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ABSTRACT
Gauss’ theorem, which relates the flow through a surface to the vector field inside the surface, is an important tool in
Flow Visualization. We are exploit the fact that the theorem can be further refined on polygonal cells and construct
a process that encodes the particle movement through the boundary facets of these cells using transition matrices.
By pure power iteration of transition matrices, various topological features, such as separation and invariant sets,
can be extracted without having to rely on the classical techniques, e.g., interpolation, differentiation and numerical
streamline integration. We will apply our method to steady vector fields with a focus on three dimensions.
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1 INTRODUCTION

Vector field topology reveals the basic features of a
flow field, i.e., critical points, separatrices, separation
surfaces and other invariant manifolds. For instance,
it became a widely used tool for the feature-based
analysis of stationary flow fields. For time-dependent
flow fields, the finite-time Lyapunov exponent (FTLE)
is often used to extract time-dependent counterparts of
the structures known from vector field topology. Nev-
ertheless, methods to extract vector field topology are
based on interpolation, differentiation and numerical
streamline integration.
Instead of relying on streamlines, one can use transition
matrices. The entries of a transition matrix represent
the probability that particles contained in one cell will
enter another cell after some advection time. This leads
to the theory of time-discrete Markov processes, which
are a widely studied object of probabilistic theory.
Here, the question is, if powers of the transition matrix
will converge to a limit state. This corresponds to
particles reaching a limit set, e.g., a critical point.
The generation of the transition matrices is a hard
task. In [22], Reich and Scheuermann have used a
combinatorial flow map, that was introduced by Chen
et al. [3] to compute the outer approximation of an
integration image of a cell after some advection time.
Then, they were able to compute probabilities of
particles leaving one cell and entering another cell. To
compute the outer approximation, all edges of a cell
have to be integrated adaptively.

In this paper, we present a novel algorithm to compute
the transition matrices. The idea is to look at the
outflow region of every cell. For two adjacent cells in
2D, the probability of the transition can be computed
by relating the outflow at the edge to the outflow of the
whole cell. This approach can be naturally extended to
3 dimensions by integrating the outflow along the cell
surface instead of the edges.
While the approach using the method of Chen might
result in transitions between cells that are not neigh-
bored, our novel approach guarantees transitions only
between neighbored cells. We therefore sample the
transitions at the finest scale possible in this discrete
setting. The speed of convergence of the transition
matrices depends linearly on this scaling, because
the computationally most costly stage is multiplying
sparse matrices with vectors, which rises linearly in the
number of cells, resulting in fast computations of the
attracting and repelling limit sets. However, computing
separation is still a computationally costly technique,
because much more vectors will have to be iterated.
Our method is evaluated using data sets of different
levels of complexity. Due to the extension to 3 dimen-
sions of the existing work, we are now able to analyze
more real world data with our novel approach.
The remainder of this paper is structured as follows: In
section 2, we present approaches that are related to our
method. The basics of surface integrals and transition
matrices are explained in section 3. Afterwards, we
present our method in section 4. The results are pre-
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sented and discussed in section 5. The paper concludes
with section 6.

