
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Utilization of a Graph
Database for the Optimization
of Wide Cloud Application

Pilsen 2014 Petr Kopač

Declaration

I hereby declare that this master thesis is completely my own work
and that I used only the cited sources.

Pilsen, May 13, 2014

Petr Kopač

Abstract

This master thesis deals with the comparison of graph and Structured Query
Language (SQL) databases and the problems, on which they are optimized,
in the context of the cloud application Samepage by Kerio. The software
implementation mimics the relevant part, ie. data structures and algorithms
related to newsfeeds — both with graph and SQL — with enough precision
for the study. The technologies used are above all Java EE, Spring Framework
and the databases MySQL and Neo4j.

The testing data is generated for benchmarks, so that one can study travers-
ing of it. Most importantly, searching the access rights in a hierarchical
structure for generating the newsfeed. Different orders of magnitude and vari-
ability are tried to estimate the computational complexity of implementations.
The results are compared in order to find out, which approach is more beneficial
for the given problem.

Předmětem této diplomové práce je porovnáńı grafové a SQL databáze
a problémů, na které jsou optimalizovány, v rámci cloudové aplikace Samepage
od společnosti Kerio. Softwarová implementace napodobuje relevantńı část,
tedy datové struktury a algoritmy vztahuj́ıćı se k funkci newsfeed (proud
novinek) – jak grafovou tak SQL databáźı – s přesnost́ı vystačuj́ıćı pro tuto
studii. Použité byly předevš́ım technologie Java EE, Spring Framework a data-
báze MySQL a Neo4j.

Pro účely porovnáńı se generuj́ı testovaćı data tak, aby bylo možné stu-
dovat prohledáváńı hierarchických struktur s př́ıstupovými právy při vytvářeńı
newsfeedu. K odhadu výpočetńı složitosti implementaćı se zkoušej́ı r̊uzné řády
velikosti dat a variabilita. Výsledky jsou porovnány k vytvořeńı závěru, který
př́ıstup je vhodněǰśı pro tento daný problém.

Acknowledgements

I would like to thank my parents for supporting me, Tomáš Soukup at Kerio for
giving me a chance to work on an interesting and useful project, the colleagues
for helping with the consultations and Michael Hunger for the feedback on
Neo4j optimization. Last but not least I must thank my girlfriend Elǐska for
giving me motivation relentlessly.

Contents

I Theory 1

1 Context 2

1.1 Samepage.io . 2

1.2 The Problem . 3

1.2.1 Newsfeed . 5

1.2.2 Complexity Analysis . 7

1.2.3 Expected Enhancements 8

2 Databases 10

2.1 What is an SQL Database? . 10

2.1.1 Recursive SQL . 11

2.2 What is noSQL? . 13

2.3 Neo4j . 15

2.3.1 Cypher Language Quick Overview 16

2.3.2 Typical Problems Solved with a Graph Database 18

II Implementation 20

3 Spring Framework 23

3.1 Dependency Injection . 23

3.2 Java Configuration . 24

3.3 MVC . 27

3.4 Database Interfaces . 27

3.4.1 Transactions in Databases 27

3.4.2 Transactional Annotation 30

3.4.3 Manual Transaction Handling 30

3.4.4 Spring JDBC . 31

3.4.5 Spring Data Neo4j . 32

4 Neo4j 33
4.1 Queries for the Newsfeed . 34

4.1.1 The Final Global Query 40
4.1.2 Final Followed Query . 41

4.2 Neo4j BatchInserter . 44

5 MySQL 47
5.1 Stored Procedures . 50
5.2 Queries for the Newsfeed . 52
5.3 Profiling with EXPLAIN . 55
5.4 MySQL LOAD DATA INFILE . 56

6 Object-oriented Design 57
6.1 Domain Objects . 57
6.2 Data Access Objects . 58
6.3 Generator . 62
6.4 Experiment . 63

7 Simulations 64
7.1 User Interface . 64
7.2 Data Generator . 65
7.3 Gathering the Results . 67

III Results and Conclusion 68

8 Methodology 69

9 Results 70

10 Conclusion 72

A User Documentation 80
A.1 Setup of the Application . 80
A.2 Using . 81

B Raw Result Data 82

Part I

Theory

1

1 Context

1.1 Samepage.io

This thesis studies a real-life problem taken from the application Samepage.io
by Kerio Technologies, which is an integrated site for team cooperation. It is
a Java web application that uses standard web technologies and Java Enterprise
Edition (Java EE). The web application is very complex, allowing users to
collaborate on documents in teams, to follow certain topics, to notify colleagues
etc. It is under continual development and recently it has been opened for the
public for free with limited capabilities as well as for paying customers.

The application itself or any code from it is not part of the thesis, as it is
mostly close-sourced. Therefore, it was needed to program a simulated appli-
cation data layer with relevant parts to do similar functions. To be able to do
so, I was consulting the features personally with my colleagues at Kerio and
studying the original code. Of course, some simplifications were made, because
of the complexity of the original cloud application. Significant simplifications
will be noted in the text, however. Generally, the implementation tries to be
as close to the original as possible to the extent of usability of the results for
Samepage.io newsfeed.

Simulated data had to be made to fill the databases, for two reasons: firstly,
the original customer data would in no case be available due to privacy issues
and secondly, the database schemas would be different due to the aforemen-
tioned simplifications. But for the benchmarks to be valid, the data has to
be coincidental for both databases. The design of the module with generator
is therefore generating only once and saving to both database types at the
same time. This way we can simulate very easily running the application in
two configurations sequentially with enough precision and without the need to
re-generate the data.

The real application can be found on the web address: http://samepage.io/

2

Context The Problem

Figure 1.1: This image represents the cloud capabilities of Samepage.io, mean-
ing you can access your data and cooperate with team mates from different
devices. On the laptop screen you can see comment stream on the right and
content items on the left. Image courtesy by Kerio Technologies.

1.2 The Problem

In Samepage.io the documents are served to the user in a hierarchical tree
structure. Not only text documents are treated in this way, but also other data
formats, which Samepage integrates — images, videos, calendars, archives etc.
We will be using only text documents, as the content itself is not relevant to
the problem studied. The nodes of the hierarchy will be called items instead
of a document to use the same terminology as in the original application.

The tree structure is very important, however. The access rights for the
items are resolved through this structure. When an item has some access rigths
settings, all the child items in the tree, are also inheriting those settings, unless
they have overriding settings. Even in the original application, the rights are
not composite, meaning that to decide what are the rights on the current item,
you need to find only the first parent in the hierarchy with some settings.

Another level of abstraction is brought into the picture along with groups
of users. The access rights do not have to be assigned only per singular users,
but also per groups. But these groups are also hierarchical: let us have a group
”Parent” and a group ”Child”, the latter being a subgroup of the previous, and
a user, who is member of group ”Child”.

3

Context The Problem

item

item B

item

item A

item

item

root
root group

group A

user A

user B

group A

root group

user B

Figure 1.2: The items () are saved in a hierarchy and each item can have
explicitly declared access rights (). If it has no declaration, then the access
rights of its ancestor are used. Also the inheritance of rights works in the
groups (), so for example user A () can access everything except item B ;
on the other hand user B can not access anything under item A except for
item B, where only they have the access right.

The user should be able to access all the items which have reading access
for his group, but also for the ”Parent” group. In other words, inheritance of
rights is at play. See the figure 1.2. Obviously, this is a very simplified example.
In reality access rights are set on several users and groups per node and also
the relationships can be much more complex.

Now, in this complex environment of hierarchic groups and items with differ-
ent access right, the user is also following only certain pages, because otherwise
it would be too hard for them to keep track of all the information streamed
through the whole team workflow.

4

Context The Problem

1.2.1 Newsfeed

”A service by which news is provided on a regular or continuous
basis for onward distribution or broadcasting.”
—[Stevenson(2013)]

Figure 1.3: Users can follow
certain items to keep track of
updates.

The users want to be informed about the
new comments which other users write on
items. Users are asked to comment, if they
update significantly a document. Therefore
the newsfeed updates the user on important
changes as well as recent discussions. There are
two possibilities — it can be either the global
newsfeed with the most recent new comments
from the whole organization, or only from the
pages that the user follows. In both cases, users
must have access rights to the items to which
the comments are attached.

There are quite random relations, involving
especially the follow feature, which is unique
per user and therefore can not be cached for
an organization as a whole. But not even
the global newsfeed can be fetched once and
cached. Firstly, this is a live environment: the
access rights on individual items are changing
and there are new comments every moment.
Secondly, each user has different access rights,
resulting in different sets of items, where the
changes can be monitored.

Finally, we reached the core of the problem — there are several hierarchical
data structures that need to be tree-traversed. We are trying to simulate and
perhaps find a better solution for it in this thesis, because the approach cur-
rently in place takes a lot of computational resources, possibly too many for
larger datasets. It is an algorithm development problem, which requests either
using extra tables in an SQL database (and then risking data inconsistency)
or programming procedures, for example in Procedural Language/Structured
Query Language (PL/SQL), because pure SQL does not have the capability to
traverse complex structures recursively. What we are considering and compar-
ing to these possibilities is the usage of a graph database.

5

Context The Problem

Figure 1.4: In these screenshots, you can see the newsfeed feature in reality.
This one is showing only the most recent updates on pages that the user is
following. It is uncluttered by noise generated by larger teams.

Figure 1.5: On the left you can see the list of items and on the right its most
recent updates. The global newsfeed is much more alive, with updates in the
order of minutes or even seconds, as the organization is hundreds of users large.

6

Context The Problem

1.2.2 Complexity Analysis

Let us try to estimate the computational complexity of the algorithm solving
the problem for the worst case scenario. In this scenario, there is only one
access right setting on the root node, so the whole path from each node has to
be checked. To estimate the time complexity we have to find the average depth
of the tree, but that is difficult, as it is a random, not full, multiple-child tree.

We can start with the theory of binary trees: if a tree is completely full,
then the number of nodes n is defined n = 2k−1, where k is then the height of
such a tree and 2 is the number of children each node has. According to proof
in [Rolfe(2011)] the average depth in the tree is ka = k−1. This is also true for
n-child trees, because the result of the limit (used in the proof) is independent
of the number of children. But this is only the lower boundary of complexity,
if we know the exact number of leaves.

In reality the average depth of the tree varies. The only fact that has been
gained through study of statistical data (and is a kind of heuristic knowledge) is
that the trees tend to be much more wide than deep (users tend to create lists,
not binary trees). Therefore it should be a good choice if we select ka = log(n)
as a credible boundary for average usage.

In the case of the global newsfeed, we have to check n nodes, while in the
case of followed items only the transitive closure of their children f+; we never
know, however, how large the subtrees f+ are. Generally, the size of followed
subtrees should be much lower than all the nodes: f+ << n. Still, it adds the
necessity to find all the children, which is O(f+).

Now, that we know the range and average depth, we can estimate the upper
boundary of checking access rights. If we were not in the worst case scenario,
where there are no special access rights, there would be only some nodes (plus
the root), where the user has access, that is reflected with nx:

Checkaccess = O(n · kax · nx)

Where kax is the average depth of an item under a directly accessible node and
nx is the number of directly accessible nodes. Although this seems as adding
complexity, these two number are usually very low, unless there would be very
complicated access right structures. In fact, the most uncomplicated access
rights result in the worst case scenario, where the average depth is the one of
the tree and there is only one directly accessible item, the root.

7

Context The Problem

Checkaccess = O(n · ka)

At this point, the algorithm has determined, which items are relevant and
at the same time accessible through access right policies. But we need to fetch
only a few newest comments on the items. Let us estimate roughly that the
total number of comments in the hierarchy reaches around the same order of
magnitude as the number of items (or is linearly dependent) and the same is
valid for any subtree (in average). Then comments ≈ n. Finally, we need to
order them all, which in worst case for Quicksort is O(n2) (Quicksort is used
in MySQL[Oracle(2014)]).

This gives us the complexity of:

Ofollowed = O(f+ · (1 + log(n) + f+))

Oglobal = O(n · (1 + log(n) + n))

If we consider that f+ is a linear function of n and also, log(x) << x2, or more
formally:

lim
x=0→∞

log(x)

x
= 0

We can simplify the big O notation into the conclusion:

Ofollowed ≈ O(f+2
)

Oglobal ≈ O(n2)

1.2.3 Expected Enhancements

As for the graph database, we expect it to be able to use alternative, recursive
queries and make use of the graph structure, which could fit the described
environment better than the SQL table structures.

If the database is capable of proper optimizations and we are able to use
them, the migration to graphs could speed up searching the trees and gener-
ating the newsfeed. At this point we are not aware what the possibilities are
exactly, so it is needed to investigate them and employ adequately.

We are not looking for an absolute speed gain, however. The important
part of the results is the behavior with growing order of magnitude.

8

Context The Problem

We are mainly interested in the statistics — whether with the growing num-
ber of items, users and groups the graph database can handle the complexity
better, the same or worse.

The extraction of updates is currently done with complex SQL queries
that rely heavily on application-side filtering and handling. It is possible that
a graph database could allow us to do all the necessary operations directly,
utilizing its built-in optimizations and lowering network communication as it
would transfer back to the application only the useful dataset.

