University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and
Engineering

Master Thesis

COMPUTATION AND
VISUALIZATION OF CAVITIES
IN LARGE MOLECULE MODELS

Pilsen 2014 Lukas Jirkovsky

Declaration

I hereby declare that this master thesis is completely my own work and that
I used only the cited sources.

Pilsen, May 12, 2014
Lukas Jirkovsky

Abstract

With the advances in biochemistry and drug design in the late years, the
analysis of molecular data has seen an increased attention. One of the many
properties being researched are inaccessible cavities, which are an empty
space inside a molecule, and surface depressions called pockets. To discover
such empty space, a spherical probe representing a solvent is often used.

In this thesis we tried to solve the problem of finding and visualizing cavities
in large molecules of up to hundreds of thousands of atoms. The algorithm
finds approximate cavities in a molecule. To allow quick updates when a
probe radius is changed, it uses a preprocessing stage where a Delaunay
triangulation of molecule atoms is computed. If a precise shape is desired,
an algorithm that uses an additively-weighted Voronoi diagram can be used
to improve the shape of cavity.

Because there may be a large number of cavities found for a selected probe
radius, the filtering of cavities is also important. To support filtering, new
methods to measure cavity properties are introduced in this work.

Contents

1 Introduction 5
2 Theory 7
2.1 Molecular Surfaces L. 7
2.2 Finding Molecular Surface 9
2.3 Finding Cavities 12
3 Mathematical Background 16
3.1 Voronoi Diagram and Delaunay Triangulation 16
3.2 Additively-weighted Voronoi Diagram 18
4 Cavities Using the Additively-weighted Voronoi Diagram 21
4.1 Finding Cavities.o 21
4.2 Finding Surfaceo 26
4.3 Visualization 27
5 Proposed Solution 29
5.1 Finding Approximate Cavities 29
5.2 Visualization 32
6 Filtering 48
6.1 Geometric Methods 48
6.2 Atom-based Filtering L. 54
7 Results 55
7.1 Caver Plugin 55
7.2 Comparison 58
7.3 Filteringo 62
7.4 User Interface 64

8 Conclusion 65

1 Introduction

A structure of a molecule may contain various elements that are interesting
for example in the drug research. An empty space inside a molecule that is
not connected to the surface is one of these elements. We call such empty
space a cavity. An element related to cavities is a pocket. Pockets are
depressions in the molecule surface. Figure 1.1 shows an example of a cavity
and a pocket. A spherical probe representing a solvent is usually used to
discover cavities by slipping the probe among the atoms. Changing the probe
radius allows us to find cavities of different sizes.

Figure 1.1: A pocket (left) and a cavity (right) in a molecule 1AKD.

Both cavities and pockets take an important role in molecule interactions.
Many of these interactions are vital part of biological processes. Therefore
their research is important for the understanding of these processes, even-
tually allowing designing new drugs. A lot of research has been done into
locating places where the molecules, such as proteins, interact. These places
are called active sites, or binding sites, depending on the molecule. These
sites are usually found in large pockets.

Introduction

As molecules are not stationary, it is possible that an inner cavity becomes
accessible from the surface and thus it may become a potential active site.
Inner cavities can also affect other molecule properties. For example, they
may hold buried residui of other molecules, such as water [34, 37]. These
residui can influence the stability of protein structure [37].

The researched molecules, such as these of proteins and ribosomes, may be-
come very large, ranging from dozens to hundreds of thousands of atoms.
Processing such large data may be a very time consuming task. Another
problem that we face when finding cavities is that many of the cavities are
not interesting for research, as they may be too small or complicated. The
goal of this work was to find a way to process and visualize such large data
effectively, and to design new methods that can be used to filter cavities
based on their importance.

