
Scalable rendering for very large meshes

Matthäus G. Chajdas Matthias Reitinger Rüdiger Westermann
Technische Universität München

Informatik 15 (Computer Graphik & Visualisierung)
Boltzmannstrasse 3

85748 Garching bei München
chajdas@tum.de, reitinge@in.tum.de, westermann@tum.de

Abstract
In this paper, we present a novel approach for rendering of very large polygonal meshes consisting of several hun-
dred million triangles. Our technique uses the rasterizer exclusively to allow for high-quality, anti-aliased rendering
and takes advantage of a compact, voxel-based level-of-detail simplification. We show how our approach unifies
streaming, occlusion culling, and level-of-detail into a single rasterization based pipeline. We also demonstrate
how our level-of-detail simplification can be quickly computed, even for the most complex polygonal meshes.

Keywords
Computer Graphics, Large model rendering, Level-of-detail

1 INTRODUCTION
Rendering of very large meshes, consisting of sev-
eral hundred millions of triangles, still represents a
significant challenge. Recently, voxel based render-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ing techniques have been proposed to solve this prob-
lem [RCBW12, CNLE09, LK11]. Voxels are an inter-
esting alternative to standard, polygon based level-of-
detail approaches as they drastically simplify the sim-
plification process. However, all of the current voxel-
based techniques rely on the GPU’s compute units to
perform per-pixel ray-casting. This, however, comes
with two important drawbacks: First, and most impor-
tantly, anti-aliasing in a ray-tracer is expensive. A ray-
tracer scales linearly with the number of rays, and ad-
ditional rays for anti-aliasing drastically increase the
cost. Adaptive anti-aliasing can alleviate this to a de-
gree, but on the very high resolution meshes we focus

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 77 ISBN 978-80-86943-70-1



on in this work, geometric aliasing is present practically
everywhere (see Figure 6.) Even with geometry pre-
filtering through level-of-detail simplification, the sur-
faces are still prone to aliasing, which is amplified when
moving around the object. Second, efficient ray-tracing
on GPUs requires some kind of acceleration structure.
These structures typically take a long time to build and
require large amounts of memory.

The GPU rasterizer on the other hand does not scale
well with increasing triangle counts, but allows for very
efficient anti-aliasing. In this paper we demonstrate that
pure GPU rasterization is a viable alternative to hy-
brid GPU raytracing/rasterization techniques for very
large models, once it has been augmented by hierar-
chical streaming, level-of-detail and occlusion culling.
We also exploit the characteristics of our alternative
pipeline to create an extremely fast level-of-detail sim-
plification. To achieve this, we make the following spe-
cific contributions:

• A memory-efficient, "linear" voxel model represen-
tation, which can be build from either a triangle
mesh or a volume.

• A hybrid rendering approach, which combines level-
of-detail, streaming, and occlusion-culling.

• A fast level-of-detail simplification working directly
on the compact representation.

We start with a brief introduction to existing work in the
field. In the algorithm part, we describe in detail how
each part of our pipeline works. Finally, we present
the performance results of various representative data
sets on commodity hardware and provide details about
quality and memory usage.

2 RELATED WORK
Voxel models have been first introduced 1993 by Kauf-
man in the seminal paper [KCY93]. Compared to
polygonal representations, they provide an interesting
set of advantages like easier level of detail computation
and combined storage of surface and geometry infor-
mation.

In the last years, there has been a lot of research into
large octrees to render such voxel models [CNLE09,
LK11]. [CNLE09] subdivides the model into a sparse
volume, storing only small volume “bricks” along the
surface. It uses a compute based octree traversal to ren-
der the contained surface, and also supports fully vol-
umetric rendering as required for instance for clouds.
However, it has a significant memory overhead for solid
models as it stores parts of the volume around the ob-
ject surface. It also requires additional memory for the
octree data structure on the GPU. [LK11] provides an

interesting optimization by focusing on octrees for sur-
faces: Along with the surface data like color, they also
store contours which both improve the quality of the
reconstructed surface as well as the performance of the
rendering. In this case, the octree must be built top-
down as successive levels combine the contours. Simi-
lar to GigaVoxels, the sparse voxel octrees also use the
GPU’s compute units for rendering.