But the most important and interesting aspect is that we are given an
opportunity to try lowering the complexity — if the database could cache the
nodes and relationships in such a manner that matching the paths between
them would become less than exponential, or at least allow to run efficiently
enough on millions of items.

9

2 Databases

The database forms the storage layer of the application. In this case, we can
not even use in memory storage, because the magnitude of the data present will
be exceeding the capacity of today’s normal computer (4 GB). But fortunately,
that is no problem as it brings us even closer to the original application, even
though disk operations will slow the process of simulation down.

A simplification has been made here, however, because the original software
uses, of course, a distributed storage, whereas the model uses only a single
instance of the database, whether it is SQL or graph. But this should not be
an issue, because we are focusing here on fundamental differences in algorithm
development and complexity between SQL and graph (noSQL) databases.

2.1 What is an SQL Database?

The history of SQL goes back to 1970s, when the predecessor Structured En-
glish Query Language (SEQUEL) was developed at IBM.[Chamberlin(1974)]
As a standard, SQL was adopted in 1986 and since then several latter versions
were created. Currently, there are more than just one canonical version of
SQL in use. They differ usually in extensions, which are common in commer-
cial high-end Relational Database Management Software (RDBMS), adding
enhancements to their databases as for example the PL/SQL language by Or-
acle, which adds procedural programming capabilities, allowing execution of
user-defined programs in the database engine context.

The SQL is a declarative language. In short, you can declare what should
be retrieved, or inserted etc., but you are not directly writing the algorithm,
although you may significantly influence the optimality of the query by using
different approaches, indexing, alternative commands or even the right ordering
or embedding. Nevertheless, SQL gained popularity and became the traditional
approach to save large amounts of data in computer science. The main feature
of SQL are the table structures accessible by queries and related by foreign
keys; therefore this is called the relational model. Also, it is notable that all
the members of a given table have the same structure dictated by the table,
which is in most cases rigid and rarely changed as a part of ordinary operation
of applications using the database.

10

Databases What is an SQL Database?

For the sake of this simulation the MySQL RDBMS will be used. One
reason for that is this database is at the moment one of the two most used
RDBMS overall; second, but maybe even more important is the fact that it is
used in the original application. We will try to benefit from its capabilities as
much as possible, not considering compatibility with other database systems
necessarily.

2.1.1 Recursive SQL

Basics of SQL will not be described here.1 Instead, I would like to present the
reader with the results of my research on the current possibilities of recursive
traversal of data structures in SQL databases, as it is the core of the problem.
Above all, the capabilities of MySQL will be examined for practical reasons,
but also compared with other popular databases.

It is worth mentioning that any recursive algorithm is translatable into
cycles, but that is again procedural, not declarative programming. Also, in
the scope of different programming languages, which have different capabilities
of expression, it can be difficult or even impossible due to restrictions of the
language or the engine.

Stored Procedures

MySQL contains support for procedures and functions. These are very re-
stricted, however. For example you can not SELECT a result set from the
database and use it programmatically for the next iteration, unless it is a sim-
ple value as a string or a number; arrays are not supported. It is not even
possible to make UNION to merge these results, so if one calls subsequently sev-
eral SELECT commands, the client will receive several result sets, which have to
be used directly with the Java Database Connectivity (JDBC) API, because
higher abstractions are usually built only for one result set.

Although it is possible to call procedures recursively, it is disabled by default
and must be allowed by setting maximum recursive depth to a number higher
than 0. But again no support of arrays and using the data sets from SELECT

restricts the possible uses to minimum.

1For learning the basics using some on-line interactive course can be recommended; there
are plenty of them, for example http://www.w3schools.com/sql/

11

Databases What is an SQL Database?

1 SET @@GLOBAL. max sp recurs ion depth = 255 ;

Recursive SQL Construct WITH RECURSIVE

This construct has appeared in the SQL standard already in 19992. It uses
Common Table Expression (CTE), which is a temporary result set in scope
of the executing SQL command. Another synonym is ”subquery factoring”.
The list of databases with this feature can be found on-line (for example at
[CTE(2014)]), but to name just a few: PostgreSQL (since 8.4), Microsoft SQL
Server and Oracle (since 11g release 2). Unfortunately, MySQL still (version
5.7) does not support this feature.

Below you can see an example taken from Wikipedia, as I could not use this
in the selected database. In the example the (n, fact) are input parameters
and we can see the recursive calling with the FROM temp expression. This
results in a 2-column and 9-row result set with factorials.

1 WITH RECURSIVE temp (n , f a c t) AS
(SELECT 0 , 1 −− I n i t i a l Subquery

3 UNION ALL −− Merging in to one r e s u l t s e t
SELECT n+1, (n+1)∗ f a c t −− Recurs ive re turn va lue s

5 FROM temp −− Recurs ive Subquery
WHERE n < 9) −− The ending cond i t i on

7 SELECT ∗ FROM temp ; −− Return r e s u l t s

There actually exists an emulated WITH RECURSIVE which I found while
researching on the Internet (in [Bichot(2013)]), but although it does solve the
problems that were mentioned above, it is quite not a clear solution, which
would be suitable for production systems. Despite that I tried to run it (from
pure curiosity), but it ended with error, probably because of some incompati-
bility with my MySQL version (5.6) or configuration, as it uses dynamic SQL
heavily (creating commands on the fly from text strings).

2ISO/IEC 9075-*:1999

12

Databases What is noSQL?

Repeated Calls

If we can not use any of the two possibilities mentioned above, the only ap-
proach that we can resort to is having the recursive code on client side, sending
repeatedly individual requests to the database system. This approach trans-
fers more data over the network between the application and the database,
having possibly bad influence on performance as more and more queries are
sent, but on the other side the programmer receives much more control over
the algorithm design.

In the project the first and the last approaches were combined, because
using the WITH RECURSIVE was not possible. See the Implementation part,
chapter 5 for more details on how SQL was used to solve the problem.

2.2 What is noSQL?

Although the SQL language and related RDBMS have become essential for
data storage, in recent years a movement towards other possibilities has become
very influential. That movement is called noSQL and comprises all the different
approaches to make data persistent without using SQL. The shift in paradigm
was caused by many factors — a need to store big data, a desire to have
a simplified database, or to capitalize on the graph characteristics of social
networking and semantic data.

The only noSQL described further besides this section will be Neo4j, which
uses graphs, is the most used in its category and is used as an alternative to
SQL in the model application. To make a short overview of the current noSQL
possibilities, I added this short list, which names always just one example to get
the general knowledge. There are 4 fundamental species in the noSQL universe:
column, document, key-value and graph. Let us see a few quick examples:

MongoDB (document) Saves data in JavaScript Object Notation (JSON)
format, or more precisely in Binary JSON (BSON), which are fundamen-
tally associative arrays, or documents, as called in this database’s jargon.
As the name already hints, the language predominantly used to access
the data is JavaScript. Also, it does not use tables with rigid structure;
instead, data is contained within collections, and the units of data itself
are called documents instead of rows to highlight the complexity.

13

Databases What is noSQL?

The documents have no prescribed structure whatsoever and members
of one and the same collection can be of completely different nature. An
interesting advanced aspect is the possibility to run JavaScript code in
certain cases on the database server. Let us see a few sample commands:

• db.getCollectionNames()

gets a list of all the collections present in the current database
schema,

• db.people.find({"age" : {"$gt" : 18}})

finds and returns all documents from collection people with the
property age higher than 18.

Accumulo (column) The column databases are distinct from the relational
model, having columns that are not always present in all rows of a table,
which itself is a very vague concept in their context. They are usually
useful for saving and retrieving large quantities of sparse data. Examples
of accumulo shell and Java Application Programming Interface (API):

• createtable test

(in shell) a table test without any columns is created

• (new Mutation(rowID))

.put(colFam, colQual, colVis, timestamp, value);

(in Java) creates a mutation, which manipulates a row of a given ID
(simlar to UPDATE in SQL).

Redis (key-value) Actually an associative array of keys and values, the key-
value storage is used to solve the dictionary problem. Redis is currently
the most popular key-value storage and stores data in memory. It is pos-
sible to run scripts written in Lua language on it. A shell is available and
also other different APIs.

• set mykey "my value"

(in shell) a key mykey is created and has content of type string "my

value"

• redisClient.set("mykey", "my value", callbak)

(NodeJS API) this creates the key-value pair as the previous exam-
ple and as it finishes the callback function is called.

Neo4j (graph) The graph database is even more different from the previous
noSQL types, because it is built on the principle of nodes connected with
relationships. There is no fixed structure of them and therefore it is very
flexible.

14

Databases Neo4j

Nevertheless, the nodes and relations can have labels (something like
classes). It uses its own query language named Cypher and here we have
again two examples:

• MATCH (n) RETURN count(*)

matches nodes, without constraining to any properties. That makes
the query select all the nodes and return their count using the built-
in function.

• CREATE (me:User {name: "Bob"})

creates a node labeled as a User with the property name.

This was just a short list to get the feeling of alternatives to the standard
SQL solution; further, we will discuss only noSQL concepts relevant to the
graph database Neo4j, which was selected for this project.

2.3 Neo4j

Neo4j has been mentioned in the above section as one of the representatives of
the graph databases. It was chosen as the platform to try optimizing the data
layer for several reasons:

• it is the most popular graph database,

• it has its own advanced, but clear query language Cypher,

• it is very well documented, including a free on-line video tutorial with
web application allowing the student to directly try out Cypher queries,

• there is a Spring Data project, which allows combination of Spring tech-
nologies with Neo4j.

Unfortunately, the Neo4j server does not allow any binary protocol as SQL
databases do. They do have their language-specific drivers and the abstraction
of JDBC and Open Database Connectivity (ODBC). For remote access Neo4j
offers two possibilities:

15

Databases Neo4j

• REpresentational State Transfer (REST) API over Hypertext Transfer
Protocol (HTTP) - which is unfortunately slow and allows using trans-
actions since only recently,3

• writing own API based on an embedded Neo4j server.

As mentioned in the second option the server can be also embedded in an
application. That means the server instance is running directly within the
memory space of the application, and the program can use its direct Java API.
The data is not stored in memory, but on a hard drive; the memory is used only
for caching the data and operations above the data; therefore the embedded
version needs access to a persistent storage.

For the project I chose the embedded version, because using REST API
proved to be cumbersome; on the other hand, writing my own API would take
too much time. All in all, it is a viable variant.4 But we must also note
that using an application-embedded database approach gives Neo4j a potential
advantage (having shorter method calls than communication on the network
or socket), that is why we should not compare the absolute amounts of time
taken to process operations directly, but rather consider the development of
complexity, when we send higher quantities and more structured data.

2.3.1 Cypher Language Quick Overview

Similarly to the SQL language, Cypher is the language used to fetch or change
the data for Neo4j. Most of the commands have their equivalents in these two
languages, but what is a new and intriguing part is the graph matching ex-
pression. We can see that the language itself gives the programmer an efficient
way to express relations.

The following command will match any nodes with a relationship between
each other and return them. Not only one pair, but all of the pairs:

1 MATCH (n)−−>(m) RETURN m, n ;

3In version v2.1.0-M02, but for the project it was decided that using unstable variant is
not a good idea, so the stable version 2.0.2 was used.
See: http://docs.neo4j.org/chunked/milestone/rest-api-transactional.html

4It was also needed to restart the database programatically due to fast non-transactional
bulk insertion of nodes, so that was one more reason for the embedded version.

16

Databases Neo4j

Figure 2.1: Example nodes — you can see the blue nodes, which are labeled
ITEM and a gray one labeled THREAD. These nodes can be related to each other
by relationships, which also can be labeled (CHILD_OF and BELONGS_TO); both
nodes and relationships have unique IDs and can have properties.

17

Databases Neo4j

Will match nodes labeled as ITEMs5 with a relationship of type CHILD_OF

and return only those that have a property name with value "Test":

1 MATCH (c :ITEM) − [:CHILD OF]−>(p :ITEM {name : ”Test ”}) RETURN c , p ;

First, find the node with a given ID, then find all of its children recursively;
the asterisk marks that there can be an infinite repetition of this relationship,
an infinitely long path. That is useful, but can be also dangerous if the data
contain cycles or is very large:

1 START n=node (59877) MATCH (n)<−[:CHILD OF∗]−(p :ITEM) RETURN n , p ;

Usually, we do not want thousands of results, but only the first or last few;
that is done the same way as in SQL, for example here we order the result in
descending order and return 21st to 30th item:

1 // . . .
RETURN c ORDER BY c . updated DESC SKIP 20 LIMIT 10 ;

We can also combine matching with creating; one can for example use these
patterns to create relationships between nodes. And if we commented out the
WHERE clause, it would create that relationship between all the USER nodes.

MATCH (a :USER) , (b :USER)
2 WHERE a . name = ’ Peter ’ AND b . name = ’Bob ’

CREATE (a)−[r :KNOWS]−>(b) ;

2.3.2 Typical Problems Solved with a Graph Database

Transitive Closure

One of the most interesting parts of the graph approach is the capability to do
recursive traversal. The transitive closure can be explained as follows: if we

5As you can see, the notation goes like this: (variableName:labelName)

18

Databases Neo4j

have a list of towns and a list of road between them, the transitive closure of
this relation is a list of pairs (towns), which it is possible to reach from one
another with arbitrary distance on the road.