In the first chapter, the existing approaches to finding cavities and their
visualization will be described. In Chapter 3, the mathematical background
necessary for a complete understanding of the presented algorithms will be
given. Next, in Chapter 4, an existing solution that we decided to work on
will be described. Chapter 5 discusses new methods for finding, visualizing
and filtering cavities. The results of our work are given in Chapter 7. Finally,
we summarize our findings in Chapter 8.

2 Theory

There are various algorithms that can be used for finding and visualizing
cavities in molecules. Finding and visualizing cavities in a molecule is closely
related to finding a molecular surface. Many of the algorithms that were
designed with finding the molecular surface in mind can be also used for
finding cavities either directly, or the surface is used at some point of a
specialized cavity-finding algorithm. Apart from that, the molecular surface
is usually used for visualizing cavities. Because of this tight connection, both
kinds of algorithms will be covered.

Before describing the algorithms themselves, a short summary of the most
common types of molecular surfaces will be given, because their knowledge
is needed for finding and visualizing cavities. After that, a short summary
of the algorithms that are used to find molecular surface will be provided.
Finally, some of the algorithms designed specifically for finding cavities will
be described.

2.1 Molecular Surfaces

In history, various kinds of molecular surfaces have been introduced. The
common ones are a van der Waals surface, a solvent-accessible surface and
a solvent-excluded surface. In the following paragraphs, basic information
about these surfaces will be provided.

The van der Waals surface [23] is a very simple surface approximation that is
defined as a union of spheres. Each sphere represents an atom with a radius
defined by a van der Waals radius corresponding to that atom. It is very
common model for the visualization of molecules, although it cannot be seen
as a real surface. It can be considered as a starting point for the algorithms
that are used for finding molecular surfaces.

However, when talking about molecular surfaces, the solvent-accessible sur-
face or the solvent-excluded (Connoly) surface are usually used. For both
surfaces, a spherical probe that is swept over the van der Waals surface is
introduced. This probe represents a solvent, a common solvent being water
with a radius 1.4 A.

Theory Molecular Surfaces

In 1971, Lee and Richards [23] defined the solvent-accessible surface of a
molecule. In their definition, the solvent-accessible surface is the surface
formed by the van der Waals surface where the radius of each atom was
extended by the radius of the probe. Extending the radius is also the al-
gorithm that is commonly used to find the solvent-accessible surface. They
also discussed an option of using the algorithm to find cavities in a molecule
by eliminating the surface that is connected to the outside of a molecule.

Recently, another kind of surface, the solvent-excluded surface is gaining
more attraction. This surface has been popularized by Connolly [10], whose
work builds upon the previous work of Richards [30] . It should be noted
that some works use the name solvent-accessible surface for this kind of
surface, making it difficult to distinguish it from the surface described by
[23]. In this work, the term solvent-excluded is strictly used for this type
of surface to avoid confusion. This type of surface is created by rolling the
probe over the van der Waals surface. The surface consists of three basic
shapes — spheres, representing atoms that are also part of the van der Waal
surface, spherical triangles, that are formed by a probe touching three atoms,
and inner parts of tori, created by a probe revolving around two atoms.
In his work, Connolly presented the necessary equations for the analytical
description of such surface.

For our work it is important to know some of the basic properties of these
shapes. The spheres are clipped by tori in place of their connection. The
clipping can be achieved using a clip plane that is defined by the intersection
of a torus and a sphere, and that is orthogonal to the axis of the torus.
The spherical triangle is a part of sphere that touches exactly three atoms
and that is bounded by these atoms. Tori are generated by revolving the
probe around two atoms so that the probe always touches each sphere at
exactly one point (i.e. the probe has two tangential points in any point in
time, one with each sphere). The probe touching the spheres defines an arch
between the tangential points. By rolling the probe around the spheres these
arches generate a surface. This surface takes shape of a clipped inner part
of a torus. In a real molecule the probe usually hits a neighboring sphere
during the revolution, causing the surface to be generated only between these
tangential points.

