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ABSTRACT 
We present a method of automatic alignment of two partially matching 3D shapes. The algorithm selects large fat 
tetrahedrons (LFT) composed of 4 vertices in one shape and exhaustively searches in the other shape for sets of 4 
vertices being compatible with the tetrahedron. By selecting such salient tetrahedrons that are relatively wide and 
fat, although also being not too unlikely to be contained in the overlap region, the cost of search can be reduced. 
The method is relatively insensitive to noise and not depending on the existence of local shape features nor on 
feature correspondences. When implemented on a GPU in Cuda, two point sets of  40,000 each can be aligned 
within seconds. The method is intended to support interactive 3D scan registration applications. 
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1. INTRODUCTION 
Partial shape matching is an essential step in the 
reconstruction of geometric objects. One important 
application is 3D scanning of physical objects. To 
construct a geometric model from a physical object, 
multiple scan views are taken, each consisting of 
range data, i.e. 3D points representing the object’s 
surface. Since the orientation of the object relative to 
the scanning device is different for different scan 
views, the collection of points from all scan views do 
not as such represent the object’s surface. First the 
points need to be aligned to each other, that is be 
transformed to a common coordinate system. The 
process of aligning the scan views is called scan view 
registration. From the aligned point sets the surface of 
the object can be reconstructed, either fully or 
partially, depending on the coverage of the scan 
views. If the surface can be fully reconstructed, it can 
be assumed to represent the boundary of a volume, or 
solid model. Then a solid model can be derived, 

which can serve as input to a CAD (Computer-Aided 
Design) system for further modeling and processing. 
To base a design on an existing object or on reuse of 
precedent models is an important paradigm in some 
industries, such as industrial design engineering. Such 
a method cannot be successful unless occasional 
users of scanning devices can easily operate the 
system. However, the registration task is, even 
nowadays, still an impeding factor. In practice the 
user could be a stylist who has manually created a 
clay model of a future household device. Whereas 
taking the scan views of the clay model is a 
commonsense task to him/her, the registration of 
view pairs is not. The scanning system’s 
manufacturer normally offers an interactive software 
package, allowing the user to designate 
correspondences he/she observes among the scan 
views, as to provide a starting position for a shape 
matching algorithm, typically based on the ICP 
(Iterative Closest Point) method. Each scan view has 
to be aligned, by the user, with scan view(s) aligned 
previously. Generally this way of operating the 
scanner is perceived as slow and tedious, both by 
incidental users and by trained operators. 

To improve the operation speed and ease of 3D 
scanning, the equipment can be enriched with 
mechanical or magnetic location/orientation trackers 
attached to the scanner or to the object being sensed 
or to both of them. Another, commercially available, 
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solution is based on the detection of optical markers 
attached to the object being scanned. 

If no additional devices or markers are applied and if 
one does not want to rely on human intervention, the 
registration problem depend on automatic partial 
shape matching. Several approaches have been 
reported to the problem of partial shape matching. 
From here on we assume that the input data consists 
of unordered point sets only. That is, we will not rely 
on preprocesses that generate surface meshes, nor on 
additional information such as color, texture or 
material properties of the scanned object. We focus 
on the kernel problem of matching two point sets. 
Most methods make use of geometric descriptors 
and/or feature points. A geometric descriptor is rule 
to assign a characterization vector to each point in a 
data set, where the vector is typically computed from 
points in the neighborhood around the point. The 
geometric descriptor can take many forms, including 
moments, FFT coefficients, spin images etc [Johnson 
1999]. Since geometric descriptors are invariant 
under rigid body transformations, they can be used to 
detect correspondences between two shapes. 
However, the number of points in a scan view can be 
large, possibly leading to too many descriptors, 
causing too long processing time. Then one can 
attempt to define feature points of shape. Feature 
points are invariant under rigid body transformations 
as well, and they are typically small in number. If 
correct feature points can be generated within the 
overlap region of two scan views, then the 
approximate transformation can be easily derived and 
be applied to the point sets to bring them into a 
position from which ICP can be successfully used. 
However, feature points are commonly derived from 
point differences (for example local curvature) and 
hence sensitive to noise, which may cause wrong 
correspondence assignments. Defining a feature using 
integrated quantities rather than using derivatives 
reduces the influence of noise [Gelfland 2005]. 
Another approach to diminish sensitivity to noise and 
data outliers is taken by [Aiger 2008]. He collects 
sets of 4 planar points in both point clouds. If a 
particular set from one point cloud is approximately 
congruent with one from the other point cloud, a 
candidate corresponding pair of 4-points sets is 
found. If the 4-points set is relatively wide, then the 
method is less sensitive to noise. In this paper we will 
not further review existing work on partial shape 
matching. We refer to [Gelfland 2005] and references 
therein for a more extended description of 
registration methods. 

