- ‘ kP /cﬁaf&’«r

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

A COMPARISON OF 2D LINE CLIPPING ALGORITHMS

Véclav Skala, Ivana Kolingerova, Petr Bliha
Department of Informatics and Computer Science
University of West Bohemia
Americkd 42, 306 14 Plzen, Czech Republic
e-mail: {skalalkolinger|blaha}@kiv.zcu.cz

Abstract. A comparative study of new line clipping algorithms for 2D convex polygons is presented
and the evaluation of algorithms’ efficiency based on theoretical analysis and experimental results is
given. Complexity of all compared algorithms is O(N).

Key words: line clipping, convex polygon, dual space application, computer graphics.

1. Introduction

e
g
#
o
r
=
:
i

Line cﬁpping by convex polygons is one of the most frequent problems in computer
graphics. Many algorithms solving this problem have been published so far. The fastest
ones are Cyrus-Beck’s (CB) algorithm and its published modifications.

Some new modifications were developed and compared with the original Cyrus-Beck’s
method. :

2. Cyrus-Beck’s algorithm

This algorithm utilizes the fact that the sign of the dot product of a normal vector of
the given edge and a direction vector of the clipped line-can give information whether a
normal vector of the edge is oriented towards the line segment origin or vice versa. This
criterion divides polygon edges into 2 groups with respect to the clipped line; each of
these groups offers one intersection point. A slightly shortened algorithm [2] is shown in
alg.1. '

For all algorithms the following notation is used :

T4, zp are endpoints of the clipped line segment,

$ is the direction vector of this line, i.e. s =14 — zg,

N is a number of vertices of the clipping polygon,

z;,1=1,2,..., N, are the vertices of the polygon, z; = [z;,y:]T,

$i,1=1,2,..., N are the direction vectors of edges,

n;,1=1,2,..., N are normal vectors of edges,

tmins tmaz are the minimal and maximal parameter values on the clipped line or
line segment. |

¢

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633 i

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

626 A comparison of 2D line clipping algorithms

The notation used in this comparative study was chosen as similar as possible to that
used in papers describing compared algorithms.

ALGORITHM 1

procedure Clip_ 2D_Cyrus Beck (z4, zB);
begin
{ n: is a normal vector, e.g. n; = (8, —3z]" }
{ n; must point out of the convex window }
{all vectors n; precomputed; algorithm shortened }
1:=1,8: =B —ZA;
tmin = 0.0; tmaez = 1.0; { for clipping a line segment }

{ tmin = —00; tmaz = 00; for clipping a line }
while i <= N do
begin

¢ :=sTn;; 8; 7= i — TA;
if z <> 0.0 then
begin
t = s{nif§;
if £ > 0.0 then tnq, = min(t, tmaz)
_else tpin = max(t,tmin)
end
else Special case solution; _
{ the line is parallel to the i-th edge of the polygon }
1:=1+1
‘end; { while }
if tyin > tmas then EXIT,
{ < tminstmaz >=0} { recompute endpoints of the line segment if changed;
for clipping a line, endpoints have to be always recomputed }
if tiez < 1.0 then zp := x4 + Stmas;
if tnin > 0.0 then 24 := 24 + $tmin;
SHOW_LINE(z 4, 75);
end; { Clip 2D Cyrus Beck }

3. Modified Cyrus-Beck’s algorithm

" The algorithm proposed in [7] tests first whether the clipped line intersects the given
edge. If not, there is no need to compute the intersection point, see fig.1.

A sign of the z-coordinate of the cross product is used as a criterion. The intersection
point of the given line with the edge zoz; (with direction vector 5¢) can be detected using
condition [szs4); * [szs1]. < 0, similar to [3]. The intersection point for the edge z4%o

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

V. Skala, I. Kolingerovd, P. Bliha B 627

need not be computed, as [szs4] * [szs9], > 0. The edge which is intersected by the
line can be found according to the rule that this edge cannot have both vertices on the
same side of the line. This test can easily be done by comparing signs of the clipped line
equation in both vertices. The modification of the algorithm from [7] is shown in alg.2.
Only the separating function is changed to F(z,y) = Az + By +C and the vectors s; are
not computed at all. It can be seen that this version of clipping algorithm needs even
less computing.

Fig. 1. There is no need to compute the intersection point.

Solution of singular cases can be found in [7].