Unfortunately, finding the solvent-excluded surface is more complicated than
finding other types of surface. Multiple algorithms have been proposed. Some
of these algorithms will be covered in the next section.

Theory Finding Molecular Surface

For better illustration of the differences between the various definitions of
surface, see Figure 2.1 and Figure 2.2.

o
~.--‘

Figure 2.1: Common types of molecular surface in a two-dimensional cross-section. Gray circles represent
the van der Waals surface of atoms. The solvent-excluded surface is outlined in red and filled with stripes.
The solvent-accessible surface is the blue dashed outline.

2.2 Finding Molecular Surface

The following section describes some of the algorithms that are used to find
the molecular surface. These algorithms can find both the outer molecular
surface and the surface of cavities. Sadly, they usually does not distinguish
between the two, meaning that additional steps must be taken to extract
cavities. This usually means determining whether there exist a connection
to the outer void. A common problem of these algorithms is that if such an

Figure 2.2: Surfaces of a molecule 1CQW. Left: the van der Waals surface. Center: the solvent-accessible
surface. Right: the solvent-excluded surface. A probe with radius 3 A was used for the solvent-excluded
and for the solvent-accessible surface.

Theory Finding Molecular Surface

algorithm is used to find cavities, it provides from little to no information
about the cavity itself.

Brute-force Approach

The popular molecular visualization system PyMOL [33] uses a brute-force
algorithm that finds a solvent-excluded surface for both cavities and the
whole molecule.

The algorithm first finds the van der Waals surface of the molecule. It con-
tinues with finding surface points of the solvent atoms that touch the atoms
of the molecule’s van der Waals surface using a hash map. The surface
points are then trimmed. The trimming is done by extending the radius of
the molecule’s atoms by the radius of the probe and by checking whether
the point lies within the space defined by the neighboring enlarged spheres.
Finally, the points are used to create a surface mesh.

PyMOL implementation can distinguish the molecular surface and cavities
and pockets, but it does not provide much information apart from the visu-
alization, or possibly computing the surface area.

Pseudo-Gaussian Approximation

Pseudo-Gaussian approximation [8] is a method for finding a surface that
has been specifically designed to work with large molecular data. Its idea
is to replace the solvent-excluded surface with an approximation that uses a
scaled Gaussian density function to smooth the transitions among atoms in
the van der Waals surface.

The algorithm uses a pseudo-Gaussian density function, which is very sim-
ilar to the Gaussian density function, but with the added property that it
evaluates to 1 when its parameter is equal to the van der Waals radius of an
atom, for which the function is evaluated. It also features a parameter called
spread, that is used to simulate the effect of changing the probe radius.

The approximation is computed using a molecule placed on a uniform grid.
The algorithm itself is as follows: first the spread is computed for a user-
given parameter. Then for each atom, the density function is computed

10

Theory Finding Molecular Surface

and summed over the uniform grid with small values being ignored, thus
reducing the computation only to a limited neighborhood of the atom. After
all atoms are processed, the surface, including the surface of cavities, is found
by creating a contour of the grid at the level 1. The contour can be found
e.g. using the marching cubes algorithm.

It has been proposed to render the surface by superposing the contour on the
van der Waals surface, or to use the approximation to construct the surface
analytically.

MSMS

When talking about surfaces, we must not forget to mention MSMS [32]
because it is a very popular application used to compute solvent-excluded
surfaces. MSMS does not implement a single algorithm, but a set of four
algorithms. The first algorithm that is utilized by MSMS is an algorithm
to find a reduced surface of a molecule. Its output is used by the second
algorithm to compute the analytical representation of the solvent-excluded
surface. The third algorithm removes singular self-intersections. Finally, the
last algorithm builds a triangulated surface.

