
 - 1 -

O(lgN) Line Clipping Algorithm in E2

Václav Skala1

Department of Informatics and Computer Science
University of West Bohemia

Univerzitní 22, Box 314, 306 14 Plzen
Czech Republic

e-mail: skala@kiv.zcu.cz http://herakles.zcu.cz/~skala

Abstract
 A new O N(lg) line clipping algorithm in E2 against a convex window is presented. The
main advantage of the presented algorithm is the principal acceleration of the line clipping problem
solution. A comparison of the proposed algorithm with others shows a significant improvement in
run-time. Experimental results for selected known algorithms are also shown.

Keywords: Line Clipping, Convex Polygon, Computer Graphics, Algorithm Complexity.

1. Introduction
 Many algorithms for clipping lines against convex or non-convex windows in E2 with many
modifications derived from well known Cohen-Sutherland's, Liang-Barsky's [LIA83a],[LIA84a]
and Cyrus-Beck's [CYR79a] algorithms have been published. All of them have the same
complexity O N() , with an exception of Rappaport's algorithm [RAP91a] which has O N(lg)
complexity. Their speed is determined by more or less clever implementation of tests and
intersection computation. The convexity feature of the clipping polygon and the possibility of
binary search usage over polygon vertices, because of known vertices order, have been used for
principal speed up of the ECB line clipping algorithm [SKA93b] that resulted into new line clipping
algorithm with complexity O N(lg) . It has been expected that an algorithm for line clipping against
convex polygon with complexity O N(lg) exists, see [CHA87a]. An algorithm for a line segment
clipping with O N(lg) complexity was published in [RAP91a]. The known algorithms for clipping
lines against a general convex window do not make tests similar to Cohen-Sutherland's clipping
algorithm. The main reason seems to be the computational cost of such tests for convex windows. If
a clipping algorithm is to be effective, it is necessary to distinguish cases where lines pass through
a given window from those where lines do not intersect the window. Cyrus-Beck's (CB) algorithm
solves this problem by direct computation of points of intersections, the ECB algorithm uses the
separation theorem for Cyrus-Beck's algorithm to achieve a speed up of approx. 1.2 - 2.5 times.
Cyrus-Beck's (CB), Efficient Cyrus-Beck's (ECB) and Rappaport's algorithms have been compared
with the new proposed O N(lg) algorithm.
 The ECB algorithm does not use the known order of vertices of the given clipping polygon
for a principal speed up of the algorithm, though it has the complexity O N() .
 The Rappaport's algorithm [RAP91a] is the only one algorithm with O N(lg) complexity
that could be used for line segments clipping against convex polygon. The algorithm, see alg.1, is
based on known fact that an answer whether a point is inside of the convex polygon can be given in
O N(lg) steps, where N is a number of vertices of the given polygon [PRE85a].

1 Supported by the grant UWB-156/1995
 Published in Computers & Graphics, Pergamon, No.4, Vol.18, pp.517-524, 1994.

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 2 -

procedure RAPPAPORT (x A , xB);
{ x A , xB are end-points of the clipped line segment }
begin if CLASSIFY (x A) = IN then
 begin (s,s1) := SECTOR (x A , xB);
 if x B is to the left of s-s1 edge of the polygon { s1 is the next vertex to vertex s }
 then OUTPUT (x B) { the line segment is totally inside }
 else
 begin compute the intersection point of the line segment with the edge s-s1 (x);
 OUTPUT(x);
 end
 end
 else
 begin (left_sup,right_sup) := SUPPORT_VERTICES (x A);
 if x B is left of left_sup or right of right_sup
 then DO_NOTHING
 else begin { find an intersected edge from the front chain }
 (s,s1) := FRONT_SECTOR (left_sup,right_sup);
 if x B is to the right of s-s1
 then DO-NOTHING
 else
 begin compute the intersection point of the line segment with
 the edge s-s1 (x);
 OUTPUT (x);
 (s,s1) := BACK_SECTOR (right_sup,left_sup);
 if x B is to the left of s-s1
 then OUTPUT (x B)
 else
 begin { find an intersected edge from the back chain }
 compute the intersection point of the line segment
 with the edge s-s1 (x);
 OUTPUT (x);
 end
 end
 end
 end
end { RAPPAPORT };