2 RELATED WORK
Vector field topology has been introduced to by Hel-
man and Hesselink [11] more than 20 years ago to the
visualization community. Since then a lot of research
has been devoted to the extraction of topological invari-
ants. Initially, Helman and Hesselink extracted critical
points and classified the points by linearizing the flow
in the vicinity. Afterwards, the flow is segmented into
basins of similar flow behavior using the separatrices
that emanate from the saddle points. This method was
then extended by several researchers. Scheuermann
et al. [25] analyzed the boundary of the domain to
extract a finer topology. Weinkauf et al. [32] extended
this approach to three dimensions. Theisel et al.[29]
introduced the concept of saddle connectors, which are
the intersection of the separation surfaces emanating
from the saddles points. Wischgoll et al. [34] extracted
attracting and repelling periodic orbits in planar flows
by searching for cell cycles.
Tricoche [31] studied the connection between the
Poincaré index and vector field topology. Polthier et
al. [20] use a discrete hodge decomposition to extract
vector field singularities. Bhathia et al. [1] use edge
maps as an alternative to streamlines.
The aforementioned methods analyze the vector field
as a continuously given data set. This approach does
not incorporate the grid and makes interpolation
necessary. In contrast, discrete methods do not rely on
interpolations but analyze the raw data. In particular,
the work of Reininghaus [23] covers the extraction of
topological structures in combinatorial vector fields.
Here, the grid is represented as a graph and the vector
field as an matching on this graph. Their method is
based on the work of Forman [6]. Another combinato-
rial approach was presented by Chen et al. [3]. They
use the images of triangular cells under advection to
encode the flow field into a graph. Conley index theory
is used to classify the strongly connected components
as features. The work of Boczko et al. [5] can be seen
as a special case of a Morse decomposition. Szymczak
presented Morse decompositions of piecewise constant
vector fields [28].
An approach to compute vector field topology in a
discrete setting was presented by Reich et al. [22].
They use the theory of Markov processes [27] to extract
vector field invariants.
In the last two decades, the extraction of topological
structures in uncertain vector fields had come to
attention in the flow visualization community, e.g.,
see Pang et al. [18]. Otto et al. [17] formulated
convergence criteria for gaussian distributed density
functions by Euler integration. Their method also uses

the uncertain Poincaré index to distinguish between
critical distributions. Petz et al. [19] presented an
approach to analyze the probability of a critical point
to be contained in a cell for uncertain vector fields.
Schneider et al.[26] uses principal component analysis
to detect separation in uncertain flows.
The list of the aforementioned publications related to
vector field topology is naturally not complete. For a
good overview that also cover topics of flow visual-
ization, we refer to Weiskopf and Erlebacher [33], and
Post et al. [21].
For time-dependent flow fields, vector field topology is
not sensible to extract anymore. Here, a lot of analysis
approaches search for Lagrangian coherent structures.
An important approach to find these features was in-
troduced by Haller [10] by introducing the Finite-time
Lyapunov exponent (FTLE). Within the visualization
community a lot of computational improvements or
alternative computation methods have been proposed,
see [2, 7, 13]. There is also some research done to
compare vector field topology to structures extracted
from the FTLE, e.g., see [24].
The stochastic processes in our work are also an
important tool for image segmentation and pattern
analysis [8].

3 MATHEMATICAL PRELIMINARIES
3.1 Surface Integrals
Surface integrals can be described as an observable
quantity that measures the amount of leaving (entering)
flow through a bounded surface in one time step. A fa-
mous theorem related to surface integrals is from C.F.
Gauss. It states, that the flow f through a piecewise dif-
ferentiable boundary of an area Ω is equal to divergence
integral over the enclosed Ω:∫

∂Ω

< f ,n > dA =
∫

Ω

div f dV , (1)

where n denotes the outer unit normal to ∂Ω and < ., . >
the inner product. The left side is a surface integral,
while the right side is a integration over a volume.
The theorem has many applications in other sciences,
e.g., in electrodynamics it implicates that there can be
no electric field inside a hollow object. In one dimen-
sion, it is equivalent to the fundamental theorem of cal-
culus.
In this chapter, we are going to introduce surface inte-
grals in the Euclidean spaces R2 and R3. We will show
that for triangular and tetrahedral cells in a piecewise
linear (or piecewise constant) flow, the surface integrals
reduce to (relatively) simple formulas. For interpola-
tion schemes of higher order, there is no guarantee that
there exists a closed formula, but the flow integral can
still be calculated by using numerical integration tech-
niques, like the Gaussian quadrature.
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3.1.1 The 2D-Case
Since the boundary of a triangular cell in two dimen-
sions is a closed path, the surface integral reduces to a
line integral.
Lemma:
Let f (x) : R2→ R2 be an affine linear field, i.e., it is of
the form A(x)+b, with a matrix A and a constant vector
b. Let p1 and p2 be two positions that bound an edge e
of a triangle in R2. Then the surface integral of the flow
f through e is∫

e
< f ,n > dx = ||p1− p2||2·<

f (p1)+ f (p2)

2
,n >,

(2)
where ||p1 − p2||2 is the length of edge e and n the
outer unit normal of the edge.

