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Abstract 
 A new O N(lg )  line clipping algorithm in E2 against a convex window is presented. The 
main advantage of the presented algorithm is the principal acceleration of the line clipping problem 
solution. A comparison of the proposed algorithm with others shows a significant improvement in 
run-time. Experimental results for selected known algorithms are also shown. 
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1. Introduction 
 Many algorithms for clipping lines against convex or non-convex windows in E2 with many 
modifications derived from well known Cohen-Sutherland's, Liang-Barsky's [LIA83a],[LIA84a] 
and Cyrus-Beck's [CYR79a] algorithms have been published. All of them have the same 
complexity O N( ) , with an exception of Rappaport's algorithm [RAP91a] which has O N(lg )  
complexity. Their speed is determined by more or less clever implementation of tests and 
intersection computation. The convexity feature of the clipping polygon and the possibility of 
binary search usage over polygon vertices, because of known vertices order, have been used for 
principal speed up of the ECB line clipping algorithm [SKA93b] that resulted into new line clipping 
algorithm with complexity O N(lg ) . It has been expected that an algorithm for line clipping against 
convex polygon with complexity O N(lg ) exists, see [CHA87a]. An algorithm for a line segment 
clipping with O N(lg )  complexity was published in [RAP91a]. The known algorithms for clipping 
lines against a general convex window do not make tests similar to Cohen-Sutherland's clipping 
algorithm. The main reason seems to be the computational cost of such tests for convex windows. If 
a clipping algorithm is to be effective, it is necessary to distinguish cases where lines pass through 
a given window from those where lines do not intersect the window. Cyrus-Beck's (CB) algorithm 
solves this problem by direct computation of points of intersections, the ECB algorithm uses the 
separation theorem for Cyrus-Beck's algorithm to achieve a speed up of approx. 1.2 - 2.5 times. 
Cyrus-Beck's (CB), Efficient Cyrus-Beck's (ECB) and Rappaport's algorithms have been compared 
with the new proposed O N(lg ) algorithm. 
 The ECB algorithm does not use the known order of vertices of the given clipping polygon 
for a principal speed up of the algorithm, though it has the complexity O N( ) . 
 The Rappaport's algorithm [RAP91a] is the only one algorithm with O N(lg )  complexity 
that could be used for line segments clipping against convex polygon. The algorithm, see alg.1, is 
based on known fact that an answer whether a point is inside of the convex polygon can be given in 
O N(lg ) steps, where N is a number of vertices of the given polygon [PRE85a]. 
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procedure RAPPAPORT  ( x A , xB ); 
{  x A , xB  are end-points of the clipped line segment } 
begin  if CLASSIFY ( x A ) = IN then 
 begin (s,s1) := SECTOR ( x A , xB ); 
  if x B  is to the left of s-s1 edge of the polygon { s1 is the next vertex to vertex s } 
  then  OUTPUT ( x B  ) { the line segment is totally inside }  
  else 
  begin  compute the intersection point of the line segment with the edge s-s1 ( x ); 
    OUTPUT( x ); 
  end 
 end 
  else 
 begin (left_sup,right_sup) := SUPPORT_VERTICES ( x A  ); 
   if x B  is left of left_sup or right of right_sup 
   then  DO_NOTHING 
  else begin  { find an intersected edge from the front chain } 
     (s,s1) := FRONT_SECTOR (left_sup,right_sup); 
     if x B  is to the right of s-s1  
    then DO-NOTHING 
     else 
     begin compute the intersection point of the line segment with  
      the edge s-s1 ( x  ); 
      OUTPUT ( x ); 
      (s,s1) := BACK_SECTOR (right_sup,left_sup); 
      if x B  is to the left of s-s1 
     then OUTPUT ( x B  ) 
      else 
      begin  { find an intersected edge from the back chain } 
       compute the intersection point of the line segment  
       with the edge s-s1 ( x  ); 
       OUTPUT ( x ); 
      end 
     end 
    end 
  end 
end { RAPPAPORT }; 

 Algorithm 1 
 

There are used the following functions in alg.1: 
• CLASSIFY ( x ) gives an answer if the point x  is inside of the given convex polygon in 

O N(lg )  steps and has complexity { ( := , < , ± , * , / ) counting FPP operations only } 
 