Our approach is inspired by the 4-points congruent 
sets as in [Aiger 2008]. We look for 4-points sets 
which define a large fat tetrahedron (LFT). The 
assumption is that the geometry of a large tetrahedron 

is relatively rare and therefore can serve to detect 
correspondences in the two point clouds. However, 
since true  correspondence exist in the overlap region 
only, a bound must be set to the maximum size of the 
tetrahedrons. Secondly, since the number of fat 
tetrahedrons in point sets can be very large, a 
straightforward comparison of two sets of 
tetrahedrons (each derived from one point cloud) 
would not be efficient. Our algorithm derives a 
limited number of fat tetrahedrons from one point 
cloud. Then each tetrahedron is tested for being 
approximately congruent to any point neighborhood 
of the other point set. Although the latter step of the 
algorithm is expensive, it can be easily parallelized 
and the correct approximate transformation can be 
found in about 10 seconds in a Cuda implementation. 

In the next section the LFT algorithm will be 
described. In section 3 we present the achievements 
of the method. Conclusions and recommendations are 
given in section 4. 

2. THE LFT ALGORITHM 
Let two point sets A and B be given, originating from 
sampling of a portion of the surface of a three-
dimensional object. There may exist subsets A’ ⊆ A 
and B’⊆ B such that A’ and B’ are samples of the 
same subsurface of the object. A’ and B’ are then said 
to represent an overlap region of the samples.  

Let a set of sets Bi be a partitioning of B be defined as 
follows. A three-dimensional grid is constructed, 
aligned with a bounding box of B. The grid has the 
size of the bounding box of B. The block-shaped grid 
elements all have the same size and have index i, i = 
1, ..., nG, where nG is the number of grid elements of 
B. Each grid element encloses zero or more points of 
B. Each point of B is enclosed by exactly one grid 
element. Bi is the set of points enclosed by grid 
element indexed i.  

Let A’ and B’ be the largest overlap of A and B, 
informally defined as follows. Assuming that A and B 
are range images of a physical object, let SA and SB 
informally be defined as the portions of the object’s 
surfaces represented by A and B, respectively. Then, 
both A’ and B’ represent a superset of the surface SA 
∩ SB. Depending on the extent of SA ∩ SB , A’ and B’ 
each may contain zero up to as many points as the 
cardinality of A and B, respectively. 

Let B’ i = Bi ∩ B′ . Our search strategy is based on the 
assumption that the overlap region is connected and 
has the extent of at least the size of a grid element. In 
such cases there might exist sets Bi containing 
multiple points of Bi’ . A property of any point of B’ is 
that its Euclidian distance to A is relatively small, 
provided that A and B are defined in the same 
coordinate system. However, since A and B originate 
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from independent sampling processes, they will in 
general be defined in different coordinate systems. 
The difference between the two coordinate systems 
can be described by a rigid body transformation M, 
such that MB and A are defined in the same 
coordinate system, where MB is the set of points of B 
to which transformation M has been applied. Let bij 
be the jth point in Bi, with j = 1, ..., ni, where ni is the 
number of points in Bi. 