3.1.2 The 3D-Case
Lemma:
Let f (x) : R3→ R3 be an affine linear field again. Let
T be a triangle in space, e. g. the face of a tetrahedron,
with vertices positions p1, p2 and p3. Then the surface
integral of the flow f through T is∫

T
< f ,n > dσ =A (T )·< f (p1)+ f (p2)+ f (p3)

3
,n>,

(3)
where A (T ) is the area 1

2 · ||(p1− p3)× (p2− p3)||2
spanned by the triangle T .

For the following sections, in particular 4.1, we rely on
our gained, ready to implement formulas. Readers in-
terested in the theory of multidimensional integration
might also have a look in any vector calculus book, e.g.,
[16].

3.2 Transition Matrices
3.2.1 What are transition matrices?
In this section, we are going to give an insight in the
basics of transition matrices, also called time-discrete
Markov chains.
These matrices are linear operators that map a distri-
bution vector v1 to another distribution vector v2 of the
same dimension, preserving that every entry in the vec-
tor is greater or equal to zero and the sum of all entries
is 1. In particular, a row-stochastic transition matrix M
has the property, that all entries are greater or equal to
zero and the sum of all entries in each row is 1, i.e.,

∑
j

mi j = 1.

The entry mi j describes the probability of the system
from going from state i to state j.
Transition matrices are a stochastic processes with only

a finite number of states which coincide with the size of
matrix. The image of a distribution vector after k dis-
crete time-steps is generated by multiplying the trans-
posed distribution vector from the left n times. We have

vT
k+1 = vT

k ·M. (4)

As a sidenote, if we want to have a multiplication of
the vector from the right, then our matrix M has to be
column-stochastic instead. We have chosen the row-
stochastic form, because it seems more intuitive when
we move from state i to j than from j to i.
As one can see easily, the operator M is memoryless,
i.e., the next state of the system only depends the cur-
rent state, not on those before. The spectrum of M and
the long term behavior of multiplication operations are
of particular interest in probability theory [27].
Transition matrices may have many stationary states,
these are vectors that do not change by multiplication
formula (4). As a consequence, they have to be (left-)
eigenvectors to the eigenvalue of 1:

vT
k ·1 = vT

k ·M

The existence of at least one eigenvalue 1 is guaranteed
for every M.
Though M and all distribution vectors vk will always
be bound in their norm by 1, not all multiplications
involving transition matrices converge to a stationary
state by power iteration. We will present a solution for
this issue in section 4.
One of the most important theorems related to tran-
sition matrices is by Perron and Frobenius [27]. It
states that if every entry in the matrix M is greater
than zero, then there exists a unique eigenvector to the
eigenvalue λ = 1 and every power iteration algorithm
will converge to that eigenvector, which is the only
stationary state.
Google [14] makes use of the Perron-Frobenius-
Theorem to construct transition matrices that are
guaranteed to converge. The states in the Google
matrix are websites and the transition probabilities are
determined by hyperlinks, that guide the user from
one site to another. Further, there exists a very small
chance, that the user chooses a completely random
website, so the Google-Matrix will be densely popu-
lated. As a consequence, the unique stationary state of
the Google matrix can be calculated by power iteration
and delivers the page rank of each site, a measure for
its importance, that can be used to order the results of
search requests by the user.
For the case of interpretation difficulties of transition
matrices, it often helps to sketch a probabilistic graph
that describes the movement, e.g., like in Figure 1.

3.2.2 Relation to Vector Field Topology
Transition matrices have been used before to extract
topological features of a flow induced by a vector field.
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(a) (b)

Figure 1: One example that expresses the duality be-
tween a (row-stochastic) transition matrix (a) and a
probabilistic graph (b). The probability mi j describes
the likelihood to move from node i to node j.