Our representation builds upon the very first published
work on iso-surface visualization: Cuberilles [HL79].
The Cuberille method—or opaque cubes—works by
computing the set of grid cells that contain the iso-
surface and rendering those as small cubes. The orig-
inal method creates a single connected mesh during
traversal to minimize the memory required by dupli-
cated vertices. In order to improve the apparent surface
quality, gouraud shading is used to interpolate the per-
vertex normals along the surfaces.

Recently, [RCBW12] showed how voxel raycasting
can be used for rendering very large models. Their
approach uses a very compact surface representation
and switches between voxels and triangle rendering for
close-up views. They also show that voxels can be used
to provide a high quality level-of-detail simplification.
However, in their work, the level-of-detail computation
is done in a pre-process and is not created by using
their compact representation. This makes it very
time-consuming, as it has to process the complete
model for every simplification step. Finally, they rely
on ray-tracing for rendering, making anti-aliasing very
expensive.

Point-based rendering [BK03] is also related to our
technique, but there are several significant differences.
Our surface voxels always produce a watertight surface
and require no blending between points. We can also
integrate our technique easily with other algorithms
like shadow mapping, as our representation is view-
independent for a given level-of-detail configuration.
This guarantees that the voxel geometry matches ex-
actly for different views.

3 SURFACE VOXEL REPRESENTA-
TION

Our algorithm takes advantage of a voxel representa-
tion for level-of-detail simplification. This requires us
to generate a voxelization of the input. To this end, we
use a standard 3D triangle voxelization algorithm. One
difference to existing approaches which require the full
volume [SS10] or out-of-core processing [BLD13] is
that we use an in-core algorithm. It builds an adaptive
tree representation during the voxelization and com-
putes per-voxel coverage, normals and colors. Com-
pared to [BLD13], it trades memory for processing
speed, but due to its adaptive nature the memory re-

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 78 ISBN 978-80-86943-70-1



Figure 1: Adaptive tree building in 2D. The blue trian-
gle is split into leaf nodes while the tree is being built.
On the right hand side, chunk borders are visible, and
the green voxels correspond to the surface voxels. The
thick faces are the active surface faces.

Figure 2: Comparison of conservative with 6-
separating voxelization. On the left, conservative vox-
elization marks any voxel touched by the triangle. On
the right, the 6-separating subset is shown.

quirements are still far below that of a full volume (see
the results section for details).

Our voxelizer builds an octree step-by-step while con-
suming the input triangles. Starting at the root node,
which represents a voxel enclosing the entire model, we
build the tree top-down as follows: For each voxel, we
split it into 23 sub-voxels and identify which of these
sub-voxels intersect with the triangle. The triangle is
then clipped against each sub-voxel and inserted into
them (see Figure 1). At this level the triangles are then
processed recursively until a leaf node is reached. The
splitting process computes the exact intersection area
of a voxel with a triangle, which we use at the finest
level to compute an area weighted average of all trian-
gle attributes. Once all triangles have been processed,
we traverse the tree and write out the leaf voxels into a
linear buffer.

As described so far, the algorithm will produce vox-
els which correspond to a conservative rasterization.
In particular, along the surface of the object, on av-
erage twice as many voxels will be generated as nec-
essary for rendering (see also Figure 2). To resolve
this, we use an additional per-voxel test and only emit
the six-separating subset of the original voxelization.
This can be easily done by an additional triangle/voxel
test [Lai13].

Figure 3: Our approach handles arbitrary per-face data
such as material IDs. In this example, a Minecraft level
is rendered with per-face textures.

The result is finally emitted as chunks of 2563 voxels
or less. This allows us to store the voxel-position us-
ing 8 bits per component. We use the normal at each
voxel to determine the outward facing voxel faces (see
Figure 1) and store them using a 6 bit mask. Together
with the active face mask and padding, this results in
a total of 4 bytes per voxel. We also store a quantized
normal for each voxel with 10 bits per channel in the
voxel buffer, resulting in 4 additional bytes of data. If
color data is available, it is also stored using 4 bytes due
to alignment.
Optionally, we can also store per-face data. For ex-
ample, different materials can be assigned to each face
(see Figure 3). In this case, we create an additional
buffer with per-face attributes and store an index into
this buffer along with each voxel. The indirection is
necessary, as the amount of per-face data can vary be-
tween voxels.