The first step is computing a reduced surface. The reduced surface is a
surface that consists of triangular faces where the probe can touch three
atoms, edges where the probe can touch only two atoms without hitting a
third atom, and vertices for singular atoms. The principle of the algorithm
to find the reduced surface is following: first, a molecule is triangulated using
the probe radius for the atom radius. The algorithm starts from an initial
triangle at the surface and it recursively tries to roll the probe over the edges
of the triangle, discovering the neighboring triangles. The initial triangle
can be either hand-picked (useful for examining inner cavities) or a triangle
adjacent to the vertex with the lowest x coordinate is used. Also in this step,
singular edges where two spherical triangles intersect are identified.

The next algorithm takes the reduced surface as its input and computes the
analytical representation of the surface as defined by Connolly [10].

In the third step, the singularities are treated. Three different kinds of sin-
gularities are identified. The first involves self-intersecting, opposite-facing
spherical triangles generated by the same three atoms. This kind of sin-
gularity is responsible for holes in spherical triangles. The second kind of

11

Theory Finding Cavities

singularity that is treated here is when a torus is partially clipped by the
probe. The last kind of singularities is an intersection of two separate spher-
ical triangles sharing no common atoms. In all cases the identification is
based on testing if a probe intersects the triangle. The first two cases are
simpler, because we know which probe to use for the test. In the third case,
we need to find all probes that can intersect the tested triangle. This is
achieved using a tree structure.

The last step that MSMS employs to generate molecular surface is triangu-
lation. The application triangulates the three basic shapes separately, using
pre-triangulated templates for spheres and spherical triangles.

2.3 Finding Cavities

This section focuses on the description of some of the prominent approaches
to finding cavities in molecules. Many of these algorithms use previously
described surface finding algorithms either in one of their steps, or they can
use such an algorithm to visualize the found cavities.

SURFNET

SURFNET [22] uses a simple approach based on filling space with spheres.
For each two neighboring atoms, it creates a probe that just touches these
atoms. If the probe intersects with any other atom, the radius of the probe is
reduced until it is no longer intersected by any atom. If the resulting probe
is larger than the requested minimal probe, the probe is recorded. This is
repeated for all pairs of atoms. All recorded probes are either in cavities or
pockets. The results are visualized as a union of spheres representing the
recorded probes.

Alpha Shape

Liang et al [26] presented an algorithm based on a three-dimensional alpha
shape [12] which is used in the program called CAST. They have also pre-
sented means for measuring various properties of cavities [25].

12

Theory Finding Cavities

The algorithm starts by finding a weighted alpha shape [11] of molecule’s
atoms. Then a discrete-flow method is used. In two dimensions, the method
finds flows from empty obtuse triangles into acute empty triangles called
sinks. After all flows are found, all empty triangles (tetrahedra in three
dimensions) are merged to form a cavity.

In [25] they represent a cavity using its corresponding tetrahedra in the
alpha shape. In the examples provided in [26], cavities are also visualized by
rendering van der Waals surface of atoms forming a cavity.

Grid-based Approaches

There is a multitude of algorithms based on grids. These algorithms usually
place the examined molecule on a regular grid, marking each point of the grid
with an information whether it is inside or outside of the molecular surface.

Two very similar algorithms that can be used for finding cavities are POCKET
[24] and LIGSITE [15]. The POCKET is simpler of these two. It places the
molecule on a regular grid. It then moves a probe along each axis of the
grid and computes whether an atom center lies inside the probe for each grid
point. It also records the nature of the interaction between the probe and
atoms. A cavity is identified as a set of points where the probe does not
intersect any atom and for which the probe was identified to interact with
atoms on each side (i.e. the probe had passed the molecular surface on each
side of the point).

LIGSITE uses the scanning approach similar to POCKET. First, it initializes
grid points to 0 if they lie outside of the solvent-excluded surface and to -1
if they are inaccessible by solvent. In comparison to POCKET, the probe
is moved not only along each axis, but also along diagonals, making it less
dependent on the orientation of the molecule. Another improvement is that
it increases the grid point value by 1 for each direction for which the point is
enclosed by molecule’s atoms. The resulting value identifies how buried the
point is inside the molecule, where 0 means outside of pocket or cavity and
7 means an inner cavity that is enclosed by atoms in all 7 directions used to
scan.

