

Partial 3D Shape Matching Using Large Fat

Tetrahedrons

J.S.M. Vergeest,
A. Kooijman, Y. Song

Delft University of Technology
Landbergstraat 15, NL-2628 CE

Delft, The Netherlands

j.s.m.vergeest@tudelft.nl

ABSTRACT
We present a method of automatic alignment of two partially matching 3D shapes. The algorithm selects large fat
tetrahedrons (LFT) composed of 4 vertices in one shape and exhaustively searches in the other shape for sets of 4
vertices being compatible with the tetrahedron. By selecting such salient tetrahedrons that are relatively wide and
fat, although also being not too unlikely to be contained in the overlap region, the cost of search can be reduced.
The method is relatively insensitive to noise and not depending on the existence of local shape features nor on
feature correspondences. When implemented on a GPU in Cuda, two point sets of 40,000 each can be aligned
within seconds. The method is intended to support interactive 3D scan registration applications.

Keywords
Scan view registration, partial shape matching, fat tetrahedron, GPU, Cuda

1. INTRODUCTION
Partial shape matching is an essential step in the
reconstruction of geometric objects. One important
application is 3D scanning of physical objects. To
construct a geometric model from a physical object,
multiple scan views are taken, each consisting of
range data, i.e. 3D points representing the object’s
surface. Since the orientation of the object relative to
the scanning device is different for different scan
views, the collection of points from all scan views do
not as such represent the object’s surface. First the
points need to be aligned to each other, that is be
transformed to a common coordinate system. The
process of aligning the scan views is called scan view
registration. From the aligned point sets the surface of
the object can be reconstructed, either fully or
partially, depending on the coverage of the scan
views. If the surface can be fully reconstructed, it can
be assumed to represent the boundary of a volume, or
solid model. Then a solid model can be derived,

which can serve as input to a CAD (Computer-Aided
Design) system for further modeling and processing.
To base a design on an existing object or on reuse of
precedent models is an important paradigm in some
industries, such as industrial design engineering. Such
a method cannot be successful unless occasional
users of scanning devices can easily operate the
system. However, the registration task is, even
nowadays, still an impeding factor. In practice the
user could be a stylist who has manually created a
clay model of a future household device. Whereas
taking the scan views of the clay model is a
commonsense task to him/her, the registration of
view pairs is not. The scanning system’s
manufacturer normally offers an interactive software
package, allowing the user to designate
correspondences he/she observes among the scan
views, as to provide a starting position for a shape
matching algorithm, typically based on the ICP
(Iterative Closest Point) method. Each scan view has
to be aligned, by the user, with scan view(s) aligned
previously. Generally this way of operating the
scanner is perceived as slow and tedious, both by
incidental users and by trained operators.

To improve the operation speed and ease of 3D
scanning, the equipment can be enriched with
mechanical or magnetic location/orientation trackers
attached to the scanner or to the object being sensed
or to both of them. Another, commercially available,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

41 Journal of WSCG

solution is based on the detection of optical markers
attached to the object being scanned.

If no additional devices or markers are applied and if
one does not want to rely on human intervention, the
registration problem depend on automatic partial
shape matching. Several approaches have been
reported to the problem of partial shape matching.
From here on we assume that the input data consists
of unordered point sets only. That is, we will not rely
on preprocesses that generate surface meshes, nor on
additional information such as color, texture or
material properties of the scanned object. We focus
on the kernel problem of matching two point sets.
Most methods make use of geometric descriptors
and/or feature points. A geometric descriptor is rule
to assign a characterization vector to each point in a
data set, where the vector is typically computed from
points in the neighborhood around the point. The
geometric descriptor can take many forms, including
moments, FFT coefficients, spin images etc [Johnson
1999]. Since geometric descriptors are invariant
under rigid body transformations, they can be used to
detect correspondences between two shapes.
However, the number of points in a scan view can be
large, possibly leading to too many descriptors,
causing too long processing time. Then one can
attempt to define feature points of shape. Feature
points are invariant under rigid body transformations
as well, and they are typically small in number. If
correct feature points can be generated within the
overlap region of two scan views, then the
approximate transformation can be easily derived and
be applied to the point sets to bring them into a
position from which ICP can be successfully used.
However, feature points are commonly derived from
point differences (for example local curvature) and
hence sensitive to noise, which may cause wrong
correspondence assignments. Defining a feature using
integrated quantities rather than using derivatives
reduces the influence of noise [Gelfland 2005].
Another approach to diminish sensitivity to noise and
data outliers is taken by [Aiger 2008]. He collects
sets of 4 planar points in both point clouds. If a
particular set from one point cloud is approximately
congruent with one from the other point cloud, a
candidate corresponding pair of 4-points sets is
found. If the 4-points set is relatively wide, then the
method is less sensitive to noise. In this paper we will
not further review existing work on partial shape
matching. We refer to [Gelfland 2005] and references
therein for a more extended description of
registration methods.