The main idea of the preceding approaches was to en-
code particle movement from numerical streamline in-
tegration to a transition probability from cell to cell.
Two important publications in that context are [4] and
[22].
There is a duality between both dynamical systems. For
a flow φ(t,x) associated with a vector field we have

φ(0,x) = x

and
φ(t1,φ(t2,x)) = φ(t1 + t2,x).

For a (row-stochastic) transition matrix

vT ·M0 = vT

and
(vT ·Mn1) ·Mn2 = vT ·Mn1+n2

holds. Further, the product of any(!) transition matrices
M1 and M2 of the same dimension is a transition matrix
again.
The conversion of a continuous system to a a discrete
system poses several challenges:
While the flow φ(x, t) is invertible in the range of its
existence, i.e., we are able to go back to our original
position by an integration using the same time with a
negative sign, transition matrices do not need to be in-
vertible. A possible solution is to construct two tran-
sition matrices, one describing the forward movement
(M+) and one for the backward movement (M−). How-
ever, it is still not guaranteed that the equation

M+ ·M− = Id

is fulfilled here; so it is natural to ask why we con-
vert the flow to that discrete system. The reason is
not only the gained robustness and uniform treatment
of invariant sets. Transition matrices allow us to ana-
lyze the sensitivity of the initial value problem at infi-
nite times, which is not possible with purely particle-
distance-based algorithms like FTLE. In publication
[22], Reich et al. make use of that fact and extract sep-
arating features of planar flows.

4 THE ALGORITHM
Now we are going to combine the surface integrals with
transition matrices, i.e., we move from local feature ex-
traction to a global topology by describing the interac-
tion between the cells and the flow through their com-
mon facettes.
Unlike the preceding work, our algorithm will be com-
pletely independent from numerical streamline inte-
gration and works in any dimension. However, our
presented results will primarily contain 3-dimensional
flows, while, for the sake of simplicity sub-steps of the
method are illustrated in 2D.

4.1 Encoding Particle Movement
Recall the Gauss Theorem (1). If we look at the right
side, we have a volume integral over the divergence of
a region Ω, say, a cell of a piecewise linear vector field.
While the integral can be zero, e.g., the cell contains a
purely rotational stationary point, there are still particle
movements between the cell and its neighbor cells. So
the right side is of no use when we want to create transi-
tion matrices. Let us have a look at the surface integral
instead: ∫

∂Ω

< f ,n > dA.

This can be further refined to

∑
i

∫
(∂Ω)i

< f ,n > dA,

where (∂Ω)i is a boundary segment of our cell, i.e. an
edge i of a triangle, or a face i of a tetrahedron. Further,
we can refine the formula by distinguishing between in-
and outflow:

∑
i

∫
(∂Ω+)i

< f ,n > dA + ∑
i

∫
(∂Ω−)i

< f ,n > dA,

where (∂Ω+)i is the region where < f ,n > ≥ 0 holds
(outflow), and (∂Ω−)i the region where < f ,n > is
smaller than 0 (inflow).
It follows immediately from our formulas, that if we
have a piecewise linear flow that is divergence-free,
then

∑
i

∫
(∂Ω+)i

< f ,n > dA =−∑
i

∫
(∂Ω−)i

< f ,n > dA

must hold for every cell.
By assuming a linear field, the flow relative to each
boundary edge/facette can change its behavior just
once, at a tangential point in 2D, or a tangential line in
3D. The tangential point, respectively the endpoints of
the tangential line can computed by seeking a solution
λ in [0..1] satisfying

λ =
< n, f (p2)>

< n, f (p2)− f (p1)>
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Figure 2: An example of encoding particle movement.
All three edges of the cell C4 have a non-trivial exit set.
We compute the integrals of < f ,n > by our formu-
las from section 3 using the vertices and the tangential
points as integration range (red lines). The transition
probability from cell C4 to C1 is determined by the value
of the surface integral on (∂Ω+)1 divided by the value
on ∑i (∂Ω+)i.