Exner [13] presented an algorithm that uses the solvent-excluded surface and
a regular grid to find cavities. The algorithm starts by placing the solvent-
excluded surface on a regular grid and marking each grid point as “in” for

13

Theory Finding Cavities

points inside the surface and “out” for points outside the surface. Now, the
algorithm takes each point marked as “out” as a starting point and checks
the neighboring points along each axis up to a distance of 12A. If there are
at least two axes with points marked as “in” in both directions, the point
is marked as a cavity point, similarly to the previous algorithms. All the
cavity points are then clustered and two operations called contraction and
expansion are performed. The contraction removes the cavity points that
have non-cavity neighbors from the border. The expansion adds points that
have at least one neighbor that is a cavity point. These two operations are
performed to remove the small clusters of cavity points that represent small
cavities.

Another algorithm called VICE [36] also begins with a grid with points
marked 0 for points outside of the molecule and 1 inside. The algorithm
takes each point outside of the molecular surface and creates test vectors to
all neighboring points up to a defined distance. Again, a cavity is identified
by testing whether vectors pass the molecule’s atoms. The values in grid are
amended by classification of each vector (e.g. the vector passes an atom).
The resulting grid values can be used to classify how deep a point is buried

as in LIGSITE.

For the visualization purposes, the mentioned algorithms usually use the
corresponding part of the surface that was used for the finding of cavities.

Additively-weighted Voronoi Diagram

In our previous work [16] we have presented an algorithm that uses an
additively-weighted Voronoi diagram to find cavities. The algorithm will be
described in more detail in Chapter 4. It uses preprocessing to construct an
additively weighted Voronoi diagram (see Section 3.2). The diagram is used
to find the narrowest place among three atoms, whose distance to the atoms
is called a bottleneck. The diagram is also used to finds points equidistant to
four atoms forming a tetrahedron, which define something like a small cavity.

During the run time the algorithm takes all points for which the distance
to the atom surface is large enough for the probe to fit and it tries to slip
the probe among atoms using a graph search algorithm using the knowledge
about bottlenecks. The advantage of this algorithm is that thanks to the
preprocessing it finds cavities for various probes very quickly. The algorithm
can be also used to find the outer surface of a molecule and to find pockets.

14

Theory Finding Cavities

Output of this algorithm is a set of tetrahedra formed by quadruples of
atoms, or the points among them (see the Section 3.2 about their duality).
The tetrahedra are very useful for generating the surface. The algorithm for
finding the surface finds the boundary faces and uses them to construct an
analytic representation of the solvent-excluded surface.

For the visualization a triangulated model of the surface is generated from
the analytic surface description.

In this work we have focused on the improvement of this algorithm, because
of its speed for variable probe sizes and because the description of cavities it
uses is very flexible, making it useful for measuring various cavity properties.

15

3 Mathematical Background

Before going further with describing the current algorithm and the proposed
changes, it is necessary to cover some basic mathematical background. Both
the previous solution and the solution proposed in this work are based on
an additively weighted Voronoi diagram [28, 18]. In addition, the proposed
changes use an ordinary Voronoi diagram [28]. Therefore both diagrams will
be described in the following sections, along with their dual counterparts:
a quasi-triangulation and a Delaunay triangulation. We will begin with the
ordinary Voronoi diagram and the Delaunay triangulation, because these are
simpler. The next section will cover the additively-weighted Voronoi diagram
and the quasi-triangulation, both of which are extending the ideas introduced
by the Voronoi diagram.

