LINE(x(tmin),x(tmax));
end { SQRT_CLIP };

Algorithm 3

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 7

5. Experimental results

 The proposed algorithm has been tested against the CB algorithm, see alg.1, and against the
algorithm that uses two planes, see alg.2. Data sets of two points that defines lines have been randomly
and uniformly generated inside a sphere in order to eliminate an influence of rotation. Convex
polyhedra were generated as N - sided convex polyhedra that consist of triangular facets and were
inscribed into a smaller sphere.
 Let us introduce coefficients of efficiency as

 ν ν ρ
1 2= =

T
T

T
T

CB

where TCB, Tρ, T are execution times in [s] needed by the CB algorithm (CLIP_3D_CB), algorithm
(CLIP_3D_MOD) that uses two planes and the proposed algorithm (SQRT_CLIP).

Results obtained from experiments are shown in tab.1 and tab.2 for two fundamental cases when any
line does not intersect the given polyhedra (0% of intersections) and when all lines intersect (100% of
intersections) the given polyhedra and 10 000 clipped lines. All tests were made on PC 486/33 Mhz
and all special cases were solved properly.

N 10 20 50 100 200 500 1000 2000 4000
TCB 0.9 2.5 7.8 16.4 33.0 83.5 167.5 335.5 672.1
Tρ 0.7 1.2 3.4 6.1 11.4 26.9 52.6 104.7 306.7
T 1.9 2.8 5.8 7.4 11.4 16.9 25.8 36.8 54.9
ν1 0.5 0.9 1.3 2.2 2.8 4.9 6.5 9.1 12.2
ν2 0.4 0.4 0.6 0.8 1.0 1.6 2.0 2.9 5.6

Efficiency coefficients ν for 0% of intersections

Table 1

N 10 20 50 100 200 500 1000 2000 4000
TCB 1.3 3.1 8.1 16.6 33.4 84.5 169.1 338.0 676.5
Tρ 4.4 5.4 8.1 10.6 16.2 31.6 54.8 101.0 190.7
T 5.4 6.4 9.2 10.1 13.9 18.6 25.8 34.0 49.1
ν1 0.2 0.5 1.0 1.6 2.4 4.5 6.5 10.0 13.8
ν2 0.8 0.8 0.9 1.0 1.2 1.7 2.1 2.9 3.9

Efficiency coefficients ν for 100% of intersections

Table 2

The proposed SQRT_CLIP algorithm is always faster than the CB algorithm for N ≥ 50, see tab.1 and
tab.2, and for N ≥ 200 is faster than the algorithm that utilizes planes, see alg.2 and [SKA96a].

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

A Fast Algorithm for Line Clipping by Convex Polyhedron in E3 18.8.2010 6:58 odp. Page 8

6. Conclusion

 The new efficient algorithm for clipping lines against convex polyhedron was developed with
O N() complexity in the worst case and expected O N() complexity. Algorithm does not strictly
require triangular facets and can be easily modified. The given facets should be oriented. All tests were
implemented in C++ on PC 486/33 MHz.

7. Acknowledgments

 The author would like to express his thanks to students of Computer Graphics courses at the
University of West Bohemia in Plzen and Charles's University in Prague who stimulated this work,
especially to P.Sebránek and J.Jirák for their careful tests verification and implementation of the
proposed algorithm. Anonymous referees helped a lot as their suggestions and critical comments
improved the manuscript significantly.

8. References

[CYR79a] Cyrus,M.,Beck,J.: Generalized Two and Three Dimensional Clipping,

Computers & Graphics, Vol.3, No.1, pp.23-28,1979.
[FOL90a] Foley,D.J., van Dam,A., Feiner,S.K., Huges,J,F.:
 Computer Graphics - Principles and Practice, Addison Wesley, 2nd ed., 1990.
[SKA93a] Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon,

Computers & Graphics, Vol. 17, No.4, Pergamon Press, pp.417-421, 1993.
[SKA94a] Skala,V.: O(lg N) Line Clipping Algorithm in E2, Computers & Graphics, Vol.18, No.4,

pp.517-524, 1994.
[SKA96a] Skala,V.: An Efficient Algorithm for Line Clipping by Convex and Non-convex

Polyhedrons in E3, Computer Graphics Forum, Vol.15, No.1,pp.61-68, 1996.
[SKA96b] Skala,V.: Line Clipping in E3 with O(1) Processing Complexity Convex, Accepted for

publication in Computers & Graphics, Pergamon Press, 1996.
[SKA96c] Skala,V.,Lederbuch,P.,Sup,B.: A Comparison of O(1) and Cyrus-Beck Line Clipping

Algorithms in E2 and E3, Proceedings of 12. Spring Conference on Computer Graphics,
June 5-7, Bratislava-Budmerice, pp.27-44, 1996.

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp.209-214, 1997