Level of detail
Level-of-detail is an integral part of voxel rendering
and is also a core component of our approach. As dis-
cussed, every voxel will be eventually rendered as a
small cube. This has three important implications for
level-of-detail: Firstly, we can use the voxels to solve
problems with transitions between different levels. By
ensuring that all border voxels of a chunk have "caps"
at the exterior, we can guarantee that no holes will ever
be present at level-of-detail transitions.
The second implication is that we can run our simpli-
fication directly on the voxels. This might sound triv-
ial at first, but it has an extremely high impact on per-
formance and memory usage, as our voxel representa-
tion is very compact. Instead of having to process the
complete polygonal input model, we can work with the
much smaller voxelization.
Finally, for the rendering, we will also require conser-
vative bounds for any given chunk. We can achieve this

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 79 ISBN 978-80-86943-70-1



if we can guarantee that every single voxel at a higher
level-of-detail encompasses all child voxel. This can
be incorporated into the simplification by computing
which faces are present for any child and or-ing them
together.

L
ev

el
0

L
ev

el
1

0 1 3 4

Compaction

Prefix Sum

Radix Sort

Figure 4: The simplification process: Starting from a
high-resolution block at the top right, the surface voxels
are extracted, sorted, and compacted to create the level-
of-detail simplification at the bottom right.

Our simplification is designed to be fully parallel, suit-
able for efficient execution on both CPUs and GPUs.
The main problem when trying to run the simplification
in parallel is that we cannot easily identify all neighbor-
ing voxels directly in the voxel buffer. To solve this, we
use a multi-pass algorithm which first sorts the voxels
and then compacts them. In the first step, we produce
“runs” of voxels which all correspond to a single voxel
at the next lower level. This can be done by performing
a radix sort [Mer12] which ignores the last bit of each
component of the position. Having the runs generated,
we now have to find out where each run starts. This can
be accomplished with a parallel prefix-scan [Mer12],
which computes the start offset of each voxel run (see
Figure 4).

Figure 5: Each voxel contains a bit-mask which speci-
fies the visible faces. During simplification, the masks
are merged by using a bitwise or.

Finally, we compact each run into a single output voxel.
Using GPU terminology, we start one thread per run,
which first computes the new boundary face using an
or operation of all children (see also Figure 5.) At-
tributes are combined using averaging: Either per-voxel
or per corresponding face. Combining the face bits us-
ing or creates a convex hull, which also implies that

Figure 6: Magnified view of a part of the Atlas mesh.
Even for pre-filtered geometry, anti-aliasing is still cru-
cial to obtain a high-quality image.

small features increase in size instead of disappearing.
As mentioned above, the choice of the combination
algorithm is not arbitrary, but necessary for efficient
culling as described in the rendering section.

4 RENDERING
The final stage of our algorithm consists of a fast voxel
renderer. We use the hardware rasterizer to support ef-
ficient rendering at high resolutions as well as multi-
sample anti-aliasing, as this is still necessary with voxel
models for high quality rendering (see Figure 6). This
requires us to transform the input voxels into triangle
based geometry. To keep the memory usage low, we
never store the geometric representation but rather gen-
erate it on-the-fly from the voxel buffers using a geom-
etry shader.

For each voxel, we generate a partial cube with all
boundary faces. In order to be fast, we must ensure
that the geometry shader produces as few triangles as
possible. Otherwise, the amount of transient on-chip
memory reduces the possible parallelism and decreases
performance. The key observation is that if the sur-
face is seen from the “outside”, at most three faces of
each voxel can be visible. This optimization assumes
that the viewer can never enter the object or see “into”
it—very similar to the requirements for meshes that are
rendered with back-face culling. If the viewer can en-
ter the model, we have two possibilities: Interior faces
can be marked as visible during the creation, resulting
in a one voxel thick “shell” without reducing perfor-
mance. Alternatively, the interior can be rendered by
generating up to five faces per voxel at reduced perfor-

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 80 ISBN 978-80-86943-70-1



Figure 7: The octree traversal automatically reduces the
level-of-detail for occluded areas. The inset shows the
actual camera view, with colors indicating the level-of
detail. In the side view, we can see that the occluded
parts are rendered using drastically reduced level-of-
detail.

mance. Throughout our testing, we always used the first
approach.