ALGORITHM 2

procedure Compute(z4 ,z5);
begin

{ Compute coefficients A, B, C of the line on which segment x4z p lies }
end; '

procedure Clip2D (z4 , zp);

begin {all vectors $; are precomputed}
Compute(z 4,z5)
k:=0;1:=N;j:=1;
s:=zp — x4; € = F(z;);
while (i <=N)and (k<2)do

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp.625-633

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

628 A comparison of 2D line clipping algorithms
begin
n = F(z;);
if (£x7n) < 0.0 then { intersection exists }
begin
k=k+1; .
indexy, :=1; { save edge index having intersection }
end _

else if (£*7) =0.0 then Special cases { { =0o0orn=0}
else Intersection does not exist;
=53 =3+L =1
end; { while }
if Kk = 0 then { intersection does not exist } EXIT;
{ k = 2 intersections exist - edges saved in index; }
tmin := 0.0; tmax := 1.0; { for clipping a line segment }
{tmin := —00; tmaz := 00; for clipping a line }
i := indexs; t; := det[r; — z 4| — 8:]/det]s|3];
{ for effective implementation use identity z; — £4 = s; }
i := indexs; ta := det[z; — z4| — 3;]/det[s|3:];
{ recompute endpoints if changed }
if t; <ty then {swapt; < — >t values ? }
begin
if to < tmaee then zp := x4 + sto;
if t;1 > tmin then z4 :=x4 + sty
end {ts < tmaz, t1 < tmin can be left out for lines }
else
begin
if t; > tiin then zp := x4 + sty;
if ty <tgmaxr then z4:=x4 + sta
end ;
SHOW—LINE(A, TB);
end ; { Clip2D }

4. Dual space algorithm

The above mentioned principle of comparing signs in vertices can be reversed by dual
transformation between points and lines according to [1,4,5,10]. This transformation
can be defined for E? as follows :

Let’s denote

p=[p1,2])T a point in E?

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

o . . -
Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

V. Skeala, I. Kolingerovd, P. Bldha 629

and
L(a,c)z{xEEzza:Tazc}, a € E? — {0}, ceEB, ax #0

a non-vertical line in E2. Then the dual image D(p) of the point p € E? is the line. Its

5 equation can be written as
z ’2 =—-M t;. + p2,
that means that the coordinates of a point are used as coefficients in line equation in a

dual space representation.
The dual image D(L) of the line L is the point with coordinates

T = —ai/az,
zh = cfas.
An example of the dual tranformation can be seen in Fig.2.

v
!
b

D(p)

T24 +q

D(q)
+P

/ D(L)

p=[127, ¢= 3,47, L:za—x1=-05
D(p) : 2y = —x) +2,D(q) : x5 = -3z} +4, D(L) =[1,-0.5)T

Fig. 2. Two points and a line segment in the original space E? and in the dual space D(E?).

The clipped line is transformed into a point and vertices of the polygon into lines. If
theirs line equations are evaluated at a point which belongs to a dual image of the clipped
line, the intersected edges can be found according to the sign test. This separating
function is even more simple than one shown in chap. 3. Nevertheles, we need some
extra computing for dual transformation at the beginning of the algorithm. -

The shortcoming of this method is that it is not usable for vertical lines (see trans-
formation equations). This case must be solved as a singular case. _ :

The algorithm based on dual representation is shown in alg. 3. (Vertical line case is
omitted because singular and special cases are solved in detail in [8].)

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp.625-633

630 Machine Graphics&Vision, Vol.3,No.4, pp.625-638, ¢ty dPBOcb3Sf 230%ine clipping algorithms

This method can be extended for higher dimensions, too, as generally k-dimensional
objects in E™ are transformed into (n — k)-dimensional objects in D(E™). In E3 -case,
this principle can be used for polyhedra intersection computation ([8,9], application for

ray tracing see [6]).
ALGORITHM 3

function SGN(z : real) : integer;
{ Function returns 0,1, —1 according to the sign of z }
begin

if £ > 0then sgn:=1

else
if x <0 then sgn:=-1
else sgn:=0
end; { SGN }
procedure Clip_2D_Dual (z4 , x5);
begin

{ transformation of clipped line into a dual space }
$:=2zp —z4; {s=[sz,sy]T}
if sz =0 then Special case solution
else
begin

{ computing dual image of line D(L) = [z}, z4]T }

Ty = sy[sz; 2 = (ST *xya — Sy *x4)/sz;
end;
s1:=SGN(yn —zn * 2| — T5);
1:=N;j:=1,k:=0;
while (j <=N)and (k<2)do
begin
s2:= SGN(y; — z; x x| — z5);
if s1%s2<>1 then
{ the edge i — j is intersected }
begin
k:=k+1,

indez; ;= i; { save edge index having intersection }

end;
sl:=82;1:=3;,7:=j+1;
end; { while }

{ Intersection is computed in the same way as in alg.2 }

end; { Clip 2D Dual }

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

|

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

V. Skala, I. Kolingerovd, P. Bliha 631

5. Theoretical comparison and experimental results

If we try to estimate time demands of the proposed algorithms, we count only FPP
operations as we consider them to be most substantial for the total time amount. For
PC 486/33 MHz we got the following time table :

operation | := | < | + | * /
time [0.1s] | 33 | 50 | 16 | 20 | 114

Times shown in the table are for 5.10% operations.
For asymptotic cases in algorithms 1-3 it can be derived:

Ty = 621%N (Cyrus-Beck),
T, = 175%xN (Modified CB),
T3 = 205%«N* (Dual space alg.),

* 155 « N if SGN is implemented with comparison.