We could naively define a search algorithm as 
follows: 

Exhaustive search  algorithm 

for r = 1, ..., nr // loop over possible transformations 

   for i = 1, ..., nG // loop over grid elements 

      nri = 0      // number of nearby points so far 

      for j = 1, ..., ni // for points in one grid element 

         for s = 1, ..., nA // loop over points in A 

            if | Mr bij – as| <  δ then nri++ // evaluate dist. 
         endfor 
      endfor 
   endfor 
endfor, 

where r defines the parameters of a rigid body 
transformation Mr. One must then assume that the 
problem can be solved by considering a finite number 
nr of transformations. Typically, r is a 6-dimensional 
vector defining translation and rotation in 3D space. 
nr is the total number of configurations achieved by 
stepping over finite intervals of translation and 
rotation. The points contained in A are denoted by as 
with s = 1, ..., na . The value nri is the number of those 
points in grid element i that are close to A after 
applying transformation Mr to B. When nri > 3 (or any 
other threshold) we could define r as a candidate 
parameter set for an approximate alignment 
transformation. The value of δ (in the algorithm) is 
typically set to a small multiple of the sampling 
spacing of A and B. 

It is well-known that exhaustive sampling is generally 
too slow for obtaining scan view registration within 
seconds, as would be needed for the purpose of 
interactive 3D scanning. The critical factors here are 
the step sizes in the six dimensions of configuration 
space, that define the number nr of point cloud 
distance computations. However, using the GPU and 
adaptive step sizes might prove exhaustive search be 
feasible in the future [Kooijman 2009]. 

To reduce the number of distance calculations, we 
need to extend the algorithm in order to select 
“promising” transformations. If, for a particular 
transformation Mr, an (even small) number of points 
in a grid element is, after transformation, very close 
to A then these points could be taken as candidates 

for being points in the overlap region. However, in 
regions where the object’s surface has low curvature, 
points in the overlap region poorly define the proper 
transformation Mr. Therefore we need also to 
consider the degree of planarity of the points close to 
A. When a small set of points (4 or more) of Bi is 
close to A and if these points are sufficiently non-
planar, then the transformation to match this set with 
A is a relatively good candidate of the Mr we are 
looking for. Relying on this principle we base the 
algorithm on matching 4 points to A, where the 4 
points are contained in the same grid element. The 4 
points, denoted l1, l2, l3, l4, are selected from Bi such 
that they form L, a large least-planar set, or large fat 
tetrahedron (LFT) as follows: l1 and l2 are the points 
in Bi which are furthest apart. l3 is the point in Bi 
furthest from the line through l1 and l2, that is it 
maximizes |(l3 − l1) × (l2 − l1)|.  l4 is the point in Bi 
furthest from the plane defined by l1, l2 and l3, that is 
it maximizes | ((l3 − l1) × (l2 − l1) ) . (l4 − l1) |. 

If L is contained in B′  then the directed Hausdorff 
distance of MrL to A will be small for the proper 
transformation Mr. To test whether this is the case 
and to determine Mr we proceed as follows. At first, 
we apply a translation to L such that point l1 
coincides with a given point as ∈ A (the following 
procedure will be repeated for all points in A). We 
will leave point l1 unchanged but otherwise rotate L 
around this pivot point to find out whether the 
remaining three points can be positioned close to A, 
which will be the case when there exist points m2, m3, 
m4 ∈ A, such that | Mr l j – mj | is small for j = 2, 3, 4. 
Since (l1, l2) is the longer edge of tetrahedron L, all 
candidate points m2, m3 and m4 must be on or be 
contained in the sphere of radius |l2 – l1| centered at 
as. Let us define As ⊆ A as the set of points of A either 
on or inside this sphere. Candidate points m2 will be 
on the surface of sphere up to some accuracy 
depending on sampling spacing and the precision of 
the sampling process. Let m2′ ∈ As be such a 
candidate point. Then L is rotated about point l1 such 
that point l2 comes closest to m2′, which implies that 
as, l2 and m2′  are collinear. Now there is one degree 
of freedom left for L, namely its rotation about the 
line through l1 and l2. If point l3 would 
(approximately) hit any point m3 in As then L has 
attained a configuration which should be further 
evaluated. If, then, point l4 is close to any point m4 in 
As, L is called being matching to A. The implied 
transformation Mr can be determined, as described 
later. All points in Bi are then subjected to 
transformation Mr and their distance to A is 
determined. If a sufficient fraction of the points are 
close to A then Mr is saved as a candidate alignment 
transformation. 
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Algorithm based on LFT (Large Fat Tetrahedron) 