3.1 Voronoi Diagram and Delaunay Triangu-
lation

A Voronoi diagram [28] is a tessellation of space (in this work we assume
that the space is the Euclidean space) defined for a set containing at least
two distinctive points. These points are usually called generators, as they
“generate” the subdivision of space into several regions. This subdivision of
space is created by assigning every location in space to its closest point in
the generator set. A region that consists only of points closest to the same
generator is called a Voronoi region, or a Voronoi polygon when the space is
two-dimensional or a Voronot polyhedron for an m-dimensional space.

Formally, we can write that for each generator p; there exists a Voronoi region
R; such that:

Ry =A{x: [lpi — 2| < llp; — «|,Vj # i} (3.1)

where i,7 € {1,2,...n} and n is the number of generators.

Boundaries between the Voronoi regions are very important for our work. In
the two-dimensional case, a boundary between two regions is called a Voronoz:
edge and it consists of points closest to two generators. We will call these
generators edge generators. The point where the edges meet is a Voronot
vertex. It can be also seen as a boundary point closest to three different

16

Mathematical Background Voronot Diagram and Delaunay Triangulation

generators. An example of a 2D Voronoi diagram including Voronoi edges
and points can be seen in Figure 3.1

Figure 3.1: A two-dimensional Voronoi diagram of points. The blue dots are generators. The dashed
edges extend to infinity.

In the three-dimensional space, a boundary between two regions forms a
Voronoi face. A Voronoi edge lies on a boundary of three regions and it
consists of points equidistant to their generators. Similarly, a Voronoi vertex
is a point that is shared among four regions.

The Voronoi diagram is in fact a graph, meaning that various graph algo-
rithms can be used to explore the diagram.

Closely related to the Voronoi diagram is a Delaunay triangulation. The
Delaunay triangulation has a few interesting properties, but because these
properties are not of great importance for our use, they will be skipped.
However, what is important for this work is that it is a dual representation
of the Voronoi diagram. That means that the Voronoi diagram can be easily
obtained from the Delaunay triangulation and vice versa. It is important
especially because the algorithms for constructing Delaunay triangulation
are well-established and many implementations exist.

17

Mathematical Background Additively-weighted Voronoi Diagram

The Delaunay triangulation can be constructed from a Voronoi diagram by
connecting each closest pair of generators, i.e. generators sharing an edge in
2D or a face in 3D with an edge. As a result we obtain a triangle for each
Voronoi vertex in two dimensions and a tetrahedron in three dimensions.
The Voronoi diagram can be constructed from the Delaunay triangulation
by applying the procedure in reverse. Figure 3.2 shows this relation between
the Voronoi diagram and the Delaunay triangulation.

Figure 3.2: A Delaunay triangulation placed on top of a Voronoi diagram.

3.2 Additively-weighted Voronoi Diagram

An additively-weighted Voronoi diagram [28, 18] extends the ideas introduced
by the ordinary Voronoi diagram. It is also known as the Apollonius dia-
gram or the Fuclidean Voronoi diagram of spheres. The additively-weighted
Voronoi diagram is one of many possible generalizations of the ordinary
Voronoi diagram.

Instead of using dimensionless point generators that all affect the diagram in
the same way, a weight can be added to each point. There are several such

18

Mathematical Background Additively-weighted Voronoi Diagram

modifications of Voronoi diagram, one of these being the additively-weighted
Voronoi diagram. In the additively-weighted Voronoi diagram, the generators
are no longer seen as points, but instead as circles in two dimensions and
spheres in three dimensions. This is achieved by replacing the Euclidean
distance by an additively-weighted distance defined as:

daw(p, i) = |7 — 2| — w; (3:2)

where p is the tested point at position z and p; is a generator at position
x; with weight w;. Substituting this distance in equation 3.1, we obtain
the following formula for Voronoi region in the additively-weighted Voronoi
diagram:

By ={z: | — @f| —w; <@ — x5 —w;, V) # i} (3.3)

The region can be imagined as a set of points closest to a surface of the
generating spheres. Unfortunately the edges in this diagram are no longer
necessarily straight edges, instead they are usually hyperbolic arcs [28]. Fig-
ure 3.3 gives an example of the additively-weighted Voronoi diagram in two-
dimensions.