Our approach is inspired by the 4-points congruent
sets as in [Aiger 2008]. We look for 4-points sets
which define a large fat tetrahedron (LFT). The
assumption is that the geometry of a large tetrahedron

is relatively rare and therefore can serve to detect
correspondences in the two point clouds. However,
since true correspondence exist in the overlap region
only, a bound must be set to the maximum size of the
tetrahedrons. Secondly, since the number of fat
tetrahedrons in point sets can be very large, a
straightforward comparison of two sets of
tetrahedrons (each derived from one point cloud)
would not be efficient. Our algorithm derives a
limited number of fat tetrahedrons from one point
cloud. Then each tetrahedron is tested for being
approximately congruent to any point neighborhood
of the other point set. Although the latter step of the
algorithm is expensive, it can be easily parallelized
and the correct approximate transformation can be
found in about 10 seconds in a Cuda implementation.

In the next section the LFT algorithm will be
described. In section 3 we present the achievements
of the method. Conclusions and recommendations are
given in section 4.

2. THE LFT ALGORITHM
Let two point sets A and B be given, originating from
sampling of a portion of the surface of a three-
dimensional object. There may exist subsets A’ ⊆ A
and B’⊆ B such that A’ and B’ are samples of the
same subsurface of the object. A’ and B’ are then said
to represent an overlap region of the samples.

Let a set of sets Bi be a partitioning of B be defined as
follows. A three-dimensional grid is constructed,
aligned with a bounding box of B. The grid has the
size of the bounding box of B. The block-shaped grid
elements all have the same size and have index i, i =
1, ..., nG, where nG is the number of grid elements of
B. Each grid element encloses zero or more points of
B. Each point of B is enclosed by exactly one grid
element. Bi is the set of points enclosed by grid
element indexed i.

Let A’ and B’ be the largest overlap of A and B,
informally defined as follows. Assuming that A and B
are range images of a physical object, let SA and SB
informally be defined as the portions of the object’s
surfaces represented by A and B, respectively. Then,
both A’ and B’ represent a superset of the surface SA
∩ SB. Depending on the extent of SA ∩ SB , A’ and B’
each may contain zero up to as many points as the
cardinality of A and B, respectively.

Let B’ i = Bi ∩ B′ . Our search strategy is based on the
assumption that the overlap region is connected and
has the extent of at least the size of a grid element. In
such cases there might exist sets Bi containing
multiple points of Bi’ . A property of any point of B’ is
that its Euclidian distance to A is relatively small,
provided that A and B are defined in the same
coordinate system. However, since A and B originate

42

from independent sampling processes, they will in
general be defined in different coordinate systems.
The difference between the two coordinate systems
can be described by a rigid body transformation M,
such that MB and A are defined in the same
coordinate system, where MB is the set of points of B
to which transformation M has been applied. Let bij
be the jth point in Bi, with j = 1, ..., ni, where ni is the
number of points in Bi.

We could naively define a search algorithm as
follows:

Exhaustive search algorithm

for r = 1, ..., nr // loop over possible transformations

 for i = 1, ..., nG // loop over grid elements

 nri = 0 // number of nearby points so far

 for j = 1, ..., ni // for points in one grid element

 for s = 1, ..., nA // loop over points in A

 if | Mr bij – as| < δ then nri++ // evaluate dist.
 endfor
 endfor
 endfor
endfor,

where r defines the parameters of a rigid body
transformation Mr. One must then assume that the
problem can be solved by considering a finite number
nr of transformations. Typically, r is a 6-dimensional
vector defining translation and rotation in 3D space.
nr is the total number of configurations achieved by
stepping over finite intervals of translation and
rotation. The points contained in A are denoted by as
with s = 1, ..., na . The value nri is the number of those
points in grid element i that are close to A after
applying transformation Mr to B. When nri > 3 (or any
other threshold) we could define r as a candidate
parameter set for an approximate alignment
transformation. The value of δ (in the algorithm) is
typically set to a small multiple of the sampling
spacing of A and B.