for i = 1, ... , nG // loop over grid elements 

   select l in Bi // l is large fat tetrahedron 

      for s = 1, ..., nA // loop over points in A 

         move L such that l1 = as // anchoring 1st point of LFT to A 

         determine As   // points of A in sphere at l1, of radius |l1 – l2| 

         for moves of L such that l2 reaches As // move 2nd point of LFT to A 

            for moves of L such that l3 reaches As  // move 3d point of LFT to A 

if l4 near As then  evaluate goodness of matching, using points in MrBi  
               endif 
            endfor 
         endfor 
      endfor 
   endfor 
 
The number of candidate transformations Mr depends 
on the various distance criteria that should be set in 
the algorithm. As a final step, the candidate 
transformations are used to compute the set MrB, 
involving all points of B, and the degree of matching 
of the set to A is determined. The transformation 
producing the best alignment is the outcome of the 
method. The goodness of an alignment is defined as 
the number of points in MrB closer to A than a 
predefined threshold distance. 

The transformation Mr can be written in explicit form 
as follows. We define transformation M1 to bring 
point l1 to as as translation T(as – l1). Let us apply M1 
to L. Subsequently L is transformed by M2 such that 
the vector l2 – as is rotated about direction vector d1 = 
(l2 − as) × (m2’ − az) to reach direction (m’2 − as), 
which requires the rotation angle 

α1 = acos(  (l2 − as) . (m2’ − az) ) / ( |l2 − as| |m2’ − az| ). 

The axis of rotation goes through point as, that is the 
rotation is indeed around point l1 of L. Therefore M2 
= T(as) R(d1, α1) T(−as), where R(d1, α1) is the 
rotation of angle α1 about the line through the origin, 
with direction d1. An implementation note: the 
program gets a bit simpler and slightly more efficient 
if we initially transform all points ai with T(−as), that 
is point cloud A is moved such that as reaches the 
origin and from then on T(as) would become identity. 
The next transformation, M3, is a rotation about the 
current direction vector l2 − as by angle α2. This angle 
is determined by point m3 and computed as the angle 
between the vectors n1 and n2, the vectors normal to 
the triangles (as, l2, l3) and (as, l2, m3), respectively, 
that is n1 = (l2 − as) × (l3 − as), n2 = (l2 − as) × (m3 − 
as) and α2 = acos(n1 . n2) / (|n1| |n2|). The rotation 
form n1 toward n2 is in positive sense about vector d2 

= n1 × n2. Thus M3 = T(as) R(d2 , α2) T(−as). The total 
transformation gets Mr = M3 M2 M1, and accounting 
for some canceling translations we obtain: 

Mr = T(as) R(d2, α 2) R(d1, α 1) T(– l1). (1) 

Mr can be interpreted as a transformation of corner l1 
of the LFT to the origin, then two rotations about 
lines through origin and finally translating l1 to point 
as. The explicit matrix form of transformation 
R(v, α), v = (v0, v1, v2) is  
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The transformation of equation (1) can be 
implemented efficiently using this form to transform 
larger number of points in Bi as to evaluate the 
closeness of MrBi and/or MrB to A. 

3. IMPLEMENTATION AND 
RESULTS 
First, to illustrate the steps of the LFT algorithm we 
apply it to two scan views (A and B) from the 
Stanford Bunny data set [Stanford 2009]. The scan 
views consist of about 40,000 points each. The 
relative position and orientation of A and B are 
completely arbitrary, as a result of the particular 
scanning process. The scan views were decimated to 
3185 and 2406 points, respectively (Figure 1) to 
increase the processing speed. In Figure 2 scan view 
B is shown as well as one of the tetrahedrons. This 
tetrahedron happened to be contained in the overlap 
region. The tetrahedron was selected by the algorithm 
as follows in this particular example run. The 
subdivision grid for points B was chosen to consist of 
5×5×5 elements. Out of these 125 elements, 8 
contained more than 96 points, which was a lower 
threshold (discussed later), as set for this particular 
run. In each of these 8 grid elements the LFT was 
constructed as described in Section 2.  Each of the 8 
tetrahedrons was sufficiently fat (criterion discussed 
later) and was subjected to the exhaustive test of 
congruence with any subset of A. Depending on the 
criterion for points of a tetrahedron to coincide with a 
point of A, the number of sets in A congruent to a 
tetrahedron was typically between 20,000 and 
200,000, which is the gross number of candidate 
transformations per each grid element. For each 
transformation, the fraction of points MrBi (that is the 
points inside the current grid element) closer than 
some preset distance to A was computed. If this 
fraction exceeded a predefined threshold, the number 
of points in MrB close to A was determined. The 
latter computation, involving the full point set B, 
occurred relatively seldom, between 0 and 300 times 
only, which is less than 1% of the number of 
candidate transformations. 