on an edge spanned by p1 and p2. Afterwards, the tan-
gential point t can be computed by λ · p1 +(1−λ ) · p2.
The vector at a tangential point or a point on a tangen-
tial line is never needed to be evaluated, because it has
no component in direction of the normal, so it can be
assumed as zero in our integration formulas. We do not
need interpolation at any sub-step of the algorithm.
As an example, the surface integral for a edge with tan-
gential point t in 2D splits up into∫

e
< f ,n > dx =

∫
e+

< f ,n > dx+
∫

e−
< f ,n > dx

= ||p1− t||2·<
f (p1)+0

2
,n >

+ ||t− p2||2·<
0+ f (p2)

2
,n >,

where it still has to be checked which term is the posi-
tive part.
In case of a face of a tetrahedron, a tangential line de-
composes a boundary face into a triangle and a quad.
The latter one can again be decomposed into two tri-
angles, so it is necessary to evaluate the 3D-surface in-
tegral three times per face. If the flow is transverse at
a boundary edge/face, which is the common case, in
particular for flows with weak rotation, we can com-
pute the surface integral directly in one step. For a 2D-
illustration of a evaluation also see Figure 2.

The following is the key aspect of the whole paper.
We are going to put the outflow through a boundary
edge/face in relation to the outflow of the whole cell.
Which yields the quotient “outflow through a face i that
connects cell a with cell b” divided by “outflow through
the whole cell a”, or

mab =

∫
(∂Ω+)i

< f ,n > dA

∑i
∫
(∂Ω+)i

< f ,n > dA
, (5)

where ∂Ω is the boundary of cell a and face i is con-
necting a with b. The values of mab fill our transition
matrix M+. We can state a analogous formula for M−
by just substituting ∂Ω+ with ∂Ω−.
If we sum up all mab from a cell a and all of its neigh-
bors b, the result will always be 1.0, so M+ and M−
will be transition matrices, that describe the weighted
outflow/inflow of a linear flow through a cell.
To avoid division by zero, we must intercept the cases,
where there is no outflow/inflow at all. These cases are
cells containing nodal stationary points, so we just set
maa to 1.0 and all mab are 0.0 for a 6= b.

4.2 Transition Matrix Processing
From now on, the rest of the algorithm will be pure
matrix-vector-iterations with our constructed transition
matrices M+ and M−.
Since the amount of cell neighbors is always limited
to 3 (in 2D) or 4 (in 3D), our transition matrix will be
sparse of the compressed size (N×3) or (N×4), where
N is the number of cells in our dataset. There are pro-
grams with proper data structures [9] who are designed
for the procession of sparse matrices. Alternatively, one
could also use an own implementation, e.g., using the
construct vector < map < unsigned int, f loat >> in
C++, which also has been used to process the transition
matrices generated from the datasets in this paper. We
did not experience any significant computational time
changes when switching from our classes to [9]. The
complexity of a matrix-vector-multiplication is reduced
from O(N2) to O(N), when the matrix is not densely
populated.
The power iteration is a task always to be executed the
same way:
Given an equivalence precision ε > 0 and an initial vec-
tor v0 we compute

vT
k+1 = vT

k ·M,

until ||vk+1− vk||< ε .
A small ε will lead to accurate results but can increase
the computational time significantly. A summary on
multiple power iteration methods for matrices can be
found in [30].
We are going to use three types of useful initial distri-
butions:

• The uniform distribution v0 = u, where all entries of
u are 1

N with N being the number of cells.

• The impulse distribution v0 = ei, where the i-th po-
sition of the vector contains a 1.0 and all others are
0.0. This distribution is localized in cell i only.

• The neighborhood distribution v0 = ni, where for
all neighbors j of a cell i, who share common
edges/faces, have the value 1

3 (in 2D) or 1
4 (in 3D).
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(a) (b) (c)

Figure 3: All three distributions that were used by us
for power iterations: (a) a uniform distribution, n is the
number of cells, (b) an impulse distribution, which is
only located in the yellow cell, (c) a neighborhood dis-
tribution, located around the yellow cell, for a tetrahe-
dron, the values have to be 1

4 .