 Algorithm 1

There are used the following functions in alg.1:
• CLASSIFY (x) gives an answer if the point x is inside of the given convex polygon in

O N(lg) steps and has complexity { (:= , < , ± , * , /) counting FPP operations only }

 (, , , ,) (, , , ,) * lg0 2 4 4 0 0 1 2 2 0+ N

• SECTOR (x A , xB); finds an edge with vertices (s, s1) that is intersected by the given line
segment x A , xB in O N(lg) steps and has complexity

(, , , ,) * lg7 2 9 5 0 N

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 3 -

• SUPPORT_VERTICES (x A) finds the (left_sup, right_sup) indexes of end-points of the
back and front chains that are formed by edges of the given polygon in O N(lg) steps and has
complexity

 (, , , ,) (, , , ,) * lg0 2 10 4 0 0 2 10 4 0+ N

• FRONT_SECTOR (left_sup, right_sup) finds from front chain of edges with vertices (s, s1) that
is intersected by the given line segment x A , xB in O N(lg) steps and has complexity

(, , , ,) * lg0 1 2 2 0 N

• BACK_SECTOR (left_sup, right_sup) finds from back chain of edges with vertices (s, s1) that

is intersected by the given line segment x A , xB in O N(lg) steps

(, , , ,) * lg0 1 2 2 0 N

It can be seen that all steps are of O N(lg) complexity and therefore the whole algorithm is of
O N(lg) complexity, too. Unfortunately some steps are quite complex and the overall complexity
for the worst case can be estimated as

(, , , ,) (, , , ,) * lg4 2 12 22 2 0 4 14 8 0+ N

Detailed description of the Rappaport's algorithm can be found in [RAP91a].

2. Proposed algorithm
 Let us suppose that we have a given convex clipping polygon anti-clockwise oriented
and line p is determined by two end-points

x A A A
Tx y= [,] , x B B B

Tx y= [,]
The convex window is represented by n +1 points

 x i i i
Tx y= [,] , i = 0, ... ,n

where: points x0 and xn are identical (column notation is used), xi and yi are coordinates of
the vertex x i .

The notation x xi k is used for a polyline from x i to x k , i.e. it is a chain of line segments from
x i to x k .

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 4 -

 Let us define the separation function F()x in the form

F Ax By C()x = + +

where F()x = 0 is an equation for the given line p and assume that the line has the orientation
shown in Fig.1, x is defined as x = [,]x y T .

It can be seen, Fig.2, that the oriented distance d of the point x from the line p can be determined
as

d Ax By c
A B

=
+ +

+2 2

It means that the value of the function F()x is actually proportional to the distance d for the
given line p . First of all, let us assume that (see Fig.1)

i = 0 ; j n= ; k i j= +() div 2 ;
and

x x0 ≡ n x xi = 0 x xj n= x xk ≡ 2

Let us concentrate on a special case shown in Fig.1. If the points x i and x k are on the opposite
sides of the line p , i.e.

F Fi k() * ()x x < 0

then there must be just one intersection point on the chains x xi k and x xk j for each chain, because

the given polygon is convex. Because F Fi k() * ()x x < 0 for the chain x xi k there must exist an
index l so that

 F F i l kl l() * ()x x + < ≤1 0 <

i.e. an edge x xl l+1 must be intersected.
 Similarly for the chain x xk j . It is obvious that in this case the intersection point can be
found in O M(lg) steps using binary search over vertices, where M is a number of line segments in
the given chain.
 Unfortunately, other possible situations are more complex to solve, see Fig.3. It is possible
to distinguish four fundamental cases supposing the previously shown orientation of the separation
function F()x . In case a) the chain x xk j can be removed, while in case b) the chain x xi k can be
removed. In the first, resp. second, case index j, resp. index i, must be changed to k. In both cases
a new value of k must be computed as

k i j= +() div 2
Both mentioned cases can be distinguished by a criterion

 F Fi i() ()x x+ <1

because if F Fi i() ()x x+ <1 then the chain x xi k can intersect the line p , see Fig.3. This
condition actually expresses that we are getting closer to the line p , i.e. the oriented distance d is
smaller.
 In both cases we assumed that the line p has the shown orientation, i.e. F i()x > 0 and