 ( , , , , ) ( , , , , ) * lg0 2 4 4 0 0 1 2 2 0+ N  
 

• SECTOR ( x A , xB ); finds an edge with vertices (s, s1) that is  intersected by the given line 
segment  x A , xB  in O N(lg ) steps and has complexity 

 
( , , , , ) * lg7 2 9 5 0 N  
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• SUPPORT_VERTICES ( x A  ) finds the (left_sup, right_sup) indexes  of end-points of the 
back and front chains that are formed by edges of the given polygon in O N(lg )  steps and has 
complexity 

 ( , , , , ) ( , , , , ) * lg0 2 10 4 0 0 2 10 4 0+ N  
 

• FRONT_SECTOR (left_sup, right_sup) finds from front chain of edges with vertices (s, s1) that 
is intersected by the  given line segment x A , xB in O N(lg ) steps and has complexity 

  
( , , , , ) * lg0 1 2 2 0 N  

 
• BACK_SECTOR (left_sup, right_sup) finds from back chain of edges with vertices (s, s1) that 

is intersected by the given line segment x A , xB  in O N(lg )  steps 
  

( , , , , ) * lg0 1 2 2 0 N  
 

It can be seen that all steps are of O N(lg ) complexity and therefore the whole algorithm is of 
O N(lg )  complexity, too. Unfortunately some steps are quite complex and the overall complexity 
for the worst case can be estimated as 

  
( , , , , ) ( , , , , ) * lg4 2 12 22 2 0 4 14 8 0+ N  

 
Detailed description of the Rappaport's algorithm can be found in [RAP91a]. 
 
 

 
 
2. Proposed algorithm 
 Let us suppose that we have a given convex clipping polygon anti-clockwise oriented 
and  line p  is determined by two end-points 

x A A A
Tx y= [ , ]  ,  x B B B

Tx y= [ , ]  
The convex window is represented by n +1 points 

 x i i i
Tx y= [ , ]  ,  i = 0, ... ,n 

where: points x0  and xn  are identical (column notation is used), xi  and yi  are coordinates of 
the vertex x i  . 

The notation x xi k  is used for a polyline from x i  to x k , i.e. it is a chain of line segments from 
x i   to x k  . 
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 Let us define the separation function F( )x  in the form 
 

F Ax By C( )x = + +  
 

where F( )x = 0 is an equation for the given line p  and assume that the line has the orientation 
shown in Fig.1, x  is defined as x = [ , ]x y T . 

It can be seen, Fig.2, that the oriented distance d of the point x  from the line p  can be determined 
as 

d Ax By c
A B

=
+ +

+2 2
 

 
It means that the value of the function F( )x  is actually proportional to the distance d  for the 
given line p .  First of all, let us assume that (see Fig.1) 
 

i = 0  ;  j n=  ;  k i j= +( )  div 2  ; 
and 

x x0 ≡ n  x xi = 0  x xj n=  x xk ≡ 2  
 
Let us concentrate on a special case shown in Fig.1. If the points x i  and x k  are on the opposite 
sides of the line p , i.e. 

F Fi k( ) * ( )x x < 0  
 
then there must be just one intersection point on the chains x xi k and x xk j for each chain, because 

the given polygon is convex. Because F Fi k( ) * ( )x x < 0  for the chain x xi k  there must exist an 
index l  so that 

 F F i l kl l( ) * ( )x x + < ≤1 0         <  
 

i.e. an edge x xl l+1 must be intersected. 
 Similarly for the chain x xk j . It is obvious that in this case the intersection point can be 
found in O M(lg ) steps using binary search over vertices, where M is a number of line segments in 
the given chain. 
 Unfortunately, other possible situations are more complex to solve, see Fig.3. It is possible 
to distinguish four fundamental cases supposing the previously shown orientation of the separation 
function F( )x . In case a) the chain x xk j  can be removed, while in case b) the chain x xi k  can be 
removed. In the first, resp. second, case index j, resp. index i, must be changed to k. In both cases 
a new value of  k must be computed as  