In Figure 3 the number of points in MrB close to A is 
shown for the candidate transformations Mr, where 
the x-axis represents the amount of rotation implied 
by matrix Mr. A couple of almost similar 
transformations, having rotation angle near 90 
degrees, produce the highest score. From the ground 
truth information that we have about the scan views, 
we can conclude that the correct alignment was 

obtained. The points MrB, which are matching to 
shape A are shown, together with points A in Figure 
4. 

The computation of this partial shape matching 
process took 450s on an ordinary PC, which could be 
reduced to about 10s when implemented on a GPU, 
not including a couple of seconds time to import and 
decimate the point clouds. 

 

 

 
Figure 1. Two scan views (A and B) of Bunny 
before alignment. 

 

 

 
Figure 2. Points in scan view B and the best 
performing LFT depicted by its 4 edges. 
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Figure 3. Number of points of MrB close to A 
versus rotation angle of candidate 
transformations Mr. 

 

 
Figure 4. Result of the alignment; point sets A and 
Mr B. 
 

As a next example two scan views of a human face, 
consisting of about 18,000 points each, were taken 
using our Minolta Vivid700 laser scanner, see Figure 
5. Since the overlap region of the two views was 
relatively large, a good fit could be obtained with sets 
down-sampled to 9% of the original cardinality. The 
rotation angle plot is shown in Fig. 6. The 
computation time for this particular on CPU (not 
GPU) was about 40s, not including file read/write 
and cloud decimation, which took together 10s. The 
best transformation matrix obtained by the algorithm 
from the down-sampled data differed only little 
compared to the one from the original data. The 
amounts of rotations, for example, of the two 
transformations differed by 0.6 degrees. It is an 
indication that the result of the algorithm is suited for 
further processing by common ICP-based registration 
software. 

 
Figure 5. Two scan views before (left) and after 
partial shape matching (right). 
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Figure 6. Number of points of MrB close to A 
versus rotation angle of candidate transform-
ations Mr for the scan views shown in Figure 5. 

In Figure 7 two scan views of an automobile shape 
are shown. The physical, scaled, model was about 
25cm long and very much simplified, containing no 
detailed shape features. The top view of the car 
model also contains data from the left side of the car, 
as can be seen in Figure 7, however that part of the 
surface is recorded at a small incident angle at 
relatively poor accuracy. Yet, the tetrahedron 
selected by the algorithm in scan view B (see Figure 
8) could be matched to the correct location in scan 
view A, thus providing a good initial match, shown in 
Figure 9. The tetrahedron is quite large because the 
size of each grid element is relatively large. We did 
not remove “outliers” such as data due to the 
supporting platform and therefore the bounding box 
got large and so did the grid elements. It can be noted 
that the background data of scan view A has not 
affected the outcome of the algorithm but has slowed 
down the search process, since each point in A is 
tested by the LFT algorithm as a potential corner 
point of the tetrahedron. Using the full data, without 
decimation of the point clouds (containing about 
10,000 points each), the computation time is 15s on 
GPU. When the point clouds are reduced to about 
2000 each, the computation is accelerated 
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dramatically to less than 1s on GPU or 19s on a CPU. 
The resulting transformation was still approximately 
correct, i.e. sufficiently accurate to reach fine 
registration using a commercial tool based on ICP or 
a general purpose minimizer based on steepest 
descent.  