If we think about how we are dealing with relations in the traditional
relational model (SQL), we might notice that we only work above rigid length-
specified relations. But our problem described in 1.2 requires a completely
different approach — recursive climbing on a tree structure with undefined
depth. This can be expressed in Cypher very naturally with just one pattern
matching, but not so easily in SQL (see section 2.1.1).

Semantic Web and Social Networks

Today’s big challenge of the web is the meaning of the data. Increasingly,
we are trying to work over larger and larger amounts of interconnected data.
This data is characterized by non-fixed structure and vast relationships. Al-
though the semantic web itself is only slowly emerging, one phenomena has
already risen to vast success — the social networks. These networks actually
contain unprecedented amounts of semantic information about its users, their
relationships, preferences etc. Even already from the name itself we can imag-
ine relationships are the core principle here. The graph databases fit this with
their architecture of interconnected nodes.

Traditional Graph Algorithms

Some of these algorithms are already implemented in the graph databases and
we can expect that there will be even more of them in future; instead of writing
them over and over again, we would use the already present ones operating di-
rectly over the data with very simple queries. For example, to find the shortest
path in Neo4j, we would use MATCH p = shortestPath((a)-[*..15]-(b))

(finds shortest path of maximum length of 15). To name just a few:

• Shortest path problem (Floyd-Warshall, Dijkstra’s algorithms)

• Breadth-First Search (BFS) and Depth-First Search (DFS)

• Graph kernel

19

Part II

Implementation

20

Implementation

The implementation is heavily influenced by the original application environ-
ment and libraries. That is why Java EE was chosen as the main platform,
Tomcat as an application server and MySQL as SQL RDBMS. But on the other
hand, I also wanted to re-use my knowledge from programming web applica-
tions with Spring framework and especially explore the framework’s potential
with the Neo4j graph database.

Thanks to the support of the libraries it was very easy to use several im-
portant design patterns, which make the application much more readable and
the code reusable, for example the Model-View-Controller (MVC), described
in the section 3.3 on page 27, a basic web application.

In this part, multiple concepts from the libraries used in the project will
be described for the reader to better understand the abstractions used in the
implementation.

Further, we will walk through creation and optimization of the used SQL
and Cypher queries to better understand, how they work.

And finally, the object model of the application and individual parts will
be described and explained in detail.

The code examples will be written in a simplified form, even though they
are taken from the implementation. In other words, they should go straight
to the point. This is for reader’s comfort and trying to lower distractions by
non-essential code.

21

MySQL Neo4j

Servlets

Tomcat

Java EE

Spring MVC

Repositories

Spring JDBC Spring Neo4j

Figure 2.2: The application is built on several layers of library support. On
the lowest level there is only Java, but then on top of it runs Apache Tom-
cat (servlet container), which makes it a web application. Spring MVC adds
the mentioned layering of application and Spring JDBC together with Spring
Neo4j provide abstraction levels on top of connections to respective databases.
The repositories, which are on top of this hierarchy and are responsible for
manipulating the data, can then make full use of the provided abstractions.

22

3 Spring Framework

The Spring Framework is a vast platform of libraries for Java EE. There are
many modules, but I used mostly the part around web applications (Spring
Web MVC) and Neo4j (Spring Data Neo4j). Besides that, the basic principles
of this framework were utilized, above all the dependency injection mecha-
nism, together with bean declarations and Java configuration. In the following
three sections the principles will be described, but for more material on the
topic the reader can consult multiple books written on the topic, for exam-
ple [Walls(2011)], or the official documentation, which is accessible online at:
http://docs.spring.io/spring/docs/current

3.1 Dependency Injection

The dependency injection is a very useful mechanism (and the core of Spring).
Equivalent design pattern is named Inversion of control (IoC):

A software architecture with this design inverts control as com-
pared to traditional procedural programming: in the traditional
programming, the custom code that expresses the purpose of the
program calls into reusable libraries to take care of generic tasks,
but with inversion of control, it is the reusable code that calls into
the custom, or problem-specific, code.
—[IoC(2014)]

Spring is an IoC container. It allows the programmer to configure the appli-
cation context, declare a bean and then use it in any other software component
of the same context.

The software components must oblige another design pattern, which is
called a bean. It is basically a class with a standardized interface — get/set
methods and standard constructor (no arguments). It is important that the
name of fields correspond with the methods, eg. field myNumber should have
getMyNumber and setMyNumbermethods. This is actually very easy to prepare,
because most modern Integrated Development Environment (IDE) provide au-
tomated generators.

23

Spring Framework Java Configuration

Later, if one software component needs another one, the Spring applica-
tion context can ”autowire” the dependency on runtime, if the programmer
declares it properly. There are basically two ways - you can either use Ex-
tensible Markup Language (XML) configuration or Java configuration. In the
implementation, only the Java configuration is used, except of course for the
database connection settings, which are externalized.

The programmer can also easily declare such dependencies directly in the
code using annotations @Autowired. The dependency is then searched using
the type (or also the name of the field, if more instances of such type exist in
the context) and set on runtime — with this approach we do not even have
to create get/set methods. Also, the @Autowired annotation can be used on
methods or constructors. The general principle of annotations in Java is a form
of declarative programming.

Since the previous version of Spring it is not necessary to declare the soft-
ware components in separate XML files anymore, as only two simple things
replace this mechanism. Firstly, you need to declare that you want use the
component-scan capability of Spring, with a base package for recursive scan
- you can do it in application context XML or in Java configuration with
@ComponentScan(...). Then you annotate all your component classes with
@Component, or its children, for example @Repository, which is very useful for
Data Access Object (DAO) classes, which manipulate the data and with this
mechanism, their instance is serving anywhere you need it.

3.2 Java Configuration

The central artifacts in Spring’s new Java-configuration sup-
port are @Configuration-annotated classes and @Bean-annotated
methods. The @Bean annotation is used to indicate that a method
instantiates, configures and initializes a new object to be managed
by the Spring IoC container.
—[Johnson(2014)]

In the code example you can see the configuration used in the implementa-
tion, which is a class that enables MVC essence as well as component scanning
(except for other configurations, which is what the exclude filter does). There
is also a very important annotation @EnableTransactionManagement, which

24

Spring Framework Java Configuration

declares that from now on any method annotated with @Transactional will
be running in a transaction.

1 @Configuration
@EnableWebMvc /∗ The same as <mvc : annotation−driven> ∗/

3 /∗ Load only non−c on f i g u r a t i on c l a s s e s . ∗/
@ComponentScan (basePackages = { ”cz . pkopac . t h e s i s ”} ,

5 e x c l u d eF i l t e r s = {@ComponentScan . F i l t e r (
type = Fi l terType .ANNOTATION,

7 value = Conf igurat ion . c l a s s) })
@EnableTransactionManagement

9 pub l i c c l a s s MvcConfig extends WebMvcConfigurerAdapter {
. . . /∗ Bean d e c l a r a t i o n s would go here . ∗/

11 }

It extends WebMvcConfigurerAdapter, because there are already some use-
ful beans declared, so that we do not have to repeat ourselves each time with
a new web application. Speaking of which, we can now have a look, how a bean
is declared in our configuration class:

1 @Bean
pub l i c NamedParameterJdbcTemplate jdbcTemplate (DataSource

dataSource) {
3 re turn new NamedParameterJdbcTemplate (dataSource) ;
}

The class NamedParameterJdbcTemplate is a useful interface for translating
a Domain Object (DO) into query parameters for SQL. But before we can use
it anywhere, it has to be configured, namely it needs the JDBC data source,
which is given here as a method parameter. The instance is then injected by
the IoC container, because it automatically searches for such a bean reference,
which fulfills the DataSource interface and binds it to this method. The data
source is declared in another method with database connection configuration.
The way to get the reference to this database interface instance:

@Component /∗ Without component annotation , the conta ine r wouldn ’ t
2 know that i t needs to autowire t h i s c l a s s . ∗/

pub l i c c l a s s SomeClass {
4 @Autowired

NamedParameterJdbcTemplate npJdbcTemplate ;
6 . . .

25

Spring Framework Java Configuration

The reference can be used as soon as the class is constructed. If the initializa-
tion of the class would need it a @Post-Construct annotation can be given to
a method to do the necessary operations.

Combining with XML configuration

There is a possibility to combine the Java configuration with XML configura-
tion. It depends, which one is the primary, ie. which one loads the other. Both
approaches are possible and equivalent; in Spring Framework Reference Manual
[Johnson(2014)] one can find detailed description. I chose Java configuration
and imported only the settings for the SQL database connection:

<?xml ve r s i on=”1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN 2.0//EN”

”ht tp : //www. springframework . org /dtd/ spr ing−beans −2.0 . dtd ”>
4 < !−− Def in ing doctype i s important , as o therw i s e the XML i s not

r ecogn i z ed as va l i d . −−>
<beans>

6 <bean id=”dataSource ”
c l a s s=”org . apache . commons . dbcp . BasicDataSource ”>

8 <property name=”ur l ”
va lue=”jdbc :mysq l : // l o c a l h o s t : 3 3 0 6 /pkopac ? . . . ”/>

10 <property name=”driverClassName ” value=”com . mysql . jdbc . Dr iver ”/>
<property name=”username ” value=” . . . ”/>

12 <property name=”password ” value=” . . . ”/>
</bean>

14 </beans>

Then, the programmer just needs to let the IoC know, where it should
load the resource from, which is again done declaratively with an annotation.
Notice the prefix ”classpath:”1 — Spring Framework supports several different
path prefixes, which allow to utilize different scopes.

@ImportResource (”c l a s spa th : cz /pkopac/ t h e s i s / c on f i g / datasource . xml ”
)

2 pub l i c c l a s s MvcConfig // . . .

1Classpath in Java is the place, where the compiled classes are stored; it can be inside
a Java ARchive (JAR), on a file system or even in memory.

26

Spring Framework MVC

3.3 MVC

The Spring Framework provides a module with special support for web appli-
cations. It was used in the implementation as the container for running the
experiments, accessing the data layer and serving the results in visualized form
to the user. After all, it is the closest platform to the original cloud application,
much closer than eg. running the tests in command line. You can have look
on a scenario, which takes place in here on figure 3.1.

The Spring Web model-view-controller (MVC) framework is de-
signed around a DispatcherServlet that dispatches requests to
handlers, with configurable handler mappings, view resolution, lo-
cale, time zone and theme resolution as well as support for up-
loading files. The default handler is based on the @Controller

and @RequestMapping annotations, offering a wide range of flex-
ible handling methods. With the introduction of Spring 3.0, the
@Controller mechanism also allows you to create RESTful Web
sites and applications, through the @PathVariable annotation and
other features.
—[Johnson(2014)]

3.4 Database Interfaces

3.4.1 Transactions in Databases

In the database terminology a transaction is a unit of requests or queries to
the database, which must have a certain level of independence and separation
to other requests. Mostly, total separation is used, but there are cases, as for
example in distributed or sharded databases, where it is beneficial to loose
some independence at the gain of speed.

A common term is used to describe the transaction properties: ACID —
atomic, consistent, isolated and durable. In the thesis transactions are used
complete or none, so we will not discuss any other types any further.

A transaction must be explicitly started and explicitly ended.

27

Spring Framework Database Interfaces

View Resolver

JSP

ResourcesMySQL Neo4j

JDBC

DAO

Spring Neo4j

Generator

Newsfeed

Controllers

Experiments

Controller = Application logic

Model = Data layer View = GUI

Figure 3.1: As you can see, the experiments are running under a controller as
a part of application logic. They interact directly with DAO and create results,
which can be visualized. The controller is serving the results (and progress
information) to view, which is Java Server Pages (JSP) — that generate Hyper
Text Markup Language (HTML) and use Cascading Style Sheets (CSS) and
JavaScript (JS) files from resolver of static resources.

28

Spring Framework Database Interfaces

pub l i c void doSomeOperations (Object [] o b j e c t s) {
2 t ry (Transact ion tx = database . beginTx ()) {

/∗ Database ope ra t i on s would go here . ∗/
4 tx . s u c c e s s () ;

}
6 }

In this case, taken from one of the DAO, we can see that the transaction is
started, then some operations on the database are done and then, provided that
everything works out and no exception is thrown, the code ends with closing
the transaction as successful. This is called committing which means that from
now on all the changes made are being reflected by the database.

As for the the ”roll back” operation, it is done automatically in case of an
exception. The construct used in the example is new in Java, therefore it might
be worth explaining. It is try-with-resources, and if the resource implements
an interface which basically just gives a point of entry for an exception, it can
be used to spare repeated code. So at the end of the try block, if the method
success() has not been called, all the operations invoked within the block are
reverted. In any case at the end all the used resources are released properly,
as would one do with a close() method.

The transactions are not supported by all databases (some noSQL do not
have them), but they are used in MySQL and Neo4j. While programming
with transactions, the programmer needs to be also aware of the limits —
some databases have the number of transactions limited, the size of all running
transactions and the size of a single transaction. If those limits are passed, it
usually results in the loss of data, so while working with big data, it is necessary
to do commits after certain number of rows.

Also a worthy note is that transactions speed up bulky database operations.
With autocommit settings, the data is committed after each query. This might
be useful for simple straightforward usage, but becomes very problematic, if we
want to make any wider changes to the database. For example, let us say that
we want to save one thousand entries in an SQL table. What happens with
autocommit set on is that after each update of the table we also update indexes,
check integrity and other costly operations, which could be done only once at
the end; lowering effectively the speed by around two orders of magnitude.