It is well-known that exhaustive sampling is generally
too slow for obtaining scan view registration within
seconds, as would be needed for the purpose of
interactive 3D scanning. The critical factors here are
the step sizes in the six dimensions of configuration
space, that define the number nr of point cloud
distance computations. However, using the GPU and
adaptive step sizes might prove exhaustive search be
feasible in the future [Kooijman 2009].

To reduce the number of distance calculations, we
need to extend the algorithm in order to select
“promising” transformations. If, for a particular
transformation Mr, an (even small) number of points
in a grid element is, after transformation, very close
to A then these points could be taken as candidates

for being points in the overlap region. However, in
regions where the object’s surface has low curvature,
points in the overlap region poorly define the proper
transformation Mr. Therefore we need also to
consider the degree of planarity of the points close to
A. When a small set of points (4 or more) of Bi is
close to A and if these points are sufficiently non-
planar, then the transformation to match this set with
A is a relatively good candidate of the Mr we are
looking for. Relying on this principle we base the
algorithm on matching 4 points to A, where the 4
points are contained in the same grid element. The 4
points, denoted l1, l2, l3, l4, are selected from Bi such
that they form L, a large least-planar set, or large fat
tetrahedron (LFT) as follows: l1 and l2 are the points
in Bi which are furthest apart. l3 is the point in Bi
furthest from the line through l1 and l2, that is it
maximizes |(l3 − l1) × (l2 − l1)|. l4 is the point in Bi
furthest from the plane defined by l1, l2 and l3, that is
it maximizes | ((l3 − l1) × (l2 − l1)) . (l4 − l1) |.

If L is contained in B′ then the directed Hausdorff
distance of MrL to A will be small for the proper
transformation Mr. To test whether this is the case
and to determine Mr we proceed as follows. At first,
we apply a translation to L such that point l1
coincides with a given point as ∈ A (the following
procedure will be repeated for all points in A). We
will leave point l1 unchanged but otherwise rotate L
around this pivot point to find out whether the
remaining three points can be positioned close to A,
which will be the case when there exist points m2, m3,
m4 ∈ A, such that | Mr l j – mj | is small for j = 2, 3, 4.
Since (l1, l2) is the longer edge of tetrahedron L, all
candidate points m2, m3 and m4 must be on or be
contained in the sphere of radius |l2 – l1| centered at
as. Let us define As ⊆ A as the set of points of A either
on or inside this sphere. Candidate points m2 will be
on the surface of sphere up to some accuracy
depending on sampling spacing and the precision of
the sampling process. Let m2′ ∈ As be such a
candidate point. Then L is rotated about point l1 such
that point l2 comes closest to m2′, which implies that
as, l2 and m2′ are collinear. Now there is one degree
of freedom left for L, namely its rotation about the
line through l1 and l2. If point l3 would
(approximately) hit any point m3 in As then L has
attained a configuration which should be further
evaluated. If, then, point l4 is close to any point m4 in
As, L is called being matching to A. The implied
transformation Mr can be determined, as described
later. All points in Bi are then subjected to
transformation Mr and their distance to A is
determined. If a sufficient fraction of the points are
close to A then Mr is saved as a candidate alignment
transformation.

43 Journal of WSCG

Algorithm based on LFT (Large Fat Tetrahedron)

for i = 1, ... , nG // loop over grid elements

 select l in Bi // l is large fat tetrahedron

 for s = 1, ..., nA // loop over points in A

 move L such that l1 = as // anchoring 1st point of LFT to A

 determine As // points of A in sphere at l1, of radius |l1 – l2|

 for moves of L such that l2 reaches As // move 2nd point of LFT to A

 for moves of L such that l3 reaches As // move 3d point of LFT to A

if l4 near As then evaluate goodness of matching, using points in MrBi
 endif
 endfor
 endfor
 endfor
 endfor

The number of candidate transformations Mr depends
on the various distance criteria that should be set in
the algorithm. As a final step, the candidate
transformations are used to compute the set MrB,
involving all points of B, and the degree of matching
of the set to A is determined. The transformation
producing the best alignment is the outcome of the
method. The goodness of an alignment is defined as
the number of points in MrB closer to A than a
predefined threshold distance.