Inside the vertex shader, we perform backface culling
to determine which of the active boundary faces are
actually visible. This information, together with the
position of the voxel, is then forwarded to the geom-
etry shader. In the geometry shader, we generate up
to three faces consisting of two triangles each. As we
could have per-face data, we cannot share vertices be-
tween faces; the maximum number of vertices gener-
ated by the geometry shader is thus 12. The geometry
shader also extracts and decompresses the normals, and
optionally generates additional per-face attributes like
texture coordinates as can be seen in Figure 3.

Level-of-detail and occlusion culling
We have integrated the level-of-detail solution into our
rendering with a combination of a CPU octree and GPU
occlusion determination. On the CPU side, we compute
a complete octree covering the whole scene and traverse
it per frame to identify the potentially visible leaf nodes.
The traversal is guided by the level-of-detail computa-
tion, that is, it stops as soon as a node has the correct
resolution for the current view. While traversing, we
also perform hierarchical frustum culling. During ren-
dering, we force early depth/stencil testing and write to
a buffer with one entry per brick for every pixel that
passes the depth test. Using a single buffer instead of
occlusion queries is important for performance, as we
typically have to issue a few thousand draw calls per
frame. It also reduces the CPU time for readback, as
only a single API call is necessary to obtain the results.
We improve the efficiency of the depth test and culling
further by sorting the visible leafs by depth before issu-
ing the draw calls.

Once the results are back, we update the octree and de-
termine the visible nodes for the next frame. The key in-
sight here is that any node can be used as a conservative

Figure 8: On the left, a view ray hits the blue octree
node which should be refined. In the middle, the chil-
dren of the blue node are highlighted in red. As all chil-
dren are invisible, we mark the blue node for occlusion
rendering only in the next frame.

Figure 9: Top: Camera view into a city model. Bottom:
Parts visible to the camera are highlighted in green,
nodes rendered and determined invisible are gray. No-
tice that our occlusion culling algorithm pruned most of
the scene and only few nodes adjacent to visible areas
are rendered.

visibility bound of its children. This is a major differ-
ence to algorithms like [BWPP04], which render object
bounding boxes. In our algorithm, we can take easily
advantage of the level-of-detail simplification, which is
also the best possible bound for the underlying geom-
etry at any given level. As a result, we obtain a tight
bound on the visible data set, as can be seen in Figure 9.

If we determine that all children of a node are invis-
ible due to occlusion, we simply stop the traversal in
the next frame at the node itself and render it. This
scheme quickly propagates information about visibility
up through the tree. As a result, occluded branches of
the tree get rendered at very low resolution. This is a
safe operation in our scheme, as our level-of-detail is
conservative, which guarantees that we can never miss
a visible block. The effect of this optimization can be
seen in Figure 7.

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 81 ISBN 978-80-86943-70-1



Figure 10: Once the camera is close enough to the
model, we render the source geometry (tinted green)
instead of voxel data.

One issue with this method is flickering if a node is vis-
ible at a level-of-detail which requires refinement, but
its children are not. In this case, we would render the
children in one frame, determine that they are invisible,
render the parent node in the next frame, which would
create a few visible pixels, and then render the children
again. We avoid this by disabling writes to the color
buffer if we render a node only to determine visibility
(see Figure 8.)

Streaming
We take advantage of our octree representation to in-
tegrate streaming. Instead of loading all the geometry
and voxels up-front, we fetch the data on demand. The
streaming process always starts at the root of the oc-
tree. If a node hasn’t been loaded yet but is part of
the view frustum, a load request is issued and traversal
stops. Otherwise, we determine if the node is visible
at the correct level-of-detail. If not, traversal continues
into the children.

At this point, we have two options how to handle a node
which needs to be refined and contains children which
haven’t been loaded yet. The first option is to mark all
children as invisible, issue load requests and render the
parent node instead. This will guarantee that the model
is always closed by reducing the level-of-detail tem-
porarily until all visible children of a node have been
loaded. The second option is to allow partial updates.
In this case, load requests will be issued for all children
and those already loaded will be rendered. This may
lead to holes while child nodes are being streamed in,
but avoids reducing the level-of-detail.