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 5 -

F Fi k() ()x x≤
Possible situations as a variation of cases a) and b) in Fig.3, when this condition is not true, are
shown as cases c) and d).
 A little bit more complex situation is shown by cases c) and d) where F Fi k() ()x x> . In
case c) the chain x xk j can be removed, while in case d) the chain x xi k can be removed. In the
first, resp. second, case index j, resp. index i, must be changed to k. In both cases a new value of k
must be again determined as

k i j= +() div 2
Both last mentioned cases can be distinguished by using criterion

F Fk k() ()x x+ <1

Actually we must distinguish whether we are getting closer to the given line p or not. If the line
p has an opposite orientation then similar situations must be solved, see Algorithm 2.

 This procedure is repeated until
 F Fi k() * ()x x < 0

Dashed lines mean points x , where F F i() ()x x=

Figure 3

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 6 -

 If this condition becomes true we will obtain two chains x xi k and x xk j that intersect the
line p and binary search over vertices can be used again as we get a similar situation shown in
Fig.1.
 Now it can be seen that all parts of the proposed algorithm are of complexity O M(lg) ,
where M is a number of edges in the given chain because we used for all steps the binary search
over vertices of the clipping convex polygon. The whole proposed O N(lg) algorithm is described
by Algorithm 2. It is necessary to point out that for effective implementation values F i()x should
be stored in separate variables as they are used several times.

procedure CLIP 2D lg (x A , xB);
{ Note: initialization of the clipping window xn := x0 }
function macro F(x): real;
{ should be implemented as an in-line function }
begin
 F := A * x + B * y + C;
end { F };

function SOLVE (i , j): real;
{ finds two nearest vertices on the opposite sides }
{ of the given line p }
begin while (j - i) ≥ 2 do { j ≥ i always }
 begin k := (i + j) div 2; { shift to the right }
 if (() * ())F Fi kx x < 0 then j := k else i := k;
 end { while };
 SOLVE := INTERSECTION (p , xi , x j);
 { gives the value t of an intersection point }
 { of the line p with the given line segment xi x j }
end { SOLVE };

begin { determine the A, B, C values for the function F()x }
 A y y:= −1 2 ; B x x:= −2 1 ; C x y x y: * *= −1 2 2 1 ;
 i := 0; j := n;
 { for lines tmin := −∞ ; tmax:= ∞ ;}
 { for line segments tmin:= 0 ; tmax:= 1; }
 while (j - i) ≥ 2 do
 begin k := (i + j) div 2; { shift to the right }
 if (() * ())F Fi kx x < 0 then
 begin { see fig.1 }
 t1 := SOLVE (i , k) ; { find an intersection on x xi k chain }
 t2 := SOLVE (k , j); { find an intersection on x xk j chain }
 { for the line segment clipping include the next 5 lines }
 { if t1 > t2 then begin t := t2 ; t2 := t1 ; t1 := t end; }
 {compute < >t t1 2, as < > ∩ < >t t1 2 0, 1, }
 { t1 := max (tmin , t1); t2 := min (tmax , t2); }
 { if < >= ∅t t1 2, then draw line segment }
 { if t t1 2≤ then SHOW-LINE(x()t1 , x()t2); }

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 7 -

 EXIT { exit procedure CLIP 2D lg };
 end { if };