Figure 3.3: An additively-weighted Voronoi diagram in two dimensions. The gray circles are generators.

Also various anomalies can occur in the additively-weighted Voronoi diagram
(Figure 3.4). If there is a small sphere (a generator with small weight) among
large spheres (generators with large weight), the Voronoi edge can be split
into two separate edges. These edges are connected by shorter edges gen-
erated by the small generator. Small generator may also generate elliptical
edges, which may not be connected to the rest of the diagram and which may
even lack a Voronoi point on them. More details about these anomalies can
be found in [19]

19

Mathematical Background Additively-weighted Voronoi Diagram

Figure 3.4: Singularities in the additively-weighted Voronoi diagram. Left: a Voronoi edge split by two
dotted edges. Right: elliptical edges in a 3D diagram.

Similarly to the ordinary Voronoi diagram, a dual representation exists. It
is called quasi-triangulation [19]. It can be constructed from the additively-
weighted Voronoi diagram in the same way as the Delaunay triangulation
was constructed from the ordinary Voronoi diagram. However, compared to
the Delaunay triangulation the quasi-triangulation is not necessarily a valid
triangulation. In other words, quasi-triangulation is not necessarily formed
only by the corresponding simplices such as triangles in 2D and tetrahedra in
3D. This is caused by the anomalies in the additively-weighted Voronoi dia-
gram. For example, an elliptic edge in a three-dimensional diagram diagram
is represented by a triangle in the quasi-triangulation. Another example is a
split edge, which is, in three dimensions, represented by multiple tetrahedra
with two or more triangles in common.

20

4 Finding Cavities Using the
Additively-weighted Voronoi Diagram

In this chapter, the existing approach to finding cavities and their visualiza-
tion using the additively-weighted Voronoi diagram will be described. The
chapter is divided into three sections, describing each part of the process
needed to find and visualize cavities.

In the first section, the algorithm to find cavities using the additively-weighted
Voronoi diagram will be introduced. The second section describes the finding
of cavity surface. Here, the quasi-triangulation will be used in the description,
as it is more intuitive than using the additively-weighted Voronoi diagram.
However, the real implementation uses quasi-triangulation for both. In the
third section, a description of the approach used to visualize cavities will be
given.

4.1 Finding Cavities

The method is used primarily to find inner cavities in a molecule. However,
it can find cavities that are connected to the outer surface (pockets) and the
outer surface, too. The algorithm input is a molecule given as a set of atoms.
Each atom is represented as a sphere with an appropriate van der Waals
radius. The output is a set of subgraphs of the additively-weighted Voronoi
diagram of the molecule. Each subgraph represents one connected cavity in
a molecule. This method is implemented in the cavity-finder module that is
part of the awVoronoi project [1].

The algorithm has two stages — the first stage is a preprocessing stage that
needs to be run only once for a molecule. In the second stage cavities are
discovered for a probe of a selected radius. Both stages will be described in
more detail in later sections.

The preprocessing leverages the additively-weighted Voronoi diagram. The
diagram has two important properties that allow us to find cavities quickly
for varying probe size.

First, a Voronoi vertex is equidistant to its four generators. If a spherical

21

Cavities Using the Additively-weighted Voronoi Diagram — Finding Cavities

probe with center in the Voronoi vertex is placed so that it touches the
generators, the probe does not intersect any other generator, thus defining a
minimal spherical cavity with the radius of the probe.