The transformation Mr can be written in explicit form
as follows. We define transformation M1 to bring
point l1 to as as translation T(as – l1). Let us apply M1
to L. Subsequently L is transformed by M2 such that
the vector l2 – as is rotated about direction vector d1 =
(l2 − as) × (m2’ − az) to reach direction (m’2 − as),
which requires the rotation angle

α1 = acos((l2 − as) . (m2’ − az)) / (|l2 − as| |m2’ − az|).

The axis of rotation goes through point as, that is the
rotation is indeed around point l1 of L. Therefore M2
= T(as) R(d1, α1) T(−as), where R(d1, α1) is the
rotation of angle α1 about the line through the origin,
with direction d1. An implementation note: the
program gets a bit simpler and slightly more efficient
if we initially transform all points ai with T(−as), that
is point cloud A is moved such that as reaches the
origin and from then on T(as) would become identity.
The next transformation, M3, is a rotation about the
current direction vector l2 − as by angle α2. This angle
is determined by point m3 and computed as the angle
between the vectors n1 and n2, the vectors normal to
the triangles (as, l2, l3) and (as, l2, m3), respectively,
that is n1 = (l2 − as) × (l3 − as), n2 = (l2 − as) × (m3 −
as) and α2 = acos(n1 . n2) / (|n1| |n2|). The rotation
form n1 toward n2 is in positive sense about vector d2

= n1 × n2. Thus M3 = T(as) R(d2 , α2) T(−as). The total
transformation gets Mr = M3 M2 M1, and accounting
for some canceling translations we obtain:

Mr = T(as) R(d2, α 2) R(d1, α 1) T(– l1). (1)

Mr can be interpreted as a transformation of corner l1
of the LFT to the origin, then two rotations about
lines through origin and finally translating l1 to point
as. The explicit matrix form of transformation
R(v, α), v = (v0, v1, v2) is

cos sin 0

(,) sin cos 0

0 0 1

TR v U U

α α
α α α

− 
 =  
 
 

, (2)

with

00 01 02

10 11 12

20 21 22

,

u u u

U u u u

u u u

 
 =  
 
 

and

02 0

12 12 2 2
0 1 2

22 2

1
u v

u v
v v vu v

   
   =   + +   
   

,

01 1

11 02 2
0 1

21

1

0

u v

u v
v vu

−   
   =   +   

  

 and

44

00 01 02

10 11 12

21 2220

u u u

u u u

u uu

     
     = ×     
     
     

.

The transformation of equation (1) can be
implemented efficiently using this form to transform
larger number of points in Bi as to evaluate the
closeness of MrBi and/or MrB to A.

3. IMPLEMENTATION AND
RESULTS
First, to illustrate the steps of the LFT algorithm we
apply it to two scan views (A and B) from the
Stanford Bunny data set [Stanford 2009]. The scan
views consist of about 40,000 points each. The
relative position and orientation of A and B are
completely arbitrary, as a result of the particular
scanning process. The scan views were decimated to
3185 and 2406 points, respectively (Figure 1) to
increase the processing speed. In Figure 2 scan view
B is shown as well as one of the tetrahedrons. This
tetrahedron happened to be contained in the overlap
region. The tetrahedron was selected by the algorithm
as follows in this particular example run. The
subdivision grid for points B was chosen to consist of
5×5×5 elements. Out of these 125 elements, 8
contained more than 96 points, which was a lower
threshold (discussed later), as set for this particular
run. In each of these 8 grid elements the LFT was
constructed as described in Section 2. Each of the 8
tetrahedrons was sufficiently fat (criterion discussed
later) and was subjected to the exhaustive test of
congruence with any subset of A. Depending on the
criterion for points of a tetrahedron to coincide with a
point of A, the number of sets in A congruent to a
tetrahedron was typically between 20,000 and
200,000, which is the gross number of candidate
transformations per each grid element. For each
transformation, the fraction of points MrBi (that is the
points inside the current grid element) closer than
some preset distance to A was computed. If this
fraction exceeded a predefined threshold, the number
of points in MrB close to A was determined. The
latter computation, involving the full point set B,
occurred relatively seldom, between 0 and 300 times
only, which is less than 1% of the number of
candidate transformations.