 { for the polygon orientation shown in fig.3 }
 if F i()x > 0 then
 begin { for the orientation of line p shown in fig.3 }
 if F Fi k() ()x x< then { cases a and b }
 begin { DELETE CHAIN (i , j) removes the chain x x }
 if F Fi i() ()x x+ <1 then
 begin j := k; { DELETE CHAIN (k , j); case a } end else
 begin i := k; { DELETE CHAIN (i , k); case b } end
 end
 else { cases c and d }
 begin
 if F Fk k() ()x x+ >1 then
 begin j := k; { DELETE CHAIN (k , j); case c } end else
 begin i := k; { DELETE CHAIN (i , k); case d } end
 end
 end

 else
 begin { for an opposite orientation of the line }
 if F Fi k() ()x x> then
 begin if F Fi k() ()x x+ >1 then
 begin j := k; { DELETE CHAIN (k , j); } end
 else
 begin i := k; { DELETE CHAIN (i , k); } end
 end
 else
 begin if (() * ())F Fk kx x+ <1 0 then
 begin j := k; { DELETE CHAIN (k , j); } end
 else
 begin i := k; { DELETE CHAIN (i , k); } end
 end
 end
 end { while }
end { CLIP-2D-lg }

Algorithm 2

3. Theoretical analysis and experimental results
 Before making any experiments it is convenient to point out that time needed for operations
(:= , < , ± , * , /) differ significantly from computer to computer.

float := < ± * /
time 33 50 16 20 114

Table 1

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 8 -

Let us introduce coefficients of the effectivity ν as

ν 1 =
T
T
CB ν 2

0

=
T
T
CB ν 3 =

T
T
R

where: TCB , T0 , TR , T are execution times needed by Cyrus-Beck's (CB), ECB, Rappaport's

and proposed O N(lg) algorithms.

Description of CB and ECB algorithms can be found in [SKA93b] together with their theoretical
and experimental comparisons.
 Generally it is possible to express the complexity of the CB algorithm

(, , , ,) (, , , ,) *8 3 6 4 0 5 3 7 4 1+ N

and time of computation as TCB (for PC 486, see tab.1) can be estimated

T NCB = +590 621*

The complexity of the ECB algorithm (in the worst case) as

(, , , ,) (, , , ,) *15 31114 2 311 3 0+ N

and time of computation T0 can be estimated as

T N0 1329 257= + *

Description of CB and ECB algorithms and their theoretical and experimental comparisons can be
found in [SKA93b]. Their complexities are O N() .
 Complexity of the Rappaport's algorithm can be expressed as

⎣ ⎦(, , , ,) (, , , ,) * lg()4 2 12 22 2 0 4 14 8 0 1+ +N

and time of computation Tk can be estimated as

⎣ ⎦1092 584 1+ +* lg()N

while for the suggested algorithm O N(lg) the complexity is given as

 ⎣ ⎦(14,4,11,15,2) + (2,4,6,6,0) * lg(N +1)

and time of computation T can be estimated as

 ⎣ ⎦T = +1267 376* lg(N +1)

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 9 -

The Rappaport's and proposed algorithms are of O N(lg) complexity. Theoretical speed up is given
in tab.2 (the worst cases and operations in floating point were considered only)

N 4 5 6 7 8 9 10 20 30 50 100
ν1

 1.28 1.54 1.80 2.06 2.01 2.23 2.45 4.13 6.11 8.98 16.08
ν 2

 0.98 1.09 1.20 1.31 1.22 1.31 1.41 2.06 2.87 4.02 6.93
ν 3

 1.19 1.19 1.19 1.19 1.24 1.24 1.24 1.27 1.27 1.30 1.33

Theoretical estimations (worst case)
Table 2

ν1

 3 4 5 6 7 8 9 10 30 50 100
0% 1.00 1.48 1.26 1.38 1.47 1.68 1.86 1.52 3.70 6.28 10.42
20% 0.93 0.91 1.05 1.24 1.30 1.33 1.99 2.07 4.47 6.11 9.28
40% 1.01 1.23 1.11 1.36 1.34 1.48 1.19 2.30 3.53 6.06 10.20
60% 1.09 1.19 1.35 1.32 1.30 1.58 1.42 1.57 3.44 6.10 10.18
80% 0.82 1.23 1.06 1.14 1.46 1.45 1.64 2.14 3.74 6.03 10.85
100% 0.80 1.02 1.08 1.11 1.40 1.61 1.23 1.61 4.40 5.80 11.11