The first method is preferable when zooming in on the
model, as it guarantees that visibility is never overes-
timated. The level-of-detail reduction is also almost
never triggered when zooming in. On the other hand,
while panning across a model or zooming out, new
parts of the model come into the view frustum fre-
quently, requiring the first method to reduce level-of-
detail. The second approach copes much better with
such situations, as the parts loaded at the correct level-
of-detail remain fixed at that level.

In both cases, we have optimized the load order by sort-
ing the requests such that we process one complete de-
tail level before continuing, and by prioritizing parts
closer to the camera. This ensures that the model refines
quickly using the first method, and that only small parts
become invisible at a time using the second method.

On the GPU, we try to cache as many chunks as pos-
sible to allow for quick movement in the scene without
having to fetch data from the host every time. Once a
cache becomes 95% full, all chunks which are currently
not visible are evicted and the cache is defragmented.

We can also artificially limit the amount of data up-
loaded each frame to reduce frame-rate spikes, for in-
stance, if large parts of the model become visible at the
same time. This is only an issue if the data has been
preloaded to the host memory already, as otherwise,
disk I/O speed will be a far more limiting factor.

Due to our streaming system, we can render a model
with very low memory requirements. As can be seen in
Figure 2, the total amount of GPU memory for a single
frame is typically around 1% of the total model size.
Any additional memory is used to cache chunks on the
GPU to avoid re-uploading them.

Geometry
For the high quality we aim to achieve, the voxels are
not sufficient for close-ups. If the camera moves close
enough to an octree leaf that the voxel resolution is no
longer sufficient to maintain the pixel error guarantee,
the leaf node is replaced by the actual input geome-
try (see also Figure 10.) This requires two additional
caches for vertex and index data, which are handled us-
ing the same policy as the voxel data. At runtime, we
render the source geometry first to prime the z-Buffer,
as it is by definition closest to the camera. Due to our
rasterization-centric approach, rendering of polygonal
geometry automatically integrates with our occlusion-
based visibility scheme and also benefits from anti-
aliasing.

5 RESULTS
Before we dive into the results of the rendering, we
have to actually create the surface voxel data first. We
have measured the performance of the voxelization for
three scenes: David [PGC11] (see Teaser), Atlas and
St. Matthew. The David mesh consists of 940195349
(940 million) triangles with per-vertex normals and col-
ors and requires 31 GiB of memory total. Atlas con-
tains 507512682 (508 million) triangles without any
additional per-vertex data, and St. Matthew contains
372767445 (373 million) triangles, again without addi-
tional per-vertex attributes.

On a dual Intel Xeon X5560 at 2.8 GHz (2× 4C/8T),
using 16 threads, the voxelization of the David mesh at

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 82 ISBN 978-80-86943-70-1



Figure 11: The Atlas dataset.

163843 takes 5 minutes, requires 9.27 GiB of memory
and generates 166481909 (166 million) voxels. This
includes 40 seconds which are spent on writing the
output data to disk, which is running on a single core.
The complete volume would require 32 TiB, if stored
fully in memory. Atlas requires 6 minutes, 45 seconds
(including 2 minutes, 45 seconds for writing data),
18.59 GiB of memory and generates 332965775
(333 million) voxels. St. Matthew requires 4 minutes,
46 seconds (including 1 minute, 43 seconds for writing
data), 14.6 GiB of memory and generates 279042135
(279 million) voxels. The higher voxel counts for Atlas
and St. Matthew are due to the much higher complexity
of the surface. Unlike David, which is very smooth,
both Atlas and St. Matthew have a very rough surface.

We used the CPU simplification algorithm for these
meshes, using a single CPU core. For the David data
set, the simplification requires 1 minute, 25 seconds.
The corresponding times for Atlas and St. Matthew are

Figure 12: The St. Matthew dataset.

2 minutes, 54 seconds and 2 minutes, 9 seconds, respec-
tively. In all cases, the CPU simplification was using
less than 200 MiB of memory.