In Figure 3 the number of points in MrB close to A is
shown for the candidate transformations Mr, where
the x-axis represents the amount of rotation implied
by matrix Mr. A couple of almost similar
transformations, having rotation angle near 90
degrees, produce the highest score. From the ground
truth information that we have about the scan views,
we can conclude that the correct alignment was

obtained. The points MrB, which are matching to
shape A are shown, together with points A in Figure
4.

The computation of this partial shape matching
process took 450s on an ordinary PC, which could be
reduced to about 10s when implemented on a GPU,
not including a couple of seconds time to import and
decimate the point clouds.

Figure 1. Two scan views (A and B) of Bunny
before alignment.

Figure 2. Points in scan view B and the best
performing LFT depicted by its 4 edges.

45 Journal of WSCG

0

200

400

600

800

1000

0 50 100 150 200

Rotation of Mr (degrees)

N
um

be
r

of
 c

oi
nc

id
in

g
po

in
ts

Figure 3. Number of points of MrB close to A
versus rotation angle of candidate
transformations Mr.

Figure 4. Result of the alignment; point sets A and
Mr B.

As a next example two scan views of a human face,
consisting of about 18,000 points each, were taken
using our Minolta Vivid700 laser scanner, see Figure
5. Since the overlap region of the two views was
relatively large, a good fit could be obtained with sets
down-sampled to 9% of the original cardinality. The
rotation angle plot is shown in Fig. 6. The
computation time for this particular on CPU (not
GPU) was about 40s, not including file read/write
and cloud decimation, which took together 10s. The
best transformation matrix obtained by the algorithm
from the down-sampled data differed only little
compared to the one from the original data. The
amounts of rotations, for example, of the two
transformations differed by 0.6 degrees. It is an
indication that the result of the algorithm is suited for
further processing by common ICP-based registration
software.

Figure 5. Two scan views before (left) and after
partial shape matching (right).

0

200

400

600

800

0 50 100 150 200

Rotation of Mr (degrees)

N
um

be
r

of
 c

oi
nc

id
in

g
po

in
ts

Figure 6. Number of points of MrB close to A
versus rotation angle of candidate transform-
ations Mr for the scan views shown in Figure 5.

In Figure 7 two scan views of an automobile shape
are shown. The physical, scaled, model was about
25cm long and very much simplified, containing no
detailed shape features. The top view of the car
model also contains data from the left side of the car,
as can be seen in Figure 7, however that part of the
surface is recorded at a small incident angle at
relatively poor accuracy. Yet, the tetrahedron
selected by the algorithm in scan view B (see Figure
8) could be matched to the correct location in scan
view A, thus providing a good initial match, shown in
Figure 9. The tetrahedron is quite large because the
size of each grid element is relatively large. We did
not remove “outliers” such as data due to the
supporting platform and therefore the bounding box
got large and so did the grid elements. It can be noted
that the background data of scan view A has not
affected the outcome of the algorithm but has slowed
down the search process, since each point in A is
tested by the LFT algorithm as a potential corner
point of the tetrahedron. Using the full data, without
decimation of the point clouds (containing about
10,000 points each), the computation time is 15s on
GPU. When the point clouds are reduced to about
2000 each, the computation is accelerated

46

dramatically to less than 1s on GPU or 19s on a CPU.
The resulting transformation was still approximately
correct, i.e. sufficiently accurate to reach fine
registration using a commercial tool based on ICP or
a general purpose minimizer based on steepest
descent.

Figure 7. Top view and left side view of a simple
car model.

Figure 8. Point cloud B representing the left side
view of the car and an LFT leading to the correct
transformation Mr. The LFT is depicted by its
four edges.

Figure 9. Correct matching of the two scan views
from the car model.

4. DISCUSSION AND CONCLUSIONS
The partial shape matching algorithm based on large
fat tetrahedrons (LFT) has been evaluated using a, as
yet still small, number of data sets.