29

Spring Framework Database Interfaces

3.4.2 Transactional Annotation

For the SQL parts of DAO I chose to use the annotation Transactional,
which automates transaction handling for the programmer. It not only saves
writing of repetitive code (compare the example below and the one from 3.4.1
on page 27), but also allows to write the code only once and set strategies and
other settings through a transaction manager in configuration. Also, in reality
there are many different transaction infrastructures and this provides a unified
interface.

@Transact ional
2 pub l i c void doSomeOperations (Object [] o b j e c t s) {

/∗ Database ope ra t i on s would go here . ∗/
4 }

When a class, interface or method is annotated, the Spring Framework in-
jects parts of code, which open and close transactions and of course handle
errors. This code is injected using AspectJ, which is Aspect-Oriented Pro-
gramming (AOP) extension of Java. AspectJ is currently standard for AOP in
Java and uses very close syntax, but it is completely handled by Spring and
transparent for the programmer.

To make it work for the application, the configuration of Spring context
must know, we want this enabled. There is the @EnableTransactionManage-
ment annotation, which one needs to put on the configuration class (MVCConfig
in our case). By supplying parameters to this annotation the transaction man-
ager can be configured.

3.4.3 Manual Transaction Handling

While it is possible to use annotations for transactions, and it is very simple to
set up the basic scenario of one database access, it becomes more complicated,
when we want to have access to more databases and especially of different type.

Setting up two annotation-based transaction managers (one for SQL and
one for graph database), according to the documentation, both should be work-
ing right, if the programmer supplies two annotated configuration classes for
transaction management. While declaring methods, which operate over one of

30

Spring Framework Database Interfaces

the databases, one has to specify explicitly in the annotation, which manager
to use.

Unfortunately, I did not manage to set this up into functioning state, so
I had to fall back to manual handling for Neo4j in my code. But after fur-
ther development and optimizations, it actually turned out not to be a big
problem, as the insertions in the generator part had to be done without trans-
actions — through special low level API, which is described in 4.2 on page 44.
Transactions for Neo4j are used only in the part that fetches the newsfeed for
a user.

3.4.4 Spring JDBC

JDBC is the standard of connecting to SQL databases in Java. The main
advantage is the added level of abstraction, which allows you communication
with any SQL database work with the same API. The only thing needed is to
have the right driver for the database on Java classpath2, JDBC then loads
the class and uses it for translation of the requests into proprietary protocols
of the databases.

What Spring JDBC adds is yet another level of abstraction, this time with
much wider possibilities for the programmer than just running queries in SQL.
To give a practical example, I used the automatic object mapping, while insert-
ing objects into SQL database. You can see how simple it is in the following
listing:

@Transact ional
2 pub l i c void s q l I n s e r t (Object [] ob j e c t s , S t r ing tableName) {

SimpleJdbcInsert i n s e r t e r = new SimpleJdbcInsert (sq lDataSource) .
withTableName (tableName) ;

4 BeanPropertySqlParameterSource data [] = new
BeanPropertySqlParameterSource [ob j e c t s . l ength] ;

6 f o r (i n t i = 0 ; i < ob j e c t s . l ength ; i++) {
data [i] = new BeanPropertySqlParameterSource (ob j e c t s [i]) ;

8 }
i n s e r t e r . executeBatch (data) ;

10 }

2The full class name has to be specified as well while creating the connection, because
there might be more drivers and more connections, ergo some automatic loading would be
tricky.

31

Spring Framework Database Interfaces

The class SimpleJdbcInsert provides a mechanism, which basically looks
up the table structure in the SQL database, creates INSERT statement and fills
it with data from SqlParameterSource, in this case BeanPropertySqlParam-
eterSource, which expects a bean instance (see 3.1 on page 23) — from that
it extracts the properties (or columns in SQL terminology).

3.4.5 Spring Data Neo4j

This project3 integrates Neo4j into the Spring Framework. I used it in the
beginning of the development, but later found out, I would need to fall back
on lower API to be able to do inserting of nodes really fast.

Due to the special nature of the project, Spring Data Neo4j was not actually
very useful, as the business logic basically needs to upload millions of nodes and
relationships in a short period of time.4 As it proves, with more abstraction
layers one gets also less efficiency. But for standard application development
it is probably very useful as it can handle the transactions, domain object
transformations etc. To give an example, there is a code snippet that was used
in the batch DAO before it was exchanged for BatchInserter:

import org . spr ingframework . data . neo4j . support . Neo4jTemplate ;
2

// . . .
4

pub l i c void neo In s e r t (Group [] groups) {
6 t ry (Transact ion tx = graphDb . beginTx ()) {

f o r (Group group : groups) {
8 /∗ With the f o l l ow i ng a bean in s t anc e i s ”simply ” transformed in to

a node . One can supply annotat ions on the bean c l a s s , which
can even conta in Cypher qu e r i e s or other h in t s . ∗/

Group u = neo4jTemplate . save (group) ;
10 }

tx . s u c c e s s () ;
12 }

}

3Official website: http://projects.spring.io/spring-data-neo4j/
4Very insightful series of articles on this topic by one of the programmers of the

Neo4j team, Michael Hunger: http://jexp.de/blog/2013/05/on-importing-data-in-neo4j-
blog-series/

32

4 Neo4j

In this chapter, we will get a look on the structure of data through the in-
teractive Neo4j web interface (web console), analyze the queries, learn about
how BatchInserter was used and look into other related topics. But first
let us have an overview on our data structure as seen by Neo4j. Firstly, it is
important to mention that in Neo4j, not all the nodes, not even those of the
same type (label), have to have the same columns. Logically, the equivalent to
having a null value in SQL is not having the column at all in Neo4j node. But
in this case the same structure is kept for all the nodes of a same type, except
for the fact that the columns related to relations are not present, as they are
actually forming relationships (directed edges of the graph).

Labels

As defined in cz.pkopac.thesis.neo4j.Labels:

ITEM is one data node, can be CHILD_OF another ITEM. Also, has an owner
(relationship IS_OWNED_BY).

GROUP represents user group with privileges, can have relation HAS_ACCESS

to an ITEM or to another GROUP, which effectively means it is its child
and inherits all the access rights from it.1

USER represents one user. The user can be MEMBER_OF a GROUP, can have
direct access onto an item through HAS_ACCESS, can have FOLLOWS on an
ITEM and can be owner of ITEM, THREAD or REPLY.

THREAD is a newly created discussion topic on an ITEM — this relationship
is declared as BELONGS_TO.

REPLY is a comment, which replies on a topic and is CHILD_OF a THREAD.
Most importantly, these two labels have a property updated, which is
used for sorting in the newsfeed.

1Originally, there was also relationship CHILD_OF as with ITEM structure, but later I re-
alized that having a continuous path of HAS_ACCESS can be employed for having a simpler
and efficient Cypher query. On the contrary, having the same relationship as with ITEM
would result in hard-to-constrain path resolution.

33

Neo4j Queries for the Newsfeed

Relationships

As defined in cz.pkopac.thesis.neo4j.Relationships

(only listing possibilities, for details see the previous list):

MEMBER OF (:USER)->(:GROUP)

IS OWNED BY (:ITEM)->(:USER), (:THREAD)->(:USER),
(:REPLY)->(:USER)

HAS ACCESS (:USER)->(:ITEM)

BELONGS TO (:THREAD)->(:ITEM)

CHILD OF (:ITEM)->(:ITEM)

FOLLOWS (:USER)->(:ITEM)

4.1 Queries for the Newsfeed

The Neo4j Community comes with a handy utility, which allows the user (in
this case database architect or data layer designer) to interact with the database
directly with queries, as MySQL Workbench does. Once you have successfully
started the standalone version of the database server, it offers you a Uniform
Resource Locator (URL), which will lead you to a web interface very useful for
directly testing your queries (see fig. 4.1).

Let us go now through several queries and accompanying visualizations, not
only to better understand the domain of the problem, but also to learn how
the queries used in the application were built up.

In the first picture (fig. 4.2) we can see simple selection of groups, which
are hierarchical. It selects (or better said in Neo4j terminology — matches)
actually just the first ones, they’re not even at the top of the group tree —
which does not really matter as for the database it is a general graph, not
a tree. It is limited to see just a few, not hundreds of them. The same way we
can project structure of items, threads with replies or combine it.

1 MATCH (g :GROUP) RETURN g LIMIT 10 ;

34

Neo4j Queries for the Newsfeed

Figure 4.1: A view of Neo4j web console — fullscreen. On top queries are
entered and results are visualized in a stream in the rest of the display.

Figure 4.2: Example of groups in a hierarchy; our testing user is a member of
group id 2003 (the user shown in the next figure.)

35

Neo4j Queries for the Newsfeed

What is more interesting (and harder) is the task to find out, where the
user has the access privileges. That is defined by the relationship HAS_ACCESS,
which starts on user and ends on an item. You can see a partial visualization
of the relevant testing data on fig. 4.3. Let me now introduce the part of the
query, which finds the access rights:

1 START u=node (1000)
MATCH (u :USER) − [:MEMBEROF | : HAS ACCESS∗]−>(d i r e c t :ITEM)

3 WITH d i r e c t // sending f u r th e r the d i r e c t l y a c c e s s i b l e
MATCH path=(d i r e c t)<−[:CHILD OF∗0 . .] − (a c c e s s i b l e :ITEM)

5 WHERE none (l i n k IN t a i l (nodes (path))
WHERE () − [:HAS ACCESS]−>(l i n k))

7 RETURN a c c e s s i b l e ;

This query basically tries to find out, whether the user has access through
a group privileges or their own privileges and also traverses the children, con-
sidering possible changes in access rights settings.

To explain this complex query in detail we must undergo a short lesson on
a few advanced abstractions used in the Cypher language, which is very similar
to the constructs in SQL, meaning that a reader familiar with that shouldn’t
find any difficulties.2

WITH can manipulate the data before passing to subquery (Cypher really does
not allow subqueries in brackets as SQL does); in the easiest case it just
selects what variables are passed.

path= is saving of the matched paths into collection.

* or *0.. or *1..5 similarly to regular expressions, it is repeating of the re-
lationship 1–N times, or 0–N times. One has to be very careful not to
get into infinite searches here, though.

tail(list) extracts the rest of a list, after the head is removed.

all(p IN list WHERE condition) is true if all of the conditions for members
of the list are true, alternatively none() could be used with negated con-
dition, which would have the same effect (even in terms of performance).

| is a logical OR, allowing to match different relationships.

2If you are missing any knowledge on Cypher query language, please refer to the Cypher
Language Quick Overview, where the basics were explained (2.3.1 on page 16).

36

Neo4j Queries for the Newsfeed

NOT is logical negation.

AS is the alias, can be also used to filter values of variables with filter functions.

So, what the above-mentioned query does precisely is the following (see
figure 4.3 for visualization):

1. Start with the node ID 1000, save it as u (our user).

2. Find all nodes that this user has access/member of path of arbitrary
length.

3. We are also interested in all the children of those nodes.

4. But neither these children, nor any nodes on the path from the node,
where the user has direct access, should ever have a relation HAS_ACCESS.
That would mean different access privileges.

5. Return all of these child nodes and direct access nodes, where the user
has access, limit the number of results to 100.

Consideration of Further Optimizations

While researching the knowledge on how to optimize the recursive queries with
Cypher I found many recommendations, so why not list some of them:

1. Don’t pass unnecessary results onto subqueries with WITH. This recom-
mendation is especially worthy, if the passed variables contain many
nodes — if they are not necessary for matching, then they simply take
precious memory space needlessly.

2. To avoid combinatorial explosion, use shortestpath(). Imagine using
a match (a)<-[r:REL*]-(b), when the graph has cycles. That would re-
sult in an infinite loop. But from definition, trees don’t have cycles. Even
so, when multiple paths are possible in dense graphs, all combinations
of those would match. But fortunately again, trees are already kernels,
meaning there can’t be two paths between two nodes. In other words,
this case can’t happen in our problem domain. To be sure that it does
not happen by mistake, relations have different labels and are explicitly
named in matches.

37

Neo4j Queries for the Newsfeed

F
igu

re
4.3:

d
efi
n
in
g
resolu

tion
of

access
righ

ts
is

th
e
h
ard

est
p
art.

H
ere,

w
e
can

see
th
e
u
ser

togeth
er

w
ith

all
th
e

tree
stru

ctu
re

th
ey

can
access.

A
lso,

n
otice

th
e
yellow

grou
p
s
—

th
e
u
ser

is
m
em

b
er

of
a
grou

p
,
w
h
ich

is
a
su
b
grou

p
of

a
h
igh

er
grou

p
,
w
h
ich

h
as

access
on

an
item

w
ith

id
16000;

th
erefore

th
e
u
ser

is
ab

le
to

access
th
is

item
an

d
its

ch
ild

item
,
b
u
t
n
o
fu
rth

er
ch
ild

ren
,
as

th
is
ch
ild

h
as

alread
y
d
iff
eren

t
ran

ge
of

access
righ

ts
eff

ectively
cu
ttin

g
off

ou
r

ex
am

p
le

u
ser.