We have measured the per-frame memory usage, ren-
dering time and upload rate for zoom-ins on the David
and Atlas data sets, and a rotation of the Atlas data set
(see Figure 13.) For this test, we have pre-cached the
data on the CPU to limit the disk I/O impact. Still, with-
out any restriction, GPU upload easily becomes the bot-
tleneck as can be seen towards the end of the sequence,
where large amounts of geometry have to be uploaded.
In Figure 13, we can also see that for the David data set,
the GPU cache had to be defragmented several times to-
wards the end of the sequence. The cache size in this
test was set to 1 GiB for voxels, 1 GiB for vertices and
512 MiB for indices. Notice that as we only remove
invisible data from the cache, there is no upload spike
after a defragmentation.

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 83 ISBN 978-80-86943-70-1



m
s/
fr
am
e

0
100
200
300
400
500
600

M
iB
/fr
am
e

0

100

200

M
iB

0

1000

2000

(a) David, zoom-in

m
s/
fr
am
e

0

100

200

300

400

M
iB
/fr
am
e

0

25

50

M
iB

0

500

1000

(b) Atlas, zoom-in

m
s/
fr
am
e

0

25

50

75

100

125

M
iB
/fr
am
e

0

25

50

75

M
iB

0

100

200

300

(c) Atlas, rotation

Figure 13: Timing and memory usage details at 1920×
1080 on a AMD R9 290X. Top row: Frame time (in
ms), middle row: data upload per frame (in MiB), bot-
tom row: Required memory for the current frame (in
MiB) in blue and the total cached memory in red. In
a) and b), the camera zooms onto the objects, showing
more and more detail. In c), the camera rotates around
the Atlas data set.

The rotation around the Atlas data sets exhibit very high
coherency, as the model remains at a fixed distance to
the camera and hence at a fixed level-of-detail. After
the initial loading, on average, 280 KiB of data is up-
loaded per frame.

To evaluate the impact of upload rate limiting, we have
used the city data set (see Figure 14.) In this scene, we
start at an elevated position above the city and descent
down to street level. At the beginning, nearly the com-
plete city is visible and large amounts of voxel data have
to be loaded. Without rate limiting, this results in slow
rendering and a high amount of disk I/O. With an up-
load limit, we can see how the initial loading requests
get spread out over multiple frames. Once the initial

m
s/
fr
am
e

0

100

200

300

400

M
iB
/fr
am
e

0

50

100

M
iB

0

250

500

(a) City

m
s/
fr
am
e

0

50

100

150

200

250

M
iB
/fr
am
e

0

5

10

M
iB

0

250

500

(b) City, upload limited

Figure 14: Timing and memory usage for the City data
set. The camera starts above the city, where nearly no
occlusion is present and ends at street level. In a), all
data required for each frame is immediately uploaded,
resulting in a huge spike at the beginning. In b), the
upload rate has been limited to 8 MiB/sec, smoothing
out the initial loading.

Model Geometry Voxels Total

Atlas 9.6 GiB 5.4 GiB 15 GiB
David 31 GiB 2.7 GiB 33.7 GiB
St. Matthew 7.1 GiB 4.5 GiB 11.6 GiB

Table 1: On-disk sizes for the various models. The
David geometry contains 32-bit floating point positions,
normals and colors, while Atlas and St. Matthew con-
tain per-vertex position data only.

data has been loaded, the upload is no longer the bottle-
neck, even though the occlusion is much more compli-
cated in this scene than for the other data sets.

Table 1 show the total size of the various test data sets.
The voxel data always consists of color, normals and
positions. As we can see, the voxel data adds roughly
50% overhead for data sets which contain only posi-
tion. For David, the compressed normals and colors in
the level-of-detail representation drastically cut down
the required memory for the voxel-data compared to the
geometry, which uses floating-point attributes.

We have also compared the performance using different
MSAA levels on the Atlas dataset, which can be seen
in Figure 11. In Table 2, we can see that the rendering
performance is nearly independent of the anti-aliasing

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 84 ISBN 978-80-86943-70-1



GPU No AA 2×AA 4×AA 8×AA

R9 290X 17 17 18 21
HD 7970 22 22 23 24

Table 2: Rendering times in ms for Atlas dataset onto
a 1280× 720 viewport with different anti-aliasing lev-
els and graphics cards. Both cards show only minimal
impact when MSAA is enabled.

level, varying between 10% and 25% overhead for 8×
anti-aliasing.