Both the goodness of the transformation Mr and the
amount of computation time spent by the algorithm
depend on the settings of various tolerance criteria.
For example, if the thickness of the spherical surface
of As is too small, the correct position of l2 could be
missed; however if the thickness is taken too large
then the number of candidate tetrahedrons can
become excessive. Similar reasoning can be applied
to the number of grid elements subdividing the
bounding box, and other parameters mentioned. In
our implementation, the chief parameter is the
“assumed scanning distance” d, which is the typical
closest distance between the measured points. All
other geometric thresholds in the algorithm are
currently defined proportional to d.

The algorithm has provided the correct
transformation for the partial match in all cases we
investigated so far. More examples are being studied.

The distance parameter d is critical with respect to
computation time. For example, whereas the
matching example of Figure 3 took 10s with d set to
1.5 units, the computation took 70s with d = 2.0. The
outcome of the algorithm was the same, but there
were relatively many false candidate tetrahedron
placements (4 million compared to 0.5 million at d =
1.5). The increase of the number of false hits can be
seen by comparing Figure 10 to Figure 3.

0

200

400

600

800

1000

1200

0 50 100 150 200

Rotation of Mr (degrees)

N
um

be
r

of
 c

oi
nc

id
in

g
po

in
ts

Figure 10. Number of points of MrB close to A
versus rotation angle of candidate
transformations Mr for the same scan data
samples as in Figure 3, with larger parameter d.

If the grid element size gets smaller than the overlap
region of the two scan views then the algorithm
would no longer be able to find a correct match.
There should also be a lower limit on the number of
points in a grid element to decide whether an LFT
will be considered. We have set the default threshold
to nB / nG

2/3, which is appropriate for point sets B
representing a smooth surface.

The numerical tests indicate that the method is not
very sensitive to down-sampling of the point clouds
and hence could be scalable. The down sampling
algorithm that we applied simulates lower precision
scanning, and was intentionally not designed to

47 Journal of WSCG

preserve sharp curvatures. Indeed, the LFT method is
not dependent on high curvature features, but on
“medium-size” aspects, which are preserved under
down-sampling.

In addition the method discards flat regions,
including the planar “outlier” points as in the car
model, since flat tetrahedrons are by definition non-
fat. However, if a grid element contains a mixture of
data from the model and from a supporting table,
wrong tetrahedrons could emerge.

As mentioned, the computation time depends strongly
on the degree of decimation and the values to which
the threshold parameters are set. From the numerical
experiments we learned how to tweak these
parameters to settings which make the computation
very fast; however, for a given pair of point clouds it
is not a priory known how to chose the optimal
parameters. The algorithm could be extended with
pre-scans of the data in order to estimate an optimal
setting.

Since the computation time to match two scan views
remains below 10s using the GPU or even the CPU,
the LFT method seems very suitable to practically
support interactive and mobile scanning processes.

As mentioned, the data samples we used to evaluate
the algorithm originate from repositories, such as in
[Stanford 2009], or from measurements we conducted
ourselves. To our knowledge there is not yet a
suitable database containing data samples that could
be used for benchmarking purposes for partial shape
matching. Indeed, there are databases containing data
samples to evaluate shape retrieval algorithms.
However, these data samples represent shapes, not

partial shapes. The authors look forward to
suggestions to achieve at a repository of partial
shapes to benchmark scan view registration methods.

REFERENCES
 [Aiger 2008] Aiger, D., Niloy, M., Cohen–Or, D.

2008. 4–Points Congruent Sets for Robust
Pairwise Surface Registration. ACM Trans.
Graph. 27, 3.

[Johnson 1999] Johnson, A.E. and M. Hebert, “Using
spin-images for efficient multiple model
recognition in cluttered 3-D scenes,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 21, no. 5, pp.
433–449, 1999.

[Gelfland 2005] Gelfland, N., Mitra, N. J., Guibas, L.
J., Pottmann, Robust global registration. In Proc.
Symp. Geometry Processing, Eurographics, pp
197–206.

[Kooijman 2009] Kooijman, A., Vergeest, J.S.M., A
GPU-Supported Approach to Registration of 3D
Scan Data. Proceedings of the Gravisma 2009, V.
Scala (Ed), in press.

[Stanford 2009] Stanford Scan data Repository,
http://graphics.stanford.edu/data/3Dscanrep

48

	!_2010_J_WSCG_1-3.pdf
	C29-full.pdf