38

Neo4j Queries for the Newsfeed

F
ig
u
re

4.
4:

B
u
t
w
h
at

w
e
ar
e
re
al
ly

in
te
re
st
ed

in
ar
e
th
e
co
m
m
en
ts

an
d
th
re
ad

s,
so

on
ce

w
e
k
n
ow

w
h
er
e
w
e
do

h
av
e

ac
ce
ss
,
w
e
m
ig
h
t
w
an

t
to

re
tr
ie
ve

th
os
e.

T
h
er
e
is
on

e
I
T
E
M
w
it
h
tw

o
T
H
R
E
A
D
s
w
it
h
m
u
lt
ip
le

R
E
P
L
ie
s
in

th
e
p
ic
tu
re
.

39

Neo4j Queries for the Newsfeed

3. If it is a constraint, put it into WHERE; if it should be returned, then into
MATCH. This not only helps clear the query for easier reading by humans,
but may have potentially positive effects on performance.

4. Don’t use expensive operations as DISTINCT or ORDER BY. Well, unfortu-
nately, we can’t finish our task without ordering.

4.1.1 The Final Global Query

Now that we have seen, how to get the ITEMs, let us now skip to the final
implementation of the global newsfeed in Neo4j:

1 START u=node (1000)
MATCH (u :USER) − [:MEMBEROF | : HAS ACCESS∗]−>(d i r e c t :ITEM)

3 WITH d i r e c t
MATCH path=(d i r e c t)<−[:CHILD OF∗0 . .] − (a c c e s s i b l e :ITEM)

5 WHERE none (l i n k IN t a i l (nodes (path))
WHERE () − [:HAS ACCESS]−>(l i n k))

7 WITH a c c e s s i b l e
// Here you can see that by s p e c i f y i n g p o s s i b l e l ength o f
r e l a t i o n s h i p as 0 we are p r a c t i c a l l y merging THREADs and
REPLies in to one c o l l e c t i o n − comment .

9 MATCH (a c c e s s i b l e)<−[:BELONGS TO]−(t :THREAD)
<−[:CHILD OF∗0 . . 1] − (comment)

11 RETURN comment ORDER BY comment . updated sk ip 100 l im i t 50 ;

The new part in that code is the second one, where we are matching all the
THREADs of the accessible ITEMs, merging them with their REPLies and sorting
by time they were updated. This way we get the final result — the newsfeed
of comments.

Note that even though we are skipping and limiting, all the matching nodes
from the query must be fetched and held in the database cache and then sorted.
If we leave the sorting out, then the query is much faster, as we just receive
a cursor on which we can iterate – the database could fetch the nodes lazily.

40

Neo4j Queries for the Newsfeed

Figure 4.5: Final result — newest comments. does not actually look quite
graph-like, because we are now retrieving only those separate nodes, and throw-
ing away all the other relationships and the nodes we used on the way to find
comments with the query.

4.1.2 Final Followed Query

1 START u=node (50)
// Only f o l l owed items , p l e a s e

3 MATCH (u :USER) − [:FOLLOWS]−>(f o l l owed :ITEM)
WITH fo l lowed , u

5 MATCH (u :USER) − [:MEMBEROF | : HAS ACCESS∗]−>(d i r e c t :ITEM)
WITH d i r e c t , f o l l owed

7 // Only a c c e s s i b l e c h i l d nodes o f fo l lowed , a c t ua l l y
MATCH path=(d i r e c t)<−[:CHILD OF∗0 . .] − (f o l l owed)

9 <−[:CHILD OF∗0 . .] − (i n t e r e s t i n g :ITEM)
WHERE none (l i n k IN t a i l (nodes (path))

11 WHERE () − [:HAS ACCESS]−>(l i n k))
WITH i n t e r e s t i n g

13 MATCH (i n t e r e s t i n g)<−[:BELONGS TO]−(t :THREAD)
<−[:CHILD OF∗0 . . 1] − (comment)

15 RETURN comment ORDER BY comment . updated sk ip 100 l im i t 50 ;

In this last, but longest, Cypher query we already can recognize most of the
previous code. The new part adds filtering by FOLLOWS relationship. Actually,
it adds a starting point, just after we select the user, who wants the news-
feed, we check his followed items and continue from there on with checking all
the children, not forgetting about the access rights. In reality we are doing
a multilateral match on the nodes.

41

Neo4j Queries for the Newsfeed

Figure 4.6: So far, we were considering only the global newsfeed, but part of
the task is to fetch user-customized lists of updates on followed pages. To do
that we also need to add the FOLLOWS relationship. It is not very well visible
in the figure, because there is also the HAS_ACCESS relationship and the Neo4j
web interface just overlays them, which is not very user friendly.

42

Neo4j Neo4j BatchInserter

Indexing

It is worth mentioning that an index was created on the updated property
of both THREAD and REPLY before running the queries to test performance.
Supposedly, it should enhance performance on the sorting operation, but it is
not clear, whether the database really makes use of it.

Additionally, the performance was compared with a model that changed all
THREAD and REPLY nodes to COMMENT label and set index on this one instead;
no improvement was noticed, however, so the original solution was kept.3

1 CREATE INDEX ON :REPLY(updated) ;

Note on Database Profiling

For MySQL there exists the EXPLAIN command, which reveals the execution
plan to the advanced database user for optimizations (see section 5.3). Similar
functionality is unfortunately not so easy to find and is not mentioned in the
standard courses of Cypher. Yet, it exists. But even members of the Neo4j
team stated publicly that it is not well suited for usage at the moment and
that the interface is not very user friendly. Nevertheless, it might be useful for
fine-tuning queries.

In the figure 4.8, the first part just simply lists the items contained in
the result set. The second part, let us call it the ”call stack”, contains the
execution plan; ie. stack of functions used by the engine. It is very complicated
and mostly unexplained anywhere in detail as far as I know. But one can for
example use the information about how much the query hits the data in certain
parts and maybe decide to rewrite it, so that it hits less, resulting in less reads
from permanent storage.

43

Neo4j Neo4j BatchInserter

4.2 Neo4j BatchInserter

Since we needed to generate and save a lot of nodes fast4, the previously intro-
duced manner with creating nodes through template using automatic mapping
could not be used, as it took too much time.

But Neo4j embedded can be run in BatchInserter mode which does not
consider transactions and has several restrictions. At the same time, however,
it allows saving the nodes orders of magnitude faster than the normal approach.

In the following snippet one can see how easily the BatchInserter is used
for both node and relationship cretion. If a relationship is being created, the
end nodes already have to exist, otherwise an exception is thrown.

1 pub l i c void neoBatchInsert (Group [] groups) {
// gdbm i s my proxy that manages database i n s t an c e s

3 BatchInse r t e r i = gdbm . ge tBatch In s e r t e r () ;
Map<Str ing , Object> mapping ;

5 f o r (Group g : groups) {
mapping = MapUtil .map(”name” , g . getName ()) ;

7 i . createNode (g . ge t Id () , mapping , Labe ls .GROUP) ;
// nu l l va lue => no r e l a t i o n s h i p

9 i f (g . getParent () != nu l l) {
i . c r e a t eRe l a t i on sh i p (g . ge t Id () , g . getParent () , Re l a t i on sh ip s

.HAS ACCESS, nu l l) ;
11 }

}
13 }

3There is also a possibility to use so called legacy indexing, but not through Cypher. As
it did not seem as a standard feature it was not used for the testing. More on this you can
find in the documentation [Neo4j(2014)].

4For more information on fast importing data into Neo4j, see this web address:
http://www.neo4j.org/develop/import

Figure 4.7: Comparison of time taken (in milliseconds) to save 20 000 items
(”flushing” is importing CSV into the MySQL database).

44

Neo4j Neo4j BatchInserter

F
ig
u
re

4.
8:

T
h
e
d
ep
re
ca
te
d
w
eb
ad

m
in

co
n
so
le

in
te
rf
ac
e
p
ro
v
id
es

a
fe
at
u
re

ca
ll
ed

P
R
O
F
I
L
E
.
A
s
w
it
h
E
X
P
L
A
I
N
on

e
si
m
p
ly

ru
n
s
th
ei
r
q
u
er
y
w
it
h
th
is
ke
y
w
or
d
in

fr
on

t
of

it
to

ge
t
a
li
st
in
g
si
m
il
ar

to
th
e
ab

ov
e
d
ep
ic
te
d
on

e.
(S
cr
ee
n
sh
ot

w
as

in
ve
rt
ed

to
b
et
te
r
fi
t
th
e
p
ri
n
te
d
m
ed
iu
m
.)

45

Neo4j Neo4j BatchInserter

As you have seen in the figure 5.1, the saving is really fast. The ”flushing”
actually runs LOAD DATA INFILE, so one should add that to MySQL perfor-
mance (this loading mechanism will be explained in section 5.4 on page 56).
Also, worth mentioning is that indexing is run on BatchInserter.shutdown(),
although we do not have time measurements for that, it did not take too long.
The complete generation time also contains around 1 second that the tree gen-
erator takes, because it uses random number generator and that is a relatively
(but linearly) costly operation

The best advantage of this API is that it saves even 10 times faster than
the LOAD DATA INFILE instruction that was later used for SQL. Relative dis-
advantages, which we have to be aware of:

1. If the inserter is not shutdown() properly, then the database is corrupted.

2. It is not thread-safe; only one thread should use the inserter for one
database at a time.

3. For maximum performance one has to be careful about memory and cache
settings.

Another possible API option is the BatchDatabase, which has similar fea-
tures as the inserter and keeps the normal database API; according to the
documentation it reaches lower performance, however.

As a standalone alternative one can use an application available that reads
data from Comma-Separated Values (CSV) files and uploads the respective
nodes and relationships very fast. See [Hunger(2014)]. In the online article
[Hunger(2012b)] the author states performance of 1 million nodes imported
per second. But his approach involves different API and parallelization.

46

5 MySQL

In the chapter about MySQL we will see, how the database was used for the
task at hand. Mostly, we will explain the same things we went through in the
previous chapter, just with another database and language. The exception are
the stored procedures, which were not used for Neo4j as it was embedded.1

Note on Primary Keys

There are two basic approaches to setting primary keys on tables in SQL; either
the database designer utilizes some distinctive column that has a unique value
for each row, or you can use a combination of such columns, which are unique
only together as the combination. The other approach is to use an artificial
primary key, an auto-incremented integer key.

The first approach is clearer in terms of design and minimization, but the
second is often more practical. For this model a combination was used. For the
tables that represent the same entities as nodes in the graph database an id
was used. For tables representing many-to-many relations a composite primary
key made from the two foreign keys was used, because a special id would be
absolutely redundant in this case. This composite key creates also indexes on
both columns, so they can be used later for SELECT conditions.

But even where ids were used, they could not be auto-incremental. That is
because while using two database types at once the interoperability of the data
is important. In the beginning of the development, there were auto increment
primary keys on all the tables. But that meant that the keys were unique only
per table. On the other hand, while importing into Neo4j, that database keeps
node ids unique over the whole database. A solution would either be to add the
per-table unique id as a property in Neo4j or to switch off auto-incrementation
in MySQL and generate the indexes manually. The latter was chosen due to
performance reasons, because the previously explained BatchImporter uses
node ids for creating relationships.

1But there actually are two possibilities to do it even in Neo4j, though not with Cypher,
analogically to SQL. One can use either Java API for RESTful Web Services (JAX-RS), which
deploys Java Virtual Machine (JVM) (not only Java) code to the server; or as mentioned
before writing your own layer above the embedded server enriching REST endpoints.

47

MySQL

Figure 5.1: The above depicted model contains all the SQL tables with many-
to-many tables as well. The relations are connecting the tables, not the exact
columns, so in this respect the diagram can be a bit confusing. The little keys
stand for primary keys. The red dots highlight the foreign keys. Empty red
dots mean the foreign key can be null. The relations ||—< are one-to-many.

48

MySQL

Tables

The table structure was created to be similar to the original application, but not
completely the same. Simplifications were made, as we needed to study only
a certain part of the application and did not need support for other features.
Mostly, the model is self-explanatory.

commentsThreads contain the topics of discussion. There was a possibility
to split the common parts with the replies into a common comment table
and use inheritance (as it is done in the original application). The simpler
model was used, though.

commentsReplies can only exist under threads.

groups are interesting, because they contain a recursive relation, which creates
the hierarchical tree structure. Note that SQL is general enough to allows
this, but does not have any constraints which could be used to check
that cycles exist, so such problems would have to be detected by the
programmer.

items are also connected in a hierarchical structure. In the model

users represents our virtual users; would be used for login etc.

Many-to-many Tables

These tables represent relations, which can not be expressed as foreign keys
(one-to-one or one-to-many). Using the both foreign keys as the primary key,
which must be unique immediately gives us certainty that there will not be any
duplicity in these relations, which could have been created by the generator,
which generates the data pseudo-randomly.

following can exist between the user and an item.

gaccessrights add access right for an item to a group.

membership of a user in a group.

uaccessrights add access right for an item to a user; it can not be merged
with gaccessrights as the foreign key references a different table.

49

MySQL Stored Procedures

Indexes

Indexes are very important to speed up the queries above any model. They
lower the computational complexity — it is not necessary to traverse the whole
table and read all values to find a certain row when we have an index on the
requested column — a structure that can be searched very quickly (as for
example a hash map) containing direct addresses on the rows. It also should
make sorting of a table faster, although it is unclear, whether it works while
sorting results of a UNION, too.