6 CONCLUSION
In this paper we have proposed an efficient, scalable
rendering technique for triangle models using voxels
as the level-of-detail representation. Unlike other ap-
proaches, our method uses the hardware rasterization
units and can thus be easily integrated into existing ren-
dering pipelines. Using the rasterizer also enables us to
use multi-sample anti-aliasing with minimal impact on
the performance. We have also shown how our level-
of-detail can be quickly computed even for very large
data sets.

In the future, we would like to incorporate secondary
effects into our framework. Our surface voxel repre-
sentation can be easily used as the starting point for a
voxel ray-tracing system. For example, an acceleration
structure can be built externally referencing the surface
voxels, which could be then used to resolve secondary
effects like shadows or ambient occlusion.

We would like to investigate how per-face data can be
used to improve the level-of-detail quality. As seen in
Figure 3, we can easily store per-face data. For very
complex models, it might be necessary to switch voxels
to per-face normals and colors. For example, if two
different-colored walls are merged, the resulting color
should not be averaged; instead, the voxel should be
adjusted to use per-face data.

ACKNOWLEDGEMENTS
We would like to thank the CNR-ISTI Visual Comput-
ing Laboratory, the Visual Computing Group in Pula
and the Museum Galleria dell’Accademia, Superinten-
dency for the Polo Museale Fiorentino (Florence, Italy)
for providing the colored David data set.

7 REFERENCES
[BK03] Mario Botsch and Leif Kobbelt. High-

quality point-based rendering on modern
gpus. In Proceedings of the 11th Pacific
Conference on Computer Graphics and
Applications, PG ’03, pages 335–, Wash-
ington, DC, USA, 2003. IEEE Computer
Society.

[BLD13] Jeroen Baert, Ares Lagae, and Philip
Dutré. Out-of-core construction of sparse
voxel octrees. In Proceedings of the Fifth
ACM SIGGRAPH / Eurographics con-
ference on High-Performance Graphics,
2013. To appear.

[BWPP04] Jiří Bittner, Michael Wimmer, Harald
Piringer, and Werner Purgathofer. Co-
herent hierarchical culling: Hardware oc-
clusion queries made useful. In Computer
Graphics Forum, volume 23, pages 615–
624. Wiley Online Library, 2004.

[CNLE09] Cyril Crassin, Fabrice Neyret, Sylvain
Lefebvre, and Elmar Eisemann. Gigavox-
els: Ray-guided streaming for efficient
and detailed voxel rendering. In Proceed-
ings of the 2009 Symposium on Interactive
3D Graphics and Games, I3D ’09, pages
15–22. ACM, 2009.

[HL79] Gabor T. Herman and Hsun Kao Liu.
Three-dimensional display of human or-
gans from computed tomograms. Com-
puter Graphics and Image Processing,
9(1):1–21, 1979.

[KCY93] Arie Kaufman, Daniel Cohen, and Roni
Yagel. Volume graphics. Computer,
26(7):51–64, July 1993.

[Lai13] Samuli Laine. A topological approach to
voxelization. Computer Graphics Forum
(Proc. Eurographics Symposium on Ren-
dering 2013), 32(4), 2013.

[LK11] Samuli Laine and Tero Karras. Efficient
sparse voxel octrees. IEEE Transactions
on Visualization and Computer Graphics,
17(8):1048–1059, 2011.

[Mer12] Bruce Merry. CLOGS. MIT License,
2012.

[PGC11] Ruggero Pintus, Enrico Gobbetti, and
Marco Callieri. Fast low-memory seam-
less photo blending on massive point
clouds using a streaming framework.
J. Comput. Cult. Herit., 4(2):6:1–6:15,
November 2011.

[RCBW12] Florian Reichl, Matthäus G. Chajdas, Kai
Bürger, and Rüdiger Westermann. Hybrid
Sample-based Surface Rendering. In VMV
2012: Vision, Modeling & Visualization,
pages 47–54, Magdeburg, Germany, 2012.
Eurographics Association.

[SS10] Michael Schwarz and Hans-Peter Sei-
del. Fast parallel surface and solid vox-
elization on GPUs. ACM Trans. Graph.,
29(6):179:1–179:10, December 2010.

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 85 ISBN 978-80-86943-70-1



 

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 86 ISBN 978-80-86943-70-1


	I17-full.pdf