This distribution is localized in the neighborhood of
cell i in triangular or tetrahedral mesh.

An illustration of all distributions can be found in Fig-
ure 3. We do not consider cells as ’proper’ neighbors if
they share just a common vertex, because the resulting
flow integrals will be trivial on a set with measure 0.

4.2.1 Invariant Sets
Since we are no longer moving in the conventional dy-
namical system φ(x, t), which is induced by a vector
field, we must redefine the invariant sets:
An invariant set is an eigenvector of either M+ or M−
to the eigenvalue of 1. An invariant set is attracting, if
the matrix is M+, else it is repelling.
As a remark, these are indeed invariants, because if we
see the eigenvector as a collection of cells, then the set
of these cells, that are represented by non-zero entries,
does not change by any new multiplication with the
transition matrix. The set of all cells in an invariant set
is always connected, because the movement between
those cells always takes place between their common
edges/faces.
To extract all attracting stationary states, we just need
to iterate with M+ and the initial vector u, which rep-
resents a distribution over the whole domain. For the
repelling ones we take M−. We experienced that purely
rotational stationary points can be extracted, together
with their neighborhood, by both methods.
Using u as an initial vector also has the side effect, that
sinks and sources are also weighted with the size of
their α/ω-basin. Some invariants might attract or re-
pel “more” particles than others.

4.2.2 Separation
Separation manifolds cannot be automatically derived
from the spectrum of our transition matrices. However,
we still are able to do a power iteration with the initial
vectors ei and ni and compare the resulting stationary
states by the l1-metric and eventually measure the de-
pendence of the iteration process from the initial vector.
We obtain forward separation by using M+ and back-
ward separation by using M−. That method has by far

(a) (b)

Figure 4: A possible case that could, without using
equation (6), lead to a divergent transition matrix : (a)
there is clearly a singularity in one of those cells, but if
the flow leaves cell C1, it will be towards C2 with prob-
ability 1.0 and vice versa. The resulting matrix (b) will
be divergent, except one chooses the initial distribution
(0.5,0.5).

the highest complexity, which can be estimated by the
computational time of extracting all invariants times the
number of cells in the dataset. Separation features ex-
tracted by transition matrices have to be seen in a global
context by describing particles that tend to have differ-
ent limit sets. Every finite-time expansion of flow, as
well as particle distances, will not influence our result.

4.2.3 Boundary Topology

We process the boundary similar to the method by
Mahrous et al. [15]. First, we extract all connected
boundary segments, where the flow leaves the domain.
These segments will be treated like additional cells and
have mapping of probability 1.0 to themselves. Finally
all cells adjacent to them, will be mapped to these arti-
ficial invariants by the probability that is, as in the or-
dinary case, determined by the outflow integral. The
size of the matrix will grow by the number of so-
called exit sets of the domain, which are in general of
much smaller cardinality than the number of cells in our
dataset.

4.3 How to prevent divergent transition
matrices

Transition matrices that are generated from surface
integrals may be divergent, i.e., not every stationary
state may be reached by power-iteration only. Most of
these cases are clusters of cells that are ordered in a
cycle, where the transition probability from one cell to
its successor is 1.0. If one puts an impulse distribution
in one of these cells, the power-iteration will just move
that distribution around the cycle without reaching a
stationary state. A special case is given in Figure 4,
where a critical point near the common edge of two
cells leads to a divergent 2-cycle.
However, we are able to perform one simple operation,
so that a new matrix Mnew will have the same stationary
states, but will be convergent by potentiation. We set

Mnew =
M2

old +Mold

2
(6)
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(a) (b)

(c) (d)