ν 2
 3 4 5 6 7 8 9 10 30 50 100

0% 1.47 1.81 1.81 1.89 1.12 1.77 1.89 1.61 2.00 2.29 2.37
20% 1.19 1.27 1.40 1.81 1.66 1.61 1.70 3.28 1.96 1.96 1.98
40% 1.33 1.27 1.19 1.39 1.37 1.72 1.79 1.90 1.95 1.91 2.03
60% 1.17 1.14 1.33 1.52 1.38 1.73 1.55 1.47 1.70 2.06 2.13
80% 0.91 1.22 1.40 1.24 1.62 1.79 1.32 1.63 1.86 2.12 2.21
100% 0.98 1.14 1.35 1.26 1.49 1.75 1.54 1.46 2.14 2.14 2.35

ν 3
 3 4 5 6 7 8 9 10 30 50 100

0% 2.96 3.44 2.90 2.62 2.68 2.83 2.78 1.91 2.22 2.44 2.13
20% 3.76 1.98 2.24 2.26 2.41 2.01 2.85 2.96 2.64 2.52 2.15
40% 2.82 2.65 2.56 2.89 2.36 2.25 1.71 3.20 2.42 2.43 2.26
60% 3.13 2.81 2.67 2.59 2.50 2.44 2.07 2.30 2.34 2.31 2.07
80% 2.70 3.10 2.29 2.27 2.35 1.97 2.46 2.49 2.30 2.09 2.39
100% 2.40 2.53 2.12 1.96 2.25 2.43 1.68 2.24 2.19 1.99 2.12

Table 3

 The proposed algorithm has been tested against Cyrus-Beck's, ECB and Rappaport's
algorithms on data sets of line segments (103) with end points that have been randomly and
uniformly generated inside a circle in order to eliminate an influence of rotation. Convex polygons
were generated as N-sided convex polygons inscribed into a smaller circle.
 There are practically no significant differences as far as the percentage is intersecting lines
is concerned, see tab.3.
 It can be seen that, see tab.3, that the proposed algorithm is significantly faster then CB
algorithm. A comparison of ECB and proposed algorithms shows that for N < 7 the ECB
algorithm is faster than the proposed one. "Waves" for ν 2 are caused by the influence of binary
division of an index interval and relation between data and convex polygon position. The waves can

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 10 -

be seen in tab.2 with theoretical estimations, too. The significant difference for N = 100 is caused
by considering the worst cases only in theoretical estimations.
 The proposed O N(lg) algorithm is approx. two times faster than Rappaport's algorithm and
it is much more simple to implement.
 It is necessary to point out that careful implementation of conditions like to F Fi k() ()x x>
might further improve the efficiency of the proposed algorithm, because of comparison operation is
the longest operation after division, see tab.1.

4. Conclusion
 The new efficient algorithm of O N(lg) complexity for clipping lines against convex window in E2
has been developed. Edges of the given convex polygon can be arbitrarily oriented. It also proved
the applicability of Computational Geometry results [CHA87a] even for small N. Similarly as the
Rappaport's algorithm the proposed algorithm can be easily modified for polygon clipping. The
suggested algorithm also proved the duality principle with the problem point-in-polygon, see
[PRE85a], [NIE92a], [NIE92b]. It also proved applicability of principles of Computational
Geometry results [CHA87a] even for small N. Similarly as Rappaport's algorithm the proposed
algorithm can be modified for polygon clipping, where the clipped polygon might be non-convex.
Superiority of the proposed algorithm over CB, ECB and Rappaport's algorithms was proved by
theoretical estimations and experimental results.
 All tests were implemented in Borland C++ on PC 486/33 MHz 256KB Cache. It is
expected that for workstations the efficiency n will be higher than for PC 486 as the comparison
operation is the longest operation used in the algorithm, see tab.2, and the timing ratio of operations
on workstations is be better.