All the indexes that were necessary for the queries were actually already
created, because they were part of a foreign or primary key.

5.1 Stored Procedures

To lower the traffic between the database and the application, two ”recursive”
querying procedures were moved to the SQL database.2 This traffic would grow
with complexity of O(n · k), where n is the number of rows necessary for the
current traversal and k is the constant time per returning the result set over
the network.

Note that while declaring procedures through a client like MySQL Work-
bench, you have to use the command DELIMITER to change the delimiter of
queries, so that the semicolons are not interpreted as the end of the procedure.
While using JDBC or similar connectivity that is not necessary3, because one
can directly send the procedure as a whole.

The algorithm is actually a cycle; it was transformed from the recursive one,
so that it was not necessary to change the database settings of the maximum
recursive stack. Also, we theoretically will never know, how many cycles it
will actually take to reach the closest ancestor group with access privileges,
so setting a hard boundary is tricky. The stop condition is the null value of
the parent column, which denotes the root group. If there were a cycle in the
data, the procedure would be caught in an indefinite loop.

2We could use WITH RECURSIVE instead, if that was supported by MySQL, see theoretical
section 2.1.1.

3And not even possible, since the DELIMITER command is only valid on the client like
MySQL Workbench or mysql in the command line.

50

MySQL Stored Procedures

getGroupAncestors

In this procedure we want to fetch all the IDs of the transitive closure made
from ancestors of a group. One should not forget to define what should happen
if no row is found for a variable. A good choice is setting it to null instead of
nothing happening, which is the default behavior that can lead to hidden bugs.

1 CREATE PROCEDURE ‘ getGroupAncestors ‘ (IN g i BIGINT(20))
BEGIN

3 DECLARE cur BIGINT(20) ; −− Create l o c a l v a r i a b l e
DECLARE CONTINUE HANDLER FOR NOT FOUND SET cur = NULL;

5 SET cur = g i ;
WHILE cur IS NOT NULL DO

7 −− Find the parent o f cu r r en t l y s e l e c t e d group .
SELECT g . parent INTO cur FROM groups AS g WHERE id = cur ;

9 −− I f the parent i s not nu l l , r e turn i t .
IF cur IS NOT NULL THEN

11 SELECT cur ;
END IF ;

13 END WHILE;
END;

getParWithAccessRights

CREATE PROCEDURE ‘ getParWithAccessRights ‘ (IN i t I d BIGINT(20))
2 pro c edu r e l ab e l :BEGIN −− Labe l ing enab l e s premature e x i t

DECLARE cur BIGINT(20) ;
4 DECLARE CONTINUE HANDLER FOR NOT FOUND SET cur = NULL;

SET cur = i t I d ;
6 WHILE cur IS NOT NULL DO

IF EXISTS (SELECT 1 FROM ga c c e s s r i g h t s AS gar WHERE gar .
itemId = cur) THEN

8 SELECT cur ; −− Once we have the node , we can return
LEAVE proc edu r e l ab e l ;

10 ELSEIF EXISTS (SELECT 1 FROM uac c e s s r i g h t s AS uar WHERE uar .
itemId = i t I d) THEN

SELECT cur ; −− The same with user a c c e s s r i g h t s .
12 LEAVE proc edu r e l ab e l ;

END IF ; −− I t e r a t e up the Item t r e e s t r u c tu r e
14 SELECT i . parent INTO cur FROM items AS i WHERE i . id = cur ;

END WHILE;
16 END

51

MySQL Queries for the Newsfeed

5.2 Queries for the Newsfeed

Let us begin with the explanation of the global newsfeed fetching, as it is
simpler and without the constraints on the ”follow” relation, which will be
explained shortly as well.

We begin with selecting all the comments from all the items, ordering them
by the ”updated” column:

SELECT t . id , t . updated , t . itemId , t . content , t . owner , t . c r e a t i on
2 FROM commentsthreads as t

−− Merge the r e s u l t s . The columns must be the same
4 UNION ALL (SELECT

r . id , r . updated , t . itemId , r . content , r . owner , r . c r e a t i on
6 FROM commentsrepl ies AS r

INNER JOIN commentsthreads AS t ON r . threadId = t . id)
8 ORDER BY updated ;

Now, we can do a short trip to Java and JDBC, as it is important to mention
that we probably do not want to fetch all the comments at once, which could
be thousands to millions records. Instead we set the parameters accordingly,
so the data is sent only once it is needed (lazy cursor approach):

PreparedStatement ps = conn . prepareStatement (sq lS t r i ng ,
2 Resu l tSet .TYPE FORWARDONLY, // important as we l l

Resu l tSet .CONCUR READONLY)
4 /∗ This constant should be s e t to something reasonable , l i k e a 100

or 1000 . I f i t i s too low i t can be lower ing performance as
we l l . ∗/

ps . s e tFe t chS i z e (FETCH SIZE LIMIT) ;

Having all the possible updates sorted, we have to check, where the user
has the access right, we definitely do not want to show anything that the user
should not see. As it is possibly very costly, we are running it as the secondary
filter. There are three types of access rights possible:

1. direct privileges granted to the user,

2. privileges granted to a group that the user is a member of,

3. privileges of ancestor groups of the group from previous point.

52

MySQL Queries for the Newsfeed

We can begin with the first case (it is a basic SELECT):

1 SELECT uar . itemId FROM uac c e s s r i g h t s AS uar WHERE uar . use r Id = ?

For the second and third case, we will select all the groups that the user
belongs to. We are not selecting their access rights immediately (with a JOIN),
because we need above all their IDs to be later able to traverse the group
structure to find all their ancestors:

1 SELECT m. groupId FROM membership AS m WHERE m. use r Id = ? ;

3 −− us ing the group IDs we got from the prev ious query :
CALL getGroupAncestors (?)

Now, we can merge all the group IDs, which provide some access rights to
the user and prepare an SQL query that will give us all the directly accessible
items.

SELECT gar . itemId FROM ga c c e s s r i g h t s AS gar WHERE gar . groupId IN
(? , ? , ? , . . .)

Notice, that there have to be as many question marks as we got unique IDs,
from which we want to fetch the relations. This requires dynamic building of
the SQL query and prohibits its caching (of the compiled code). Unfortunately,
because it can be each time totally different from the point of view of the
compiler.

The other possible solution would be using singular queries, but that is even
less efficient, although they can be sent at once. Another solution that could
occur to us is batching the queries. But unfortunately that is only possible for
execution of statements that are meant to change the state of the database.
Statements that return a result set are not allowed to be batched.

So after this preparations we know, where the user has a direct access and
we also have a cursor on a long list with all the comments sorted, we can start
browsing them and checking the access rights. We do that by looking up the
closest ancestor with access right settings in the tree structure. That is exactly
what our previously defined procedure does, so we can just call it with CALL

getParWithAccessRights(?).

53

MySQL Queries for the Newsfeed

Next, we check if the ancestor of the item to which the current comment
belongs to is contained in the set of directly accessible items we already have.
If yes, we add it to the result and continue checking the next one, if we do not
have enough yet, once we do or there are no more comments, we stop.

Followed Filtering

So that was the algorithm behind the global newsfeed, the followed one adds
more pre-filtering of the list, so we receive updates only on those pages that
are accessible and at the same time followed by the user.

First, let us find out, what the user follows:

1 SELECT f . itemId FROM fo l l ow i ng as f WHERE f . use r Id = ? ;

That was too easy maybe — we nearly forgot about all the child items; but
how to recursively add all of the children (again a transitive closure)? This time
we can use the BFS algorithm to lower the number of queries to the maximum
of the depth of the subtree per followed item (a similar approach is taken in
the original application):

1 SELECT i . id FROM items as i WHERE i . parent IN (? , ? , ? . . .)

We should run this for each level, using the fetched IDs as new arguments
and storing all of them merged as well until we will not get any new IDs. Then
we can merge all the IDs of the subtrees.

One could also think about the problem with too long queries, but this
problem is quite still far as the maximum default length on MySQL is 1 MB
and by configuration it is actually possible to maximize it up to 1 GB using
max_allowed_packet. [Oracle(2014)]

So now that we have all the interesting items, we will fetch all the comments,
but this time with a WHERE condition on the Ids. As you can see the condition
is actually inserted twice — on the first query and the JOIN inside the second.
According to the rule: the less that is fetched, the better. Repeating the same
condition in itself is not an issue.

54

MySQL Profiling with EXPLAIN

Figure 5.2: In this figure we can see that MySQL does not have available index
and has to resort to row-by-row comparison, which results in 1001 hits.

1 SELECT t . id , t . updated , t . itemId , t . content , t . owner , t . c r e a t i on
FROM commentsthreads as t

3 −− This i s the cond i t i on
WHERE itemId IN (? , ? , ? . . .)

5 UNION ALL (SELECT
r . id , r . updated , t . itemId , r . content , r . owner , r . c r e a t i on

7 FROM commentsrepl ies AS r
INNER JOIN commentsthreads AS t ON r . threadId = t . id

9 −− And again f o r the seconds part :
WHERE itemId IN (? , ? , ? . . .))

11 ORDER BY updated ;

The rest of the process is the same as with the global newsfeed. Actually,
it is only one method with a boolean switch in the implementation.

5.3 Profiling with EXPLAIN

MySQL offers a method to research the execution plan of the query, it is similar
in usage to PROFILE from Neo4j, but much easier — one can run it in a standard
client as the Workbench or Command Line Interface (CLI) mysql. Also, it is
more user-friendly, because the results are server in a neat form, see fig. 5.2
and 5.3. After we run all our queries through EXPLAIN we will have insight in
possibilities of speeding up JOINs, conditions and sorting.

55

MySQL MySQL LOAD DATA INFILE

Figure 5.3: In this case the query is similar to the one from the previous figure,
but this time there is already defined a useful index, which can be used and
therefore only 6 rows are hit.

5.4 MySQL LOAD DATA INFILE

Firstly, during the first iterations of development the application was using the
normal INSERTing process. But that is actually not the most efficient way how
to import data into the MySQL database.

Much better approach is to save the data on the hard drive into CSV files
and then after all is generated, this special instruction is called and the database
loads the file:

1 LOAD DATA INFILE ? INTO TABLE items FIELDS TERMINATED BY ’ , ’
ENCLOSED BY ’ \” ’ (id , owner , name , type , content , c r ea t i on ,
updated , parent) ;

It is important that the database can access the file and it should be an
absolute path on the file system. Also notice, that the command has a similar
structure as INSERT, naming the order of the columns as they are saved in the
CSV file, but it also has some features related to format of the data.

This can be up to 20 times faster than the normal INSERT as the official
MySQL documentation claims. It is the best option that I found for such a bulk
import and surprisingly the doubled writing to the drive is not that slow. See
the comparison of times on figure 5.1 on page 48, where there are times of
writing to the CSV file and then flushing into the SQL database compared to
the time taken by BatchInserter.

56

6 Object-oriented Design

The project was based on Object-Oriented Programming (OOP). As Java,
which is the implementation platform, is an object-oriented language, this is the
natural approach. There were used nearly all the elements of this design that
one can think of and the concrete utilization will be described in the following
sections shortly. We also should not forget about multiple design patterns
typical for OOP; those will be listed and explained only superficially, for in
detail description you can refer to specialized literature like [Pecinovský(2007)]
or [Metsker(2006)].

6.1 Domain Objects

For the representation of the reality of the application and its data we model
each different element type as a class. The relations between the elements could
be modeled as properties of the elements or as virtual elements holding the IDs
of the endpoints. The second possibility was chosen, because it is closer to the
representation in SQL tables and makes it easier (more efficient) to bulk insert
data. The list of DO classes follows:

Package cz.pkopac.thesis.db

• Following

• GAccessRight

• Group

• Item

• Membership

• Reply

• Thread

• UAccessRight

• User

57

Object-oriented Design Data Access Objects

6.2 Data Access Objects

Repositories or in other words DAO are the logic inside the data layer. The
pattern dictates they make public methods to do individual tasks like Dog

findDogByID(int id) or createNewHouse(House h). In the performance
testing application there are three types of DAOs:

• batch insertion,

• newsfeed fetching,

• database operations.

Their architecture and function will be explained in the following pages to
familiarize the reader with the design of the data layer of the project. All the
DAOs that should be used in the application have their respective interfaces,
and should be used only through those. Then, when there is a need to change
the DAO for a different implementation, it is very easy. The interfaces are
located in the package: cz.pkopac.thesis.testing.services

Batch Insertion

There are several classes used for fast insertion; first, we will describe the main
interface. It is relatively small with just one method, but is generic, so that it
can work with any domain object:

1 pub l i c i n t e r f a c e ITBatchService<T> {
pub l i c void ba t ch In s e r t (T [] l i s t , boolean f l u s h i n g) ;

3 }

The implementing method is supposed to insert the objects from the list into
the databases that are used by the project. The parameter flushing denotes,
whether it is the last insert (that is important to know, because we will need
to flush the CSV files into SQL database in the implementation).

This is a general interface and there are inheriting ones for each domain
object. Those actually do not even need to do anything more than just specify
the DO.