Figure 5: A CFD-dataset simulating a fluid entering at
the left bottom: (a) 4 center points (yellow) and 2 sad-
dles (red) with their separatrices, the left ones form two
homoclinic orbits, the background is a LIC, (b) separa-
tion computed with a streamline-based method from the
preceding work ([22]), (c) separation computed with
surface integrals by iterating all distributions ei and ni,
(d) iteration with uniform distribution u reveals the cen-
ter points.

and obtain a process with the same stationary states.
It can be easily shown that the only remaining eigen-
value in Mnew, that has magnitude 1, is 1 itself. There
are no other eigenvalues on the unit circle of the com-
plex plane present, which could cause divergent be-
haviour. Our new transition matrix will always con-
verge by power iteration. In the special case of Figure
4, the resulting new matrix block has only the entries
0.5 and both cells belong to the same stationary state
which is associated with the critical point of the vector
field.
It is not necessary to compute the explicit second power
in practice, the propagated iteration scheme just needs
to be extended by another step with an additional aver-
aging of two distribution vectors. As a side effect, vec-
tor fields containing highly rotational flows and many
closed streamlines are also faster processed, because
distributions get blurred immediately along the prob-
abilistic streamline.
The discrepancy to the former streamline-based method
in [22] is, that transition matrices that have been gen-
erated by flow maps are practically never divergent, be-

cause a flow map never maps one cell with a probability
of exactly 1 to another cell.
Google [14] uses a similar method when computing the
page rank of websites. Their so-called matrix damping
formula is

M̃google = (1−α) ·M+α ·G, (7)

where G = { 1
N }, N being the size of G.

The convergence is ensured by the Perron-Frobenius-
Theorem [27] there. If we would have wanted to ap-
ply such a convex linear combination to our problems,
the consequences would be devastating. Not only that
the resulting dense matrices make efficient computa-
tions with large datasets extremely costly. The result-
ing matrix from (7) has an unique stationary state and
all power iterations will converge to that eigenvector.
Measuring separation will be impossible. Finally, our
formula is superior in the feature extraction of flows,
because it preserves the low population of entries in
the sparse matrices and the multidimensionality of the
Eigenspace of eigenvalue 1.
Another interesting aspect is a geometric interpretation
of M∞

new, which is now well-defined. We already know
that the norm of transition matrices is bounded by 1,
implicating the same for all (possibly complex) eigen-
values . If we consider

Mn
new · v = λ

n · v

for n→ ∞, all λ obeying |λ | < 1 will be set to zero.
From the existence of M∞

new it can be excluded that, with
the exception of 1, there are any other eigenvalues of
magnitude 1. Eventually 1 and 0 are the only “surviv-
ing” eigenvalues in M∞

new, which can now be considered
as a projection operator. We project an initial distri-
bution into the Eigenspace of eigenvalue 1, which is
spanned by all stationary distributions. In fact, all of
our used power iterations are projections.

5 RESULTS AND DISCUSSION
All iteration methods result in scalar data which is ei-
ther visualized by a color map (2D) or volume render-
ing and isosurfaces (3D).

5.1 Artificial Data
5.1.1 The Lorenz Attractor
The Lorenz-Attractor was discovered when E.N.
Lorenz attempted to set up a system of differential
equations that would explain some of the unpredictable
behavior of the weather. It is one of the most popular
chaotic systems featuring a dense collection of unstable
streamlines. The attractor in our example obeys the
ODE-system

x′ = 10(y− x)

y′ = x(28− z)− y

z′ = xy− 8
3

z,
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(a) (b)

Figure 6: The Lorenz-Attractor: (a) The uniform distri-
bution u is iterated by a transition matrix that was gen-
erated by surface integrals, (b) illuminated streamlines
were planted in the detected region.

(a) (b)

Figure 7: The Invariant Sphere: (a) ei and ni were cell-
wise iterated by a transition matrix generated by sur-
face integrals, (b) streamlines were planted in various
positions, the violett colored ones were outside of the
domain |r| = 1 and diverge while the red colored ones
were inside and remain in the sphere for all integration
times.

and can be seen in Figure 6. We had chosen the uniform
distribution and used power iteration with M+.