5. Acknowledgments
 The author would like to express his thanks to students of Computer Graphics courses at the
University of West Bohemia in Plzen and Charles's University in Prague who stimulated this work,
especially to Mr.P.Bláha for careful test implementations and verification of the proposed
algorithm, dr.A.Ferko and dr.F.Je�ek for reading a manuscript, critical comments and suggestion
they made and to anonymous referees who made critical and constructive recommendations that
improved this paper very much.

6. References
[ABI90a] Abi-Ezzi,S.S., Wozny,M.J.: Factoring a Homogeneous Transformation for a More

Efficient Graphics Pipeline, Computer Graphics Forum, Vol.9, No.3, pp.245-255, 1990.
[AKE91a] Akeley,K., Korobkin,C.P.: Efficient Graphics Processor for Clipping Polygons, US

Patent No.5 051 737, 1991.
[AND89a] Andreev,R.D.: Algorithm for Clipping Arbitrary Polygons, Computer Graphics Forum,

Vol.8, No.3, pp.183-192, 1989.
[AND91a] Andreev,R., Sofianska,E.: New Algorithm for 2- Dimensional Line Clipping,

Computers & Graphics, Vol.15, No.4, pp. 519-526, 1991.
[ARO89a] Arokiasamy,A.: Homogeneous Coordinates and the Principle of Duality in Two

Dimensional Clipping, Computers & Graphics, Vol.13, No.1, pp.99-100, 1989.
[BLI78a] Blinn,J.F.,Newell,M.E.: Clipping Using Homogeneous Coordinates, Computer Graphics

(SIGGRAPH'78), Vol.12, pp.245-251, 1978.
[BLI91a] Blinn,J.F.: A Trip Down to Graphics Pipeline - Line Clipping, IEEE Computer Graphics

and Applications, Vol.11, No.1, pp.98-105, 1991.
[BRE92a] Brewer,E.A., Barsky,B.A.: Clipping After Projection: An Improved Perspective Pipeline,

submitted for publication.
[BUR88a] Burkert,A., Noll,S.: Fast Algorithm for Polygon Clipping with 3D Windows,

Eurographics'88 Proceedings, pp.405-419, 1988.

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 11 -

[CHA87a] Chazelle,B., Dobkin,D.P.: Intersection of Convex Objects in Two and Three
Dimensions, JACM, Vol.34, No.1., pp.1-27, 1987.

[CHA92a] Chazelle,B.: An Optimal Algorithm for Intersecting Three-Dimensional Convex
Polyhedra, SIAM J. Computing, Vol.21., No.4., pp.671-696, 1992.

[CHE79a] Cheng,F., Yen,Y.: A Parallel Line Clipping Algorithm and Its Implementation, in
CGI'89 Conference Proceedings, 1989.

[CYR79a] Cyrus,M.,Beck,J.: Generalized Two and Three Dimensional Clipping,
Computers&Graphics, Vol.3, No.1, pp.23-28, 1978.

[DAY91a] Day,J.D.: A Comparisons of Line Clipping Algorithms, Queensland Univ. of
Technology, School of Computing Science, Report 2-91, 1991.

[DAY91b] Day,J.D.: A New Two Dimensional Line Clipping Algorithms for Small Windows,
Queensland Univ. of Technology, School of Computing Science, Report 3-91, 1991.

[DAY92a] Day,J.D.: A New Two Dimensional Line Clipping Algorithms for Small Windows,
Computer Graphics Forum, Vol.11, No.4, pp.241-245, 1992.

[DOR90a] Dorr, M.: A New Approach to Parametric Line Clipping, Computers & Graphics,
Vol.14. Nos.3/4, pp.449-464, 1990.

[DUV90a] Duvanenko,V.J., Robins,W.E., Gyurcsik,R.S.: Improving Line Segment Clipping,
Dr.Dobb's Journal of Software Tools, Vol.15, No.7, pp.36,38,40,42,44-5,98,100, 1990.