58

Object-oriented Design Data Access Objects

1 pub l i c i n t e r f a c e ITGroupService extends ITBatchService<Group>{

3 }

Having a special interface for each DAO service is important for the inversion of
control pattern, where we define the the DAO as a @Repository implementing
certain interface and then the container is able to auto-wire properly these
DAOs wherever they are needed. The following support classes are placed in
the package cz.pkopac.thesis.testing.dao.support.

For the batch inserting the class DBBuffer<T> was added, where the objects
are stored in a queue and then after one workload unit is prepared, sent to the
batching DAO. It manages flushing/committing of the inserted objects with
the DAOs.1

To program the individual inserting DAOs, which have all similar function,
the common code was extracted from the DAOs to upper classes. The class
TAbstractParallelDAO implements simple consumer-producer parallelization
pattern and leaves the logic to be programmed by inheriting classes. Saving
to SQL runs in the current thread and to Neo4j in a daemon thread.2 We
synchronize at the end of each workload unit. This class also handles counting
time for profiling, how long saving in each database takes.

The class TCSVParalelDAO extends the previous and adds the functionality
of saving data into CSV files. Then, when flushing the DAO, the CSV data is
saved into the database.

Before it was switched to the TCSVParalelDAO design, the application used
SQL SimpleJdbcInserter — for that the DAOs used a class implementing
the insertions called TGeneralDAO, capabilities of which were used through
composition pattern.

While using all this support only the distinctive logic associated with the
concrete domain object class stays in the final DAOs:

1It would be possible to make this more efficient by using thread safe queues, but when
the interface was designed, BatchStatements for SQL were used, which require to set all the
batch data first and then execute it once after a certain amount.

2I did not parallelize with the generator logic, even though that would be possible, because
the most time-consuming operations are the I/O-related ones and those had to be done in
parallel threads.

59

Object-oriented Design Data Access Objects

1 @Override
pro tec ted void sq lBa t ch In s e r t (Item [] i tems) {

3 f o r (Item i : i tems) {
getCsvTmpWriter () . addRecord (i . get . . .) ;

5 }
}

The method getCsvTmpWriter() used in the above code returns an object,
which manages saving a CSV file for the SQL and is prepared by the parent
class. For Neo4j only the transformation needed for the BatchInserter is
needed to be written:

@Override
2 pub l i c void neoBatchInsert (Item [] i tems) {

BatchInse r t e r i = gdbm . ge tBatch In s e r t e r () ;
4 Map<Str ing , Object> mapping ;

6 f o r (Item i t : i tems) {
// 1) prepare mapping o f p r op e r t i e s

8 // 2) c r e a t e node
// 3) c r e a t e any r e l a t i o n s h i p s that are needed

10 }
}

Newsfeed Fetching

The common interface is INewsfeed, all the newsfeed related code can be found
in package cz.pkopac.thesis.testing.dao.performance3

1 pub l i c i n t e r f a c e INewsfeed {
pub l i c Object fetchFollowedNewsFeed (long userId , i n t skip , i n t
l im i t) ;

3 pub l i c Object fetchGlobalNewsFeed (long userId , i n t skip , i n t
l im i t) ;

}

3As you see the methods return only Object which would be too general for a real
application, but there we want to know only how fast the requests are finished, we are not
really interested in the data itself. Also, because the test was supposed to be automated,
there was no need to visualize it, I tested that the data are correct only in the IDE.

60

Object-oriented Design Data Access Objects

Database Operations

To be able to switch Neo4j into batch mode on runtime and clean it, factory
bean has been used, the GraphDBManager. This class is a singleton, which
serves instances of the Neo4j database or BatchInserter according to the
current mode set. Firstly, I also considered using the proxy pattern, but that
would be unnecessarily complicated as the database API is really large. The
important methods of this class are the following:

pub l i c void setMode (boolean batch) ;
2

pub l i c GraphDatabaseService getDB () ;
4 pub l i c Neo4jTemplate getTemplate () ;

pub l i c Batch Inse r t e r g e tBatch In s e r t e r () ;
6

pub l i c void c l eanSto rage (S t r ing db f o l d e r) ;
8 pub l i c void shutdownAll () ;

According to the mode set by the first method the other three always check,
what instance of database to use with an internal method checkBatchMode. If
the mode has changed, then the internally stored instances are shutdown and
new ones are created and returned.

The second important class is DBOperationsDAO, which contains general
operations over DBs. Its interface is the following:

pub l i c i n t e r f a c e IDBOperat ionsService {
2 pub l i c void dropAndCreateAllTables () ;

4 pub l i c void c l e a rDup l i c i t i e s I nNeo 4 j (Re l a t i on sh ip s . . .
r e l a t i o n s h i p s) ;

6 pub l i c void restoreSQLIndexesAndRemoveDuplicates () ;

8 pub l i c void clearMySQLCache () ;
}

61

Object-oriented Design Generator

6.3 Generator

The program is written in such a way that different generators could be used
for testing using the DAOs and the user input with parameters of simulation
contained in an instance of Parameters. The class is a normal bean, similar
to DO classes, the only difference is that it has defined default values.

The interface for the generator is therefore very simple:

1 pub l i c i n t e r f a c e IGenerator {
/∗ De f i n i t i o n s o f cons tant s f o r p r o f i l i n g ∗/

3 pub l i c void generate (Parameters p , Experiment e , AggStopWatch sw
) ;

}

The first argument was already explained, the second one contains the instance
of the experiment process, so that updates can be sent to it using the public
method setProgress(...). The last is the aggregating stop watch, which is
used for measuring and storing profiling data.

In the implementation, called GeneratorSimple, the code is mostly proce-
dural and the algorithms will be described in section 7.2. The part interesting
from OOP point of view is maybe the generalized tree structure generator. As
there are two hierarchical structures — the items and the groups, in the de-
sign process it was beneficial to use just one code to generate them both. The
problem how to supply new instances for the algorithm was solved by using
the factory pattern:

pub l i c i n t e r f a c e IFactory<T> {
2 pub l i c T getNew (long id , long parentId , Parameters p) ;
}

An instance of the class implementing the proper factory is then passed to
the algorithm. That effectively circumvents the problematic Java constructor.4

4In less strict languages, like JavaScript/ECMAScript it is possible to pass the constructor
(or any function) as an argument.

62

Object-oriented Design Experiment

6.4 Experiment

The Experiment class extends the Java Thread and contains the logic for
executing one experimental run. It sets up the databases, runs the generator,
runs the performance tests and saves the results in the bean Results, which is
then transported to the user through the web interface. It is also responsible
for any exception handling (default behavior is saving the exception into the
Results object).

The logic responsible for the generation of random content is separated into
the utility class RCUtil, which in turn uses a small utility Lorem Ipsum5 and
standard Java random number generation.

The results of the experiments are being held in the memory even after the
experiment has ended, but all the references to other used objects are thrown
away, so they do not stay in memory as well and the garbage collector can
delete them. For the storage a small DAO is used, which internally uses just a
List with the experiments and also returns the currently running experiment,
so that two of them are not running at the same time.

5Lorem Ipsum Library can be found at: http://loremipsum.sourceforge.net/

63

7 Simulations

In this chapter we will shortly describe the course of one experiment, with
interesting aspects of the implementation not directly related to the databases.

7.1 User Interface

Figure 7.1: User Interface.

To be user friendly the application offers a web
interface for the user to put in the simulation
parameters. This interface is very straightfor-
ward and explains the fields.

The technology behind this is the JSP with
Spring bean-enhanced forms, where a domain
object Parameters is bound to each field, is
validated and then sent further inside the ap-
plication, if the form is successfully submitted.

The handling is done by the Java class
ExperimentController, which also handles
requests for progress, because after the param-
eters are submitted, the user is redirected to
a page, which loads the results dynamically
from the server. As long as the results are not
ready, the interface checks the current progress
with the server and shows a progress bar.

The information about progress, includ-
ing the results are fetched using jQuery call
$.getJSON() from the server. On the server the
mapping recognizes that the client requested
a response of type application/json, so it returns
the object Results. Thanks to the Jackson li-
brary and its extension Databind the object is
automatically transformed into JSON and sent
properly to the client.

64

Simulations Data Generator

7.2 Data Generator

Once the experiment workflow is started by the user submitting the parameters
and after the database connections are ready, the generator creates a dataset
to use for later benchmarking of the databases.

The mainly researched in the generator was the tree structure of the items
and groups. As was previously mentioned, both the structures are generated by
the same recursive algorithm. As the original code is too long, we can maybe
have a look on a pseudocode only:

1 buildSubTree (parentId , ava i l ab l e , subtreeDepth) {
whi le (a v a i l a b l e > 0) {

3 newId = genera te Id () ;
createNew (newId , parentId) ;

5 depth = randomDepth () ;
i f (depth > 0) { // Should a subt ree be c rea ted ?

7 generate = randomBetween (1 , a v a i l a b l e) ;
buildSubTree (newId , generate , depth − 1)

9 av a i l a b l e −= generate ;
}

11 }
}

This way we are generating items whose parents already exist1 and we can
influence very easily the average depth of the tree. Exponential probability
distribution was used for the depth parameter, so that with the lower λ like
0.001 the tree is more wide and with closer to 1 it is more deep. Also the
subtree sizes are random, with uniform distribution; making approximately in
the beginning larger subtrees and smaller ones, when there are less elements
available.

At first I used a very simple algorithm, which just randomly set the par-

entId in the valid range. But it was not possible to use for not fulfilling
the condition of using only already existing parents and because it generated
sparse and deep trees — all the nodes had the same uniform probability of
having a child, so they had one or two. In such a system still there is one
root, but it is very unnatural. The real item trees are more wider, with some
subtrees bigger and some smaller. Comparison is on the next page.

1Important for saving relations into Neo4j, as the generator does not remember anything
and is streamlined as much as possible.

65

Simulations Data Generator

Figure 7.2: Naive document structure — as you can see this does not corre-
spond with reality, where users tend to create lists, rather then tens or hundreds
deep folders.

Figure 7.3: Better generator used — the final generator creates a believable
structure with some large subtrees with many lists of items and is also param-
eterizable.

66

Simulations Gathering the Results

Also, while generating random relations, one has to be aware of duplicities.
Those should not be present, but can happen, as the application does not
remember, what it has already generated (that would be too much data in
memory). Especially with access rights and following.

For the SQL database it was solved by making the primary key out of the
foreign keys in many-to-many tables (see section 5), but that would be not
enough in itself. While uploading the data with LOAD DATA INFILE (section
5.4) the optional parameter IGNORE has to be used, so that duplicate entries
are skipped.

With Neo4j and BatchInserter a different approach was taken — after
everything is inserted, the following query was run, deleting all the duplicate
relationships:

MATCH (c)−[r :REL LABEL]−>(t)
2 WITH COLLECT(r) AS r e l I d s , id (c) AS f i r , id (t) AS sec , count (∗)

AS relCount
WHERE relCount>1

4 WITH t a i l (r e l I d s) AS toDelIds , r e l I d s , re lCount
FOREACH (d in toDe l Ids | DELETE d) ;

7.3 Gathering the Results

The user is presented at the end with time profiling information from the run.
This is assembled by the class AggStopWatch, which was programmed to mimic
the Spring StopWatch testing utility, which did offer simple counting of time,
but had two problems — firstly, did not allow to count more tasks in parallel,
secondly did not allow to run the same task again and again, adding the parts
in a total sum. And this was what was needed, because some parts of the
application are parallel.

When all the simulations were run a spreadsheet processor was used simply
to make the final graph, even though originally it was planned to also make
graphed results directly in the application. But unfortunately that was only an
optional feature and much more time was spent on optimization of work with
the databases.

67

Part III

Results and Conclusion

68

8 Methodology

While running the tests, I tried to make the conditions for the databases as
close as possible, so that the results are comparable. It is important to say,
however, that the differences between the databases can be influenced by many
factors, above all the optimization of the queries and memory settings.

Most often the database performance on large data sets drops significantly,
if there is not enough memory and the database has to access the disk, or
even worse, pages of its memory get swapped to disk by the system. For both
databases I allowed 5 GB of cache memory, which should be enough to hold
tens of millions of records cached, it proved to be far more than needed, but
in the server environment where the real application would run, using larger
memory cache is not a big problem.

As Neo4j has separate cache settings I chose to put 4 GB to relationship
store and 1 GB to node store — relationships are larger in memory and are
necessary for fast traversals. Because Neo4j was running withing the same
JVM as the application I also set higher heap size (8 GB).1

The cornerstone of the performance should be 25 000 items, as we have
statistics available from the real application for several organizations with the
largest having 18 000 items to date (see fig. 10.1).

The database performance tests were run with the same data sets each time
generated randomly. After consultation with my supervisor we decided to run
the worst case scenario tests, where there are no access rights set on the tree
and therefore the algorithm must traverse to the top of the tree each time.

The application measured the time that it took to serve 10 requests made
by random users (each time the same for both databases). Measuring used
memory proved to be difficult, however; Neo4j was running with the application
in the same JVM, so that it was not possible to distinguish, which part of the
memory belongs to it, therefore memory complexity comparison is not included
in the results.

1I was contacted by Michael Hunger, who works on Neo4j and he helped me with memory
settings based on data analysis: he recommended to see how much the data takes on the
hard drive and optimize accordingly to much lower values around hundreds of mega bytes
to lower possible swapping. He was able to test the queries and reached much better results
with the ”followed” variant, but unfortunately I was not able to reproduce the same results.