k i j= +( )  div 2  
Both mentioned cases can be distinguished by a criterion 
 

 F Fi i( ) ( )x x+ <1  
 

because if F Fi i( ) ( )x x+ <1  then the chain x xi k   can intersect the line p , see Fig.3. This 
condition actually expresses that we are getting closer to the line p , i.e. the oriented distance d  is 
smaller. 
 In both cases we assumed that the line p has the shown orientation, i.e. F i( )x > 0  and 
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F Fi k( ) ( )x x≤  
Possible situations as a variation of cases a) and b) in Fig.3, when this condition is not true, are 
shown as cases c) and d). 
 A little bit more complex situation is shown by cases c) and d) where F Fi k( ) ( )x x> . In 
case c) the chain x xk j  can be removed, while in case d) the chain x xi k  can be removed. In the 
first, resp. second, case index j, resp. index i, must be changed to k. In both cases a new value of  k 
must be again determined as 

k i j= +( )  div 2  
Both last mentioned cases can be distinguished by using criterion 
 

F Fk k( ) ( )x x+ <1  
 

Actually we must distinguish whether we are getting closer to the given line p  or not. If the line 
p  has an opposite orientation then similar situations must be solved, see Algorithm 2. 

 This procedure is repeated until 
 F Fi k( ) * ( )x x < 0  

 

 
Dashed lines mean points x , where F F i( ) ( )x x=  

 
Figure 3 
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 If this condition becomes true we will obtain two chains x xi k and x xk j  that intersect the 
line p  and binary search over vertices can be used again as we get a similar situation shown in 
Fig.1. 
 Now it can be seen that all parts of the proposed algorithm are of complexity O M(lg ) , 
where M is a number of edges in the given chain because we used for all steps the binary search 
over vertices of the clipping convex polygon. The whole proposed O N(lg ) algorithm is described 
by Algorithm 2. It is necessary to point out that for effective implementation values F i( )x  should 
be stored in separate variables as they are used several times. 
 
procedure CLIP 2D lg ( x A , xB ); 
{ Note: initialization of the clipping window xn := x0 } 
function macro F( x ): real; 
{ should be implemented as an in-line function } 
begin   
 F := A * x + B * y + C;  
end { F }; 
 
function SOLVE ( i , j ): real; 
{ finds two nearest vertices on the opposite sides } 
{ of the given line p  } 
begin  while ( j - i ) ≥ 2 do { j ≥ i always } 
 begin  k := ( i + j ) div 2; { shift to the right } 
  if ( ( ) * ( ))F Fi kx x < 0  then j := k else i := k; 
  end { while }; 
  SOLVE := INTERSECTION ( p  , xi  , x j  ); 
  { gives the value t of an intersection point } 
  { of the line p with the given line segment xi x j  } 
end { SOLVE }; 
 
begin  { determine the A, B, C values for the function F( )x } 
  A y y:= −1 2 ; B x x:= −2 1 ; C x y x y: * *= −1 2 2 1 ;  
 i := 0;   j := n;  
 { for lines   tmin := −∞ ; tmax:= ∞ ;}  
 { for line segments  tmin:= 0 ;   tmax:= 1; } 
  while ( j - i ) ≥ 2 do 
  begin  k := ( i + j ) div 2; { shift to the right } 
   if ( ( ) * ( ))F Fi kx x < 0  then 
  begin  { see fig.1 } 
    t1  := SOLVE ( i , k ) ; { find an intersection on x xi k  chain } 
    t2  := SOLVE ( k , j ); { find an intersection on x xk j  chain } 
    { for the line segment clipping include the next 5 lines          }  
   { if t1  > t2  then begin t := t2  ; t2  := t1  ; t1  := t end;          }  
   {compute < >t t1 2,    as  < > ∩ < >t t1 2 0,    1,                      } 
    { t1  := max ( tmin  , t1  ); t2  := min ( tmax  , t2  );            } 
    { if < >= ∅t t1 2,   then draw line segment                          } 
    { if t t1 2≤  then  SHOW-LINE( x( )t1  , x( )t2 );                   } 
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    EXIT { exit procedure CLIP 2D lg }; 
   end { if }; 
 