 [DUV93a] Duvanenko,V.J., Robins,W.E., Gyurcsik,R.S.: Simple and efficient 2D and 3D Span
Clipping Algorithms, Computers & Graphics, Vol.17, No.1, pp.39-54, 1993

[FON92a] Fong,D.Y., Chu,J.: A String Pattern Recognition Approach to Polygon Clipping, Pattern
Recognition, Vol.23, No.8., pp.879-892, 1992.

[FUN90a] Fung,K.Y., Nicholl,T.M., Tarjan,R.E., Van Wyk,C.J.: Simplified Linear Time Jordan
Sorting and Polygon Clipping Information Processing Letters, Vol.35, pp.85-92, 1990.

[HER88a] Herman,I.,Reviczky,J.: Some Remarks on the Modelling Clip Problem, Computer
Graphics Forum, Vol.7, No.4, pp.265-272, 1988.

[HUB90a] Hubl,J.,Herman,I.: Modelling Clip: Some More Results, Computer Graphics Forum,
Vol.9, pp.101-107, 1990.

[HUB93a] Hubl,J.: A Note on 3D-Clip Optimisation, Computer Graphics Forum, Vol.12, No.2,
pp.159-160, 1993.

[KAI90a] Kaijian,S., Edwards,J.A., Cooper,D.C.: An Efficient Line Clipping Algorithm,
Computers & Graphics, Vol.14, No.2, pp.297-301,1990.

[KIL87a] Kilgour,A.C.: Unifying Vector and Polygon Algorithm for Scan Conversion and
Clipping, TR CSC/87/R7, Univ. of Glasgow, May 1987.

[KRA89a] Kramer,G.: Notes on the Mathematics of PHIGS Output Pipeline, Computer Graphics
Forum, Vol.8, No.3, pp.219-226, 1989.

[KRA92a] Krammer,G.: A Line Clipping Algorithm and Its Analysis, Computer Graphics Forum
(EG'92 Conference Proceedings), Vol.11, No.3, pp.C253-266, 1992.

[LIA83a] Liang,Y.D.,Barsky,B.A.: An Analysis and Algorithms for Polygon Clipping, CACM,
Vol.26, No.11, pp.868-876, 1983.

[LIA84a] Liang,Y.D.,Barsky,B.A.: A New Concept and Method for Line Clipping, ACM
Transaction on Graphics, Vol.3, No.1, 1984, pp.1-22.

[LIA92a] Liang,Y., Barsky, B.A.: The Optimal Tree Algorithm for Line Clipping, Technical paper
distributed at Eurographics'92 Conference, Cambridge, 1992.

[MAI92a] Maillot,P.G.: A New, Fast Method For 2D Polygon Clipping: Analysis and Software
Implementation, ACM Transaction on Graphics, Vol.11, No.3, pp.276-290, 1992.

[MAR89a] Margalit,A.,Knott,G.: An Algorithm for Computing the Union, Intersection or
Difference of Two Polygons, Computers & Graphics, Vol.13, pp.167-183, 1989.

[MAX93a] Max,N.: Polygon Clipping - Response, CACM, Vol.36, No.1., pp. 115, 1993.
[NIC87a] Nicholl,T.M.,Lee,D.T.,Nicholl,R.A.: An Efficient New Algorithm for 2D Line Clipping:

Its Development and Analysis, ACM Computer Graphics, Vol.21, No.4, pp.253-262,
1987.

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 12 -

[NIC91a] Nicholl,R.A., Nicholl,T.M.: A Definition of Polygon Clipping, Report No.281, Computer
Sci. Dept.,Univ.of West Ontario, 1991.

[NIE92a] Nielsen,H.P.: An Intersection Test Using Dual Figures, Technical Report GKTR-0892,
Dept.of Graphical Communication, Technical Univ. of Denmark, Lyngby, October 1992.

[NIE92b] Nielsen,H.P.: Line Clipping Using Semi-homogeneous Coordinates, submitted for
publication in CGF, 1992.

[OBA89a] O'Bara,R.M.,Abi-Ezzi,S.: An Analysis of Modeling Clip, in EG'89 Conference
Proceedings, pp.367-380, 1989.

