
Dynamic Virtual Textures

Javier Taibo
University of A Coruña, Spain

jtaibo@udc.es

Antonio Seoane
University of A Coruña, Spain

aseoane@udc.es

Luis Hernández
University of A Coruña, Spain

lhernandez@udc.es

Abstract

The real-time rendering of arbitrarily large textures is a problem that has long been studied in terrain visualization. For years,

different approaches have been published that have either expensive hardware requirements or other severe limitations in quality,

performance or versatility. The biggest problem is usually a strong coupling between geometry and texture, both regarding

database structure, as well as LOD management.

This paper presents a new approach to high resolution, real-time texturing of dynamic data that avoids the drawbacks of previous

techniques and offers additional possibilities. The most important benefits are: out-of-core texture visualization from dynamic

data, efficient per-fragment texture LOD computation, total independence from the geometry engine, high quality filtering and

easiness of integration with user custom shaders and multitexturing. Because of its versatility and independence from geometry,

the proposed technique can be easily and efficiently applied to any existing terrain geometry engine in a transparent way.

Keywords: Terrain rendering, virtual texture, clipmap, dynamic data, GIS, GPU.

1 INTRODUCTION

Terrain visualization typically involves both high res-

olution geometry and texture management. There are

numerous works on these two areas, whether on one

or other or on both. Focusing on the texture man-

agement, existing techniques require expensive hard-

ware or establish a strong coupling between geometry

and texture, both in databases and LOD management

systems. We propose a different technique based on

the programming capabilities of new GPU generations,

that efficiently solves these limitations as well as pro-

vides new features for emerging applications to interac-

tively visualize geographic information. The technique

enables real-time rendering of high resolution textures

composed of dynamic data that is periodically updated.

A working subset of the whole dynamic database is

cached in TRAM, in a clipmap-like structure [22], al-

lowing arbitrarily large textures to be mapped over any

geometry.

This virtual texturing engine can be applied to terrain

visualization as well as to other applications that require

a high detail 2D texture focusing on a center of interest.

The textured dynamic data can be raster or vectorial in

its source.

We start with a state of the art review, mentioning the

weaknesses and limitations of previous related work,

which have constituted our starting point for working

on and improving. We then present a new approach,

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

describing its features, architecture and design through-

out section three. Finally, we present some quantitative

results from the current test implementation, in order

to analyze the performance of the system, followed by

the conclusions and future lines of research we are cur-

rently working on.

2 RELATED WORK

The use of wide area detailed textures for real-time ter-

rain rendering was first studied by Michael Cosman in

1994 [7]. Two approaches were described: to use a mo-

saic of small textures of a size supported by the hard-

ware or to use a unique virtual texture managed by spe-

cific graphics hardware.

The ideas given by Cosman were later retaken by

Tanner et al. when they described the clipmap architec-

ture [22]. This approach was similar as it was based on

specific graphics hardware to support arbitrarily large

virtual textures with a very limited amount of texture

memory. The clipmap technique became quite popular

and nowadays it is one of the most important references

in the field of real-time terrain texturing.

Later approaches to the large textures problem were

published, that avoided the strong hardware require-

ments of the previous ones. They were mainly based

on the texture mosaic approach, and so they suffered

most of the limitations described by Cosman. Some of

the most important techniques were described by Hüt-

tner (MP-Grid) [13], Rabinovich [19], Cline [6], Döll-

ner [9], Klein [14], Cignoni (BDAM/PBDAM) [4, 5],

Brodersen [3] and DachsBacher [8].

The biggest drawback of these techniques is the

strong coupling between terrain geometry and texture

regarding database structure and run-time LOD selec-

tion. Geometry must be tessellated and tile boundaries

must exactly match those of the tiles of the texture

mosaic.

Journal of WSCG 25 ISSN 1213 – 6972 



Lefebvre [15] et al. described a generic texture man-

agement system for arbitrary meshes but that does not

comply with all the requirements we state, detailed in

next section. They use a tile pool texture that does not

keep continuity, what difficults high quality filtering.

The clipmap approach has also been adapted to ge-

ometry rendering, as in the works of Losasso [16],

Holkner [12] and Asirvatham [1]. The use of texturing

is proposed in some of these works, but texture LODs

are fully coupled with geometry LODs and so they are

not chosen based on the texture space projection of each

fragment. This is an important drawback not only to

LOD selection, but also to texture filtering. Some tech-

niques have been proposed recently, as in Ephanov [10]

and Seoane [21], based on the idea of clipmapping and

trying to provide its advantages while not requiring ex-

pensive specific graphics hardware.

Seoane’s technique provides a cached window of the

virtual texture, for each texture level, as big as desired

up to the texture size limit of the hardware. As it is a

roaming window instead of a mosaic of textures, geom-

etry tessellation is not so constrained as in other tech-

niques. Geometry boundaries can be anywhere and as

soon as the texture cache window contains a geometric

primitive, it can be textured with this level of detail.

This decoupling between geometry and texture man-

agement is one of the main advantages of this tech-

nique. It can be used with different tessellations, even

non-rectangular