 
   { for the polygon orientation shown in fig.3 } 
   if F i( )x > 0  then 
   begin  { for the orientation of line p  shown in fig.3 } 
    if F Fi k( ) ( )x x<  then { cases a and b } 
    begin { DELETE CHAIN ( i , j ) removes the chain x x } 
    if F Fi i( ) ( )x x+ <1  then 
      begin j := k; { DELETE CHAIN ( k , j ); case a } end else 
      begin i := k; { DELETE CHAIN ( i , k ); case b } end 
    end 
    else { cases c and d } 
   begin 
    if F Fk k( ) ( )x x+ >1  then 
    begin j := k; { DELETE CHAIN ( k , j ); case c } end else 
    begin i := k; { DELETE CHAIN ( i , k ); case d } end 
    end 
   end 
 
  else 
  begin  { for an opposite orientation of the line  } 
   if F Fi k( ) ( )x x>  then 
   begin if F Fi k( ) ( )x x+ >1  then 
     begin  j := k; { DELETE CHAIN ( k , j ); } end  
    else  
     begin i := k; { DELETE CHAIN ( i , k ); } end  
   end 
    else 
    begin if ( ( ) * ( ))F Fk kx x+ <1 0  then 
     begin j := k; { DELETE CHAIN ( k , j ); } end  
    else  
     begin i := k; { DELETE CHAIN ( i , k ); } end  
   end 
  end 
 end { while } 
end { CLIP-2D-lg } 
 

Algorithm 2 
 
 
3. Theoretical analysis and experimental results 
 Before making any experiments it is convenient to point out that time needed for operations 
( := , < , ± , * , / ) differ significantly from computer to computer. 

 
float := < ± * / 
time 33 50 16 20 114 

 
Table 1 
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Let us introduce coefficients of the effectivity ν  as 
 

ν 1 =
T
T
CB    ν 2

0

=
T
T
CB    ν 3 =

T
T
R  

 
where: TCB  , T0  , TR  , T  are execution times needed by Cyrus-Beck's (CB), ECB, Rappaport's 

and proposed O N(lg )  algorithms. 
 
Description of CB and ECB algorithms can be found in [SKA93b] together with their theoretical 
and experimental comparisons. 
 Generally it is possible to express the complexity of the CB algorithm 
 

( , , , , ) ( , , , , ) *8 3 6 4 0 5 3 7 4 1+ N  
 

and time of computation as TCB  (for PC 486, see tab.1) can be estimated 
 

T NCB = +590 621*  
 

The complexity of the ECB algorithm (in the worst case) as 
 

( , , , , ) ( , , , , ) *15 31114 2 311 3 0+ N  
 

and time of computation T0  can be estimated as 
 

T N0 1329 257= + *  
 

Description of CB and ECB algorithms and their theoretical and experimental comparisons can be 
found in [SKA93b]. Their complexities are O N( ) . 
 Complexity of the Rappaport's algorithm can be expressed as  
 

⎣ ⎦( , , , , ) ( , , , , ) * lg( )4 2 12 22 2 0 4 14 8 0 1+ +N  
 

and time of computation Tk  can be estimated as 
 

⎣ ⎦1092 584 1+ +* lg( )N  
 

while for the suggested algorithm O N(lg )  the complexity is given as 
 

 ⎣ ⎦(14,4,11,15,2) + (2,4,6,6,0) * lg(N +1)  
 

and time of computation T  can be estimated as 
 

 ⎣ ⎦T = +1267 376* lg(N +1)  
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The Rappaport's and proposed algorithms are of O N(lg ) complexity. Theoretical speed up is given 
in tab.2 (the worst cases and operations in floating point were considered only) 
 

N 4 5 6 7 8 9 10 20 30 50 100 
ν1

 1.28 1.54 1.80 2.06 2.01 2.23 2.45 4.13 6.11 8.98 16.08
ν 2

 0.98 1.09 1.20 1.31 1.22 1.31 1.41 2.06 2.87 4.02  6.93
ν 3

 1.19 1.19 1.19 1.19 1.24 1.24 1.24 1.27 1.27 1.30  1.33
 

Theoretical estimations (worst case) 
Table 2 

 
ν1

 3 4 5 6 7 8 9 10 30 50 100 
0% 1.00 1.48 1.26 1.38 1.47 1.68 1.86 1.52 3.70 6.28 10.42
20% 0.93 0.91 1.05 1.24 1.30 1.33 1.99 2.07 4.47 6.11 9.28 
40% 1.01 1.23 1.11 1.36 1.34 1.48 1.19 2.30 3.53 6.06 10.20
60% 1.09 1.19 1.35 1.32 1.30 1.58 1.42 1.57 3.44 6.10 10.18
80% 0.82 1.23 1.06 1.14 1.46 1.45 1.64 2.14 3.74 6.03 10.85
100% 0.80 1.02 1.08 1.11 1.40 1.61 1.23 1.61 4.40 5.80 11.11
 