[PIN91a] Pinedo,D.: Window Clipping Methods in Graphics Accelerators, IEEE Computer
Graphics and Applications, Vol.11, No.3, pp.75-84, 1991.

[PRE85a] Preparata,P.F., Shamos,M.I.: Computational Geometry, An Introduction, Springer
Verlag, 1985.

[RAP91a] Rappaport,A.: An Efficient Algorithm for Line and Polygon Clipping, The Visual
Computer, Vol.7, No.1, pp.19-28, 1991.

[SHA92a] Sharma,N.C., Manohar,S.: Line Clipping Revisited: Two Efficient Algorithms based on
Simple Geometric Observations, Computers & Graphics, Vol.16, No.1, pp.51-54, 1992.

[SKA89a] Skala,V.: Algorithms for 2D Line Clipping, in CGI'89 Conference Proceedings,
pp.121-128, 1989.

[SKA89b] Skala,V.: Algorithms for 2D Line Clipping, in EG'89 Conference Proceedings,
pp.355-367, 1989.

[SKA93a] Skala,V.: Algorithm for Line Clipping in E2 for Convex Window (in Czech),
Algorithms'93 Conference Proceedings, Bratislava, 1993.

[SKA93b] Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon,
Computers & Graphics, Vol.17,No.4, pp.417-421, 1993.

[SKA93c] Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon, Preprint No.38,
University of West Bohemia, Plzen, 1993.

[SLA92a] Slater,M., Barsky,A.B.: 2D Line and Polygon Clipping Based on Space Subdivision,
accepted for publication in The Visual Computer, 1993.

[SOB87a] Sobkow,M.S., Pospisil,P., Yang,Y.-H.: A Fast Two-dimensional Line Clipping
Algorithm via Line Encoding, Computers & Graphics, Vol.11, No.4, pp.459-467, 1987.

[SPR68a] Sproull,R.F.,Sutherland,I.E.: A Clipping Divider, in: Proc. APFIS FJCC, 1968.
[SUT74a] Sutherland,I.E., Hodgman,G.W.: Reentrant Polygon Clipping, CACM, Vol.17, No.1,

pp.32-42, 1974.
[THE89a] Theoharis,T.,Page,I.: Two parallel Methods for Polygon Clipping, Computer Graphics

Forum, Vol.8, pp.107-114, 1989.
[VAT93a] Vatti,B.: Polygon Clipping - Response, CACM, Vol.36, No.1., pp. 115, 1993.
[YIN92a] Ying,D.N.: A New Algorithm for Polygon Clipping and Boolean Operations, Univ. of

Zhejiang internal report, Hangzhou, China, 1991.
[YON91a] Yong-Kui,L.: A New Algorithm for Line Clipping by Convex Polygon, paper submitted

for publication, 1991.
[ZAC89a] Zachristen,M.: Yet Another Remark on the Modeling Clip Problem, Computer Graphics

Forum, Vol.8, pp.237-238, 1989.

 [EDE90a] Edelsbrunner,H.,Mucke,E.P.: Simulation of Simplicity: A Technique to Cope with

Degeneration Cases in Geometric Algorithms, ACM Trans. on Graphics, Vol.9, No.1, pp.
66-104, 1990.

New
[SAV90a] Savka,M.V.: A Polygon Clipping Algorithm, Programming and Computer Software,

Vol.16, No.3, pp.114-117, 1990.
[SHI90a] Shi,K.J., Edwards,J.A., Cooper,D.C.: An Efficient Line Clipping Algorithm,

Computers & Graphics, Vol.14, No.2, pp.297-301, 1990.

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

 - 13 -

[WES89a] Weston,D.E.: Correlation After Asymetrical Clipping, Journal of the Acoustical Society
of America, Vol.85, No.4, pp.1607-1611, 1989.

[TAN84a] Tang,Z.H., Sun,J.G., Chen,Y.J.: A Method for Clipping Arbitrary polygon Rapidly, First
International Conference on Computers and Applicatons, pp.457-464, Beijing, China,
1984.

Computers & Graphics, Pergamon Press, Vol.18, No.4, 1994.