Also, the Voronoi edge in the diagram is equidistant to its generators. This
means that the edge is an optimal way among atoms generating the edge.
Intuitively, it can be seen that if a probe was slipped away from the edge,
the probe would get closer to some atom and possibly collide with it even
though there was still a space next to the other atoms. This knowledge is
used to find the narrowest point among atoms. The probe can pass among
atoms only if it is smaller that the distance from the narrowest point to the
generating atoms. We will call this distance a bottleneck. We do not need
the position of the narrowest point to determine if a probe can pass among
atoms, so our algorithm operates only using the bottlenecks.

The second stage, where the cavities are discovered, uses the knowledge about
the bottlenecks obtained during the preprocessing. Here we try to slip a probe
along the edges of the Voronoi diagram, finding cavities.

Preprocessing

The preprocessing starts by computing the additively-weighted Voronoi dia-
gram of the molecule’s atoms. The diagram is used to compute bottlenecks
for each edge. Next the Voronoi vertices are sorted according to the distance
to their generators. Also, a flag “is outer” is added to each Voronoi vertex.
The flag is set to true for all vertices that have at least one edge leading to
infinity. It is later used to distinguish the outer void from the inner cavities.
In the following paragraphs, we will cover each step in more detail.

To compute the Voronoi diagram, the awVoronoi library [1] is used. The
input of this library is a list of weighted points (spheres) that are used as
generators. The output is the additively-weighted Voronoi diagram repre-
sented in its dual form — the quasi-triangulation.

The bottlenecks are computed for each edge. The algorithm begins by com-
puting the point with minimum distance to the edge generators. However,
this point does not necessarily lie on an edge (Figure 4.1). Additional mea-
sures must be taken to ensure the bottleneck is computed for a point on the
edge. If the point does not lie on the edge, the edge endpoint for which the
bottleneck is smaller is used instead. Figure 4.2 show the narrowest points

22

Cavities Using the Additively-weighted Voronoi Diagram Finding Cavities

on each edge.

Figure 4.1: The narrowest place between the two large circles lies on the dotted line connecting the circle
centers. However, the edge they generate does not intersect this line. Therefore, the closest Voronoi vertex
(marked with cross) is used to compute the bottleneck.

Figure 4.2: The narrowest points on each edge used for bottleneck computation. Each point is marked
by a cross.

The check if a point lies on an edge is performed in the following way: first,
vectors from the generator with the smallest weight to the edge endpoints
are constructed. Second, a test vector from the generator to the tested point
is formed. The tested point lies on the edge if and only if the test vector lies
withing the angle defined by the vectors to the edge endpoints.

23

Cavities Using the Additively-weighted Voronoi Diagram — Finding Cavities

Although the bottlenecks can be already used to find cavities, we improve
this approach even further to ensure that it is not necessary to test all ver-
tices when finding cavities to improve the speed. We introduce a mazimal
bottleneck property to each Voronoi vertex, and define it as a distance from
the Voronoi vertex to its generating spheres. This distance is always larger
than or equal to the edge bottleneck. The maximal bottleneck not only
tells us if the probe can fit among atoms, but it also defines a radius of a
small cavity formed by the generators, as mentioned earlier. The last step of
preprocessing is to sort the vertices using their maximal bottleneck.

Finding Cavities

The second stage is the finding of cavities itself. Its input is a Voronoi
diagram, bottlenecks and a sorted list of Voronoi vertices that were obtained
in the preprocessing stage. The algorithm is based on the idea of slipping a
probe along the edges of Voronoi diagram if there is enough space to do so.
As the Voronoi diagram is stored in a graph-like structure of vertices and
edges, it can be explored using a graph-traversal algorithm.

The algorithm for finding cavities takes the vertex with the largest maximum
bottleneck from the sorted list of vertices. If the maximum bottleneck is
larger than the probe radius, a constrained graph traversal algorithm starts
(our implementation uses a depth-first search) from this vertex. The graph-
traversal algorithm is allowed to move between vertices only if the bottleneck
associated with the edge is larger than the probe size. If the bottleneck is too
small, the traversal behaves as if there was no edge. This idea is illustrated
in two dim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>