5.1.2 The Invariant Sphere
The invariant sphere can be produced by using the
ODE-system

x′ = −y+ x · (1− r)

y′ = x+ y · (1− r)

z′ = z · (1− r),

where r =
√

x2 + y2 + z2. It consists of an infinite num-
ber of dense closed streamlines for r = 1, every stream-
line seeded in the neighborhood of the sphere will con-
verge to one of these closed orbits. Low-precision in-
tegrators tend to produce unstable solutions here. We
computed the backward separation with M− and suc-
cessfully extracted the whole sphere, which is visible
in Figure 7.

5.2 CFD-Simulations
5.2.1 Swirling Jet
Figure 5 will be our only example of a 2D-dataset. In
contrast to the preceding work, our focus will be on
3 dimensions. We computed forward and backward

separation with M+ and M− and extracted the topo-
logical skeleton of the fluid simulation quite accurate.
Moreover, the surface integral method seems to extract
boundary related features better than the streamline-
based approach in [22].

5.2.2 Gas Furnace Chamber (Velocity)
In Figure 8 we analyzed the backward separation field
of the gas furnace chamber. The gas furnace chamber
is a divergence-free vector field on a grid that contains
approximately 2 · 105 cells. The forward separation
field is of minor interest, because all particles will end
in the same exit set. High separation values around
the injectors were detected and their influence to the
topology of the field is also revealed.
The global separation is hard to interpret by seeding
stream surfaces in the stable and unstable manifold of
saddle points, because there are simply too many of
them inside the vector field.

6 CONCLUSION AND FUTURE
WORK

We presented a novel approach to the topology of
steady 3D vector fields by exploiting that surface inte-
grals can be expressed as simple formulas on piecewise
linear vector fields. We constructed transition matrices
by the information of these integrals, which allow an
infinite-time evaluation of separation and are able to
extract many topological features of 3D flows without
having to rely on numerical integration schemes, e.g.,
a forth-order Runge-Kutta. The latter advantage devel-
ops into great robustness towards classical problems,
like critical points located near the boundary of cell,
boundary slip conditions, and stiffness problems of
ordinary differential equations. Transition matrices are
much easier constructed with surface integrals in any
dimension than with the streamline based approach,
which is still a not completely solved task for a
tetrahedral mesh ([3], [22]). While the surface integral
based method produces smoother separating structures
in locations near the boundary of the domain, both
methods do not differ much in their high computational
times, which can be several hours or even days for
large data.
Further, we neither need a differential operator, nor
evaluation (interpolation) of values outside of our
vertices in our grid. The algorithm also includes the
boundary of our domain into its calculations.
Regarding computational costs, the topology of the
vector field is much more influential than the number
of cells. Distributions in gradient fields converge very
quickly to a stationary state. Highly rotational fields
take much longer.
The prospects on the following work can be subdivided
into three branches:
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1. Reduction of the Computational Costs To make
significant progress in reducing the computational
time, a GPU-implementation will be necessary.
To the best of our knowledge, prevalent GPU-
based linear algebra software parallelizes row-
and column-operations of matrix-vector-products.
However, what we need is a parallelization in
a much more extensive context, i. e., allowing
multiple vectors being operated on by the same
matrix.
Further, one might think about a better initial
distribution seeding, e. g., similar to a divide and
conquer approach, so that we do not have to iterate
each single cell by an impulse distribution.

2. Uncertainty Because transition matrices are a spe-
cial type of stochastic processes, it would make them
a very useful tool to explore uncertainty in dynam-
ics, which has been stated as one of the most im-
portant branches in the future of visualization [12].
We do not need to change our method at any stage
for that. We can manipulate initial distributions, or
even our matrix, in any way we want and study the
changes that they create.

3. Time-Dependent Flows The fact that we are able to
process steady 3D vector fields automatically opens
the gates to a method, which can create transition
matrices of a time-dependent 2D vector field by
joining all time slices in their order. Unfortunately,
the concept of stationary states of distributions
works only, if the time-dependent field is periodic.
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