69

9 Results

After all the tests were run, they were assembled into a chart, which you can
see in fig. 9.1. The description is obvious enough to understand that for low
numbers of items (under 25 000) both databases are basically performing well
enough for a user not to notice any special waiting. We can even see that the
times are comparable with the real application (see fig. 10.1), which is a good
sign that the simulation is close to the original.

Unfortunately, the algorithm bounds are exponential and the performance
graph shows that very well; with the growing number of items both databases
are taking exponentially longer time to process the requests, until they take
too much — no user would wait more than 5 seconds for a newsfeed.

This is the worst case scenario (but also default behavior of the real appli-
cation) and the requests would probably take less than this in average in real
data, but the important aspect is the trend we can see. Such purely recursive
algorithm clearly can not be applied on a larger scale, where we mean to store
and traverse millions of items and not even database caching can help that.

The fact that MySQL outperforms Neo4j in this case results probably from
several facts. Firstly, the algorithm for the newsfeed and access rights, although
recursive and graph-like, does not use any traditional graph algorithms, which
is the really strong side of graph database optimizations. Secondly, from the
discussion with Michael Hunger emerged the fact that in the current version
of Neo4j there is a bug with unbounded-length paths, which makes their com-
plexity O(n2) and will be corrected in the upcoming versions. These paths
(recursive traversal, ie. transitive closure) are part of the queries that were
used. He pointed out as well that the problem may be in the platform or the
memory settings.

70

Results

Figure 9.1: Results in a chart. On the axis y you can see the time that it took
to serve 10 sequential requests. The times for serving the requests are growing
exponentially for both the databases, which is expected, but Neo4j does grow
faster than MySQL. Up to some 25 000 items the difference for the user is
not significant, but at 250000 the graph database already takes approximately
25 seconds to fetch the global newsfeed. At the same magnitude MySQL can
process the request in 7 seconds. Nevertheless, with 500 000 it does not make
sense anymore to measure the graph database as well as with 750 000 items
and MySQL. See appendix for the raw source data of the chart on page 83.

71

10 Conclusion

The experimental research and results in this thesis clearly show that should
the application use the original algorithm with recursive check of access rights
for each item, it will not perform sufficiently well for more than the current
peak organization size. This project proved that the algorithm can not be
optimized only by using a different database paradigm.

One of the possible solutions is to take away one aspect of the algorithm,
which is the recursive access right check, because that is O(Nlog(N)) complex-
ity, which are operations that can be spared, if we make a table caching the
exact access rights on each node, using the recursive algorithm only once the
rights change. In the graph database the equivalent would be to put specially
labeled relationships.

This approach is actually under testing in Samepage right now and on
the figure 10.1 you can see the significant drop in request processing times
after the algorithm using the caching table was deployed. Of course, such
caches potentially bring issues with data inconsistency — for example while
changing access rights one would need to lock the cache table as well and run
reconstruction for the affected subtree. But the users make many more requests
on the newsfeed API than changing the access rights.

As the result of measurements and research in this thesis it was decided
that Samepage will keep using SQL-based database and change the algorithm
instead. After the testing of the new algorithm with direct access table is
finished, it will be used in place of the current one.

72

Conclusion

F
ig
u
re

10
.1
:
S
ta
ti
st
ic
s
fr
om

S
am

ep
ag
e.
io

ap
p
li
ca
ti
on

.
O
n
th
e
y
ax

is
yo
u
ca
n
se
e
th
e
ti
m
e
in

m
il
li
se
co
n
d
s
th
at

it
to
ok

to
se
rv
e
on

e
re
q
u
es
t
in

av
er
ag
e.

T
h
is
d
at
a
is
ta
ke
n
fr
om

m
an

y
or
ga
n
iz
at
io
n
s,
m
os
t
of

w
h
ic
h
d
on

’t
h
av
e
m
an

y
it
em

s.
B
u
t
th
er
e
ar
e
al
so

or
ga
n
iz
at
io
n
s,

w
h
ic
h
ar
e
fr
eq
u
en
tl
y
u
se
d
an

d
h
av
e
te
n
s
of

th
ou

sa
n
d
s
of

it
em

s,
b
ei
n
g
th
e
m
os
t

si
gn

ifi
ca
n
t
in

th
e
av
er
ag
e.

A
cl
ea
r
d
ro
p
in

re
q
u
es
t
se
rv
in
g
ti
m
e
ca
n
b
e
se
en

on
A
p
ri
l
5
20
14
,
w
h
er
e
th
e
op

ti
m
iz
at
io
n

w
as

d
ep
lo
ye
d
,
re
m
ov
in
g
th
e
re
cu
rs
iv
e
tr
an

si
ti
ve

cl
os
u
re

to
ch
ec
k
ac
ce
ss

ri
gh

ts
.
(T

h
e
ve
ry

h
ig
h
p
ea
k
on

A
p
ri
l
20

is
a
re
su
lt
of

a
fa
u
lt
an

d
d
o
es

n
ot

re
la
te

to
th
is
fe
at
u
re
.)

73

Abbreviations

AOP Aspect-Oriented Programming. 30

API Application Programming Interface. 14, 16, 31, 32

BFS Breadth-First Search. 19, 54

BSON Binary JSON. 13

CLI Command Line Interface. 55

CSS Cascading Style Sheets. 28

CSV Comma-Separated Values. 46, 56, 59

CTE Common Table Expression. 12

DAO Data Access Object. 24, 28–30, 32, 58

DFS Depth-First Search. 19

DO Domain Object. 25

HTML Hyper Text Markup Language. 28

HTTP Hypertext Transfer Protocol. 16

IDE Integrated Development Environment. 23, 60

IoC Inversion of control. 23–25

JAR Java ARchive. 26

Java EE Java Enterprise Edition. 2

74

Abbreviations Abbreviations

JAX-RS Java API for RESTful Web Services. 47

JDBC Java Database Connectivity. 11, 15, 25, 31, 50, 52

JS JavaScript. 28

JSON JavaScript Object Notation. 13, 64

JSP Java Server Pages. 28, 64

JVM Java Virtual Machine. 47, 69, 80

MVC Model-View-Controller. 21, 24

ODBC Open Database Connectivity. 15

OOP Object-Oriented Programming. 57

PL/SQL Procedural Language/Structured Query Language. 5, 10

RDBMS Relational Database Management Software. 10, 13, 21

REST REpresentational State Transfer. 16

SEQUEL Structured English Query Language. 10

SQL Structured Query Language. 4, 5, 8–10, 12, 21, 25, 29–33, 36

URL Uniform Resource Locator. 34

XML Extensible Markup Language. 24, 26

75

List of Figures

1.1 Presentation of Samepage.io . 3

1.2 A simplified view on complexity of hierarchy 4

1.3 Samepage.io — the follow menu 5

1.4 Samepage.io — the followed newsfeed 6

1.5 Samepage.io — the global newsfeed 6

2.1 Example nodes . 17

2.2 Overview of technologies . 22

3.1 Diagram of MVC . 28

4.1 A view of Neo4j web console . 35

4.2 Example of hierarchical user groups 35

4.3 Complex example of access right resolution 38

4.4 View on threads with comments 39

4.5 Newest comments . 41

4.6 FOLLOWS relationship . 42

4.7 Comparison of saving times . 44

76

LIST OF FIGURES LIST OF FIGURES

4.8 Profiling with Neo4j . 45

5.1 Database model for SQL . 48

5.2 EXPLAIN: no index . 55

5.3 EXPLAIN: Indexing optimization with SQL 56

7.1 User Interface . 64

7.2 Naive document structure . 66

7.3 Better generator used . 66

9.1 Results of the comparison . 71

10.1 Statistics from Samepage.io application 73

77

Bibliography

[Bichot(2013)] Guilhem Bichot. About mysql development: With recursive and
mysql, 2013. URL <http://guilhembichot.blogspot.co.uk/2013/11/

with-recursive-and-mysql.html>.

[Chamberlin(1974)] Donald D. Chamberlin. SEQUEL: A Structured English
Query Language. Association for Computing Machinery, 1974.

[CTE(2014)] CTE. Hierarchical and recursive queries in sql: Common ta-
ble expression, 2014. URL <https://en.wikipedia.org/wiki/Common_

table_expression#Common_table_expression>.

[Hunger(2012a)] Michael Hunger. Good Relationships - The Spring Data Neo4j
Guide Book. InfoQ, 2012a.

[Hunger(2012b)] Michael Hunger. Parallel batch inserter with neo4j imported
20 billion relationships on ec2, 2012b. URL <http://jexp.de/blog/

2012/10/parallel-batch-inserter-with-neo4j/>.

[Hunger(2014)] Michael Hunger. Neo4j (csv) batch importer, 2014. URL
<https://github.com/jexp/batch-import/tree/20>.

[IoC(2014)] IoC. Inversion of control, 2014. URL <https://en.wikipedia.

org/wiki/Inversion_of_control>.

[Johnson(2014)] Rod Johnson. Spring Framework Reference Documentation.
4.0.3.release edition, 2014.

[Metsker(2006)] Steven John Metsker. Design patterns in Java. 2 edition, 2006.
ISBN 0-321-33302-0.

[Neo4j(2014)] Neo4j. The neo4j manual, 2014. URL <http://docs.neo4j.

org/>.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[Oracle(2014)] Oracle. Mysql 5.6 reference manual, 2014. URL <http://dev.

mysql.com/doc/refman/5.6/en/>.

[Pecinovský(2007)] Rudolf Pecinovský. Návrhové vzory. 1 edition, 2007. ISBN
978-80-251-1582-4.

[Rolfe(2011)] Timothy Rolfe. Average node depth in a full binary
tree, 2011. URL <http://penguin.ewu.edu/cscd320/Topic/BSTree/

BSTtwo/Full_Avg_Depth.pdf>.

[Stevenson(2013)] Angus Stevenson, editor. New Oxford American Dictionary.
Oxford University Press, 2013. ISBN 978-0199571123.

[Walls(2011)] Craig Walls. Spring in action. Manning Publications, 3rd edi-
tion, 2011. ISBN 978-1-935182-35-1.

79

A User Documentation

A.1 Setup of the Application

To run the application you need the following software installed on your work
station in these or higher versions:

• Java 1.7

• Maven 3.0

• MySQL Server 5.6

The software is multiplatform and has been tested on Windows and Linux.1

The Neo4j database is downloaded and set up automatically, but you have
to set up manually the MySQL database, adding a schema ”pkopac” and a user
”pkopac” with a password ”password” (or you can change these values in the
file src/main/resources/cz/pkopac/thesis/config/) and rebuild the application
or change the respective file inside a built WAR file, if you already have one.
This user has to have all privileges on that schema.

1 GRANT ALL PRIVILEGES ON ’ pkopac ’ .∗ TO ’ pkopac ’@’ l o c a l h o s t ’ ;

The following command will start embedded Tomcat server with the app.:

1 mvn j e t t y : run

Do not forget to set higher JVM heap memory, if you are planning to run
the simulation with more then 100 000 nodes.

1 −Xmx3G −Xms3G −Xmn1G −XX:+UseConcMarkSweepGC −s e r v e r

1On Windows it was not possible to clear the temporary database from the disk by
deleting it due to the way that JVM on Windows handles the file locks, so each time you will
have to use a distinct temporary folder and delete the files manually after you are finished.

80

User Documentation Using

A.2 Using

Figure A.1: Input form with default
values. Clicking on the buttonRun
Experiment executes one experi-
ment.

After you have successfully started the
application with the command from the
last section, you will see the following in
the console:

1 [INFO] Started Jetty Server

Then, you can open your web browser and
enter the address, where the application
is listening:
http://localhost:8080/thesis

By clicking on the button (right up-
per corner in the menu) Test Databases
–> Run an experiment you will reach the
form displayed in the figure on the right.
You can enter the following parameters:

• Number of items, groups, users,
threads and replies — these are the
”activity” of the testing data.

• Tree depth for items and groups —
try values like 1, 0.01, 0.001. The
lower the value, the wider the tree
and less deeper. (It is the λ pa-
rameter of exponential probability
distribution.)

• Number of memberships, access
rights and maximum followed items
— these denote the complexity of
the structure.

• How many requests to test.

• Where to save the temporary
dataset of Neo4j (can be studied af-
ter the experiment is finished).

81

82

Raw Result Data

B Raw Result Data

T
im

e
[m

s]
10
00

25
00

50
00

75
00

10
00
0

25
00
0

50
00
0

75
00
0

10
00
00

25
00
00

50
00
00

N
eo
4j

—
F

25
60

36
38

25
08

82
65

77
08

10
75
1

36
67
0

56
51
8

60
77
7

98
69
8

N
eo
4j

—
G

27
92

36
28

59
32

84
28

12
57
7

24
56
7

57
33
6

10
16
55

13
05
61

26
33
26

M
y
S
Q
L
—

F
86
5

53
4

48
3

69
7

80
0

89
4

84
7

11
64

12
23

79
4

18
23

M
y
S
Q
L
—

G
14
66

20
37

23
36

31
66

38
69

71
19

16
77
8

24
33
8

33
21
1

66
93
7

16
52
49

ge
n
er
at
e
it
em

s
14
65

61
69

23
06

35
41

23
46

30
92

44
76

87
51

75
32

13
19
6

26
33
1

83