 

ν 2
 3 4 5 6 7 8 9 10 30 50 100 

0% 1.47 1.81 1.81 1.89 1.12 1.77 1.89 1.61 2.00 2.29 2.37 
20% 1.19 1.27 1.40 1.81 1.66 1.61 1.70 3.28 1.96 1.96 1.98 
40% 1.33 1.27 1.19 1.39 1.37 1.72 1.79 1.90 1.95 1.91 2.03 
60% 1.17 1.14 1.33 1.52 1.38 1.73 1.55 1.47 1.70 2.06 2.13 
80% 0.91 1.22 1.40 1.24 1.62 1.79 1.32 1.63 1.86 2.12 2.21 
100% 0.98 1.14 1.35 1.26 1.49 1.75 1.54 1.46 2.14 2.14 2.35 
 
 

ν 3
 3 4 5 6 7 8 9 10 30 50 100 

0% 2.96 3.44 2.90 2.62 2.68 2.83 2.78 1.91 2.22 2.44 2.13 
20% 3.76 1.98 2.24 2.26 2.41 2.01 2.85 2.96 2.64 2.52 2.15 
40% 2.82 2.65 2.56 2.89 2.36 2.25 1.71 3.20 2.42 2.43 2.26 
60% 3.13 2.81 2.67 2.59 2.50 2.44 2.07 2.30 2.34 2.31 2.07 
80% 2.70 3.10 2.29 2.27 2.35 1.97 2.46 2.49 2.30 2.09 2.39 
100% 2.40 2.53 2.12 1.96 2.25 2.43 1.68 2.24 2.19 1.99 2.12 
 

Table 3 
 

 The proposed algorithm has been tested against Cyrus-Beck's, ECB and Rappaport's 
algorithms on data sets of line segments (103) with end points that have been randomly and 
uniformly generated inside a circle in order to eliminate an influence of rotation. Convex polygons 
were generated as N-sided convex polygons inscribed into a smaller circle. 
 There are practically no significant differences as far as the percentage is intersecting lines 
is concerned, see tab.3.  
 It can be seen that, see tab.3, that the proposed algorithm is significantly faster then CB 
algorithm. A comparison of ECB and proposed algorithms shows that for N < 7  the ECB 
algorithm is faster than the proposed one. "Waves" for ν 2  are caused by the influence of binary 
division of an index interval and relation between data and convex polygon position. The waves can 
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be seen in tab.2 with theoretical estimations, too. The significant difference for N = 100  is caused 
by considering the worst cases only in theoretical estimations. 
 The proposed O N(lg ) algorithm is approx. two times faster than Rappaport's algorithm and 
it is much more simple to implement. 
 It is necessary to point out that careful implementation of conditions like to F Fi k( ) ( )x x>  
might further improve the efficiency of the proposed algorithm, because of comparison operation is 
the longest operation after division, see tab.1. 
 
4. Conclusion 
 The new efficient algorithm of O N(lg ) complexity for clipping lines against convex window in E2 
has been developed. Edges of the given convex polygon can be arbitrarily oriented. It also proved 
the applicability of Computational Geometry results [CHA87a] even for small N. Similarly as the 
Rappaport's algorithm the proposed algorithm can be easily modified for polygon clipping. The 
suggested algorithm also proved the duality principle with the problem point-in-polygon, see 
[PRE85a], [NIE92a], [NIE92b]. It also proved applicability of principles of Computational 
Geometry results [CHA87a] even for small N. Similarly as Rappaport's algorithm the proposed 
algorithm can be modified for polygon clipping, where the clipped polygon might be non-convex. 
Superiority of the proposed algorithm over CB, ECB and Rappaport's algorithms was proved by 
theoretical estimations and experimental results. 
 All tests were implemented in Borland C++ on PC 486/33 MHz 256KB Cache. It is 
expected that for workstations the efficiency n will be higher than for PC 486 as the comparison 
operation is the longest operation used in the algorithm, see tab.2, and the timing ratio of operations 
on workstations is be better. 
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