All described algorithms were implemented in C++. Sets with 10% line segments each
with different percentage of lines intersecting the clipping polygon were used for testing.
The endpoints of line segments were randomly and uniformly generated inside a circle.
This type of data set was chosen in order to eliminate an influence of rotation. Tested
polygons were regular, N-sided and inscribed into a circle (smaller than that used for
line segments generation).

The results for 80% of the lines intersecting the clipping polygon are given in tab.1.

N 3 4) 6 7 8 9 10

vi2 [2.3311.22 1150|164 121147} 1.30] 1.72
vz | 1.11 1 1.22 { 1.10 | 149 | 1.50 | 149 | 1.48 | 1.91
ve3 | 048 11.00 [0.73 1091 |1.24§1.02]1.13 | 1.11

N 20 30 40 50 60 70 80 90 | 100
vz | 2.86 | 2.67 | 3.75 | 2.96 | 3.03 | 2.82 [2.99 | 3.15 | 3.29
vi3 | 2.68 | 1.95 | 2.38 | 2.27 [2.35 | 2.53 | 2.35 | 2.55 | 2.39
ve3 | 094 10.73 | 0.64 | 0.77 | 0.78 | 0.90 | 0.79 | 0.81 | 0.73

Tab. 1. Experimental results for PC 486/33 MHz.

Coefficient v;; in a table is defined as a rate of computing time of alg.i to alg.j:
Talg.i

Vij = ——.

7 Tagj
For N — oo, the expected values of v;; are :

Vi = 355, Vig = 303, Vog = 0.85.

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.
632 A comparison of 2D line clipping algorithms

These theoretical results are in a good correlation with experimental results.

It can be seen that the efficiency of newly developed algorithms is in all cases higher
than the efficiency of CB algorithm. The results of alg.2 seem the best.

It is necessary to point out that the coefficients v;; do not significantly depend on
the percentage of lines intersecting a polygon.

6. Conclusion

Several algorithms for clipping lines by convex polygons were briefly described and com-
pared with each other and with widely known CB algorithm. The results of comparisons
show that each of the proposed algorithms should be faster than original Cyrus-Beck’s
algorithm and can be successfully used for clipping and intersection computing purposes.
All tested algorithms have O(N) complexity. A complete list of references on clipping
algorithms in E? can be found in [11].

References

1979

[1) Brown K. Q. : Geometric Transformations for Fast Geometric Algorithms. PhD. dissertation,
Carnegie-Mellon University, Pittsburg. '

[2] Cyrus H., Beck J. : Generalized two and three dimensional clipping. C&G, 3(1), 23-28.

1982
[3] Pavlidis T. : Algorithms for Graphics and Image Processing, Springer-Verlag.

1988
[4] Gtnther O. : Efficient Data Structures for Geometric Data Management, Springer-Verlag, Berlin
Heidelberg. :

1992 :
[5] Nielsen H. P. : Line clipping using semi-homogeneous coordinates. Submitted for publication in
Computer Graphics Forum.

1993

[6] Kolingerova 1. : Speeding up ray tracing for convex polyhedra. Proc. Computer Graphics 93,
Bratislava. .

[7] Skala V. : An efficient algorithm for line clipping by convex polygon. C&G, 17(4), 417-421.

1994 : ’
[8] Kolingerovi I. : Dual Representation and its Usage in Computer Graphics. PhD thesis, University
of West Bohemia (In Czech).
[9] Kolingerova I. : 3D line clipping algorithms - a comparative study. The Visual Computer, 11(2),
96-104.
[10] Nielsen H. P. : An Intersection Test Using Dual Figures, DTU-GK Report 0194.
[11] Skala V. : O (Ig N) line clipping algorithm. C&G, 18(4), 517-524.

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

M

Nl Machine Graphics&Vision, Vol.3,No.4, pp.625-633, , ISSN 1230-0535, 1995.

V. Skala, I. Kolingerovd, P. Bldiha 633

Ivana Kolingerova is a lecturer in the Department of Computer Science

at University of West Bohemia in Pilsen, Czech Republic. She graduated

e e P g Pl L et . R SN DA, 1.

in 1987 and received PhD in computer science in 1994. Her research inter-
ests are computer graphics and its applications. Lately she worked on ray
tracing acceleration and, especially, on dual representation and its use in

computer graphics.

2
-1
b ¢

i

]
E ¢

3

2 oo

Petr Blaha was born on 13 June 1970. He graduated in 1993 in computer
science at the University of West Bohemia in Pilsen, Czech Republic. Cur-
rently he is a PhD student of computer graphics at the UWB specializing
in the methods of acceleration of visualisation algorithms. He is the author

of two books on object oriented programming.

Machine GRAPHICS & VISION vol. 3, no. 4, 1994, pp. 625-633