 
Figure 7.  Top view and left side view of a simple 
car model. 

 

 
Figure 8. Point cloud B representing the left side 
view of the car and an LFT leading to the correct 
transformation Mr. The LFT is depicted by its 
four edges. 

 

 
Figure 9.  Correct matching of the two scan views 
from the car model. 

 

4. DISCUSSION AND CONCLUSIONS 
The partial shape matching algorithm based on large 
fat tetrahedrons (LFT) has been evaluated using a, as 
yet still small, number of data sets. 

 

Both the goodness of the transformation Mr and the 
amount of computation time spent by the algorithm 
depend on the settings of various tolerance criteria. 
For example, if the thickness of the spherical surface 
of As is too small, the correct position of l2 could be 
missed; however if the thickness is taken too large 
then the number of candidate tetrahedrons can 
become excessive. Similar reasoning can be applied 
to the number of grid elements subdividing the 
bounding box, and other parameters mentioned. In 
our implementation, the chief parameter is the 
“assumed scanning distance” d, which is the typical 
closest distance between the measured points. All 
other geometric thresholds in the algorithm are 
currently defined proportional to d. 

The algorithm has provided the correct 
transformation for the partial match in all cases we 
investigated so far. More examples are being studied. 

The distance parameter d is critical with respect to 
computation time. For example, whereas the 
matching example of Figure 3 took 10s with d set to 
1.5 units, the computation took 70s with d = 2.0. The 
outcome of the algorithm was the same, but there 
were relatively many false candidate tetrahedron 
placements (4 million compared to 0.5 million at d = 
1.5).  The increase of the number of false hits can be 
seen by comparing Figure 10 to Figure 3. 

0

200

400

600

800

1000

1200

0 50 100 150 200

Rotation of Mr (degrees)

N
um

be
r 

of
 c

oi
nc

id
in

g 
po

in
ts

Figure 10. Number of points of MrB close to A 
versus rotation angle of candidate 
transformations Mr for the same scan data 
samples as in Figure 3, with larger parameter d. 

 

If the grid element size gets smaller than the overlap 
region of the two scan views then the algorithm 
would no longer be able to find a correct match. 
There should also be a lower limit on the number of 
points in a grid element to decide whether an LFT 
will be considered. We have set the default threshold 
to nB / nG

2/3, which is appropriate for point sets B 
representing a smooth surface. 

The numerical tests indicate that the method is not 
very sensitive to down-sampling of the point clouds 
and hence could be scalable. The down sampling 
algorithm that we applied simulates lower precision 
scanning, and was intentionally not designed to 
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preserve sharp curvatures. Indeed, the LFT method is 
not dependent on high curvature features, but on 
“medium-size” aspects, which are preserved under 
down-sampling. 

In addition the method discards flat regions, 
including the planar “outlier” points as in the car 
model, since flat tetrahedrons are by definition non-
fat. However, if a grid element contains a mixture of 
data from the model and from a supporting table, 
wrong tetrahedrons could emerge. 

As mentioned, the computation time depends strongly 
on the degree of decimation and the values to which 
the threshold parameters are set. From the numerical 
experiments we learned how to tweak these 
parameters to settings which make the computation 
very fast; however, for a given pair of point clouds it 
is not a priory known how to chose the optimal 
parameters. The algorithm could be extended with 
pre-scans of the data in order to estimate an optimal 
setting. 

Since the computation time to match two scan views 
remains below 10s using the GPU or even the CPU, 
the LFT method seems very suitable to practically 
support interactive and mobile scanning processes. 

As mentioned, the data samples we used to evaluate 
the algorithm originate from repositories, such as in 
[Stanford 2009], or from measurements we conducted 
ourselves. To our knowledge there is not yet a 
suitable database containing data samples that could 
be used for benchmarking purposes for partial shape 
matching. Indeed, there are databases containing data 
samples to evaluate shape retrieval algorithms. 
However, these data samples represent shapes, not 

partial shapes. The authors look forward to 
suggestions to achieve at a repository of partial 
shapes to benchmark scan view registration methods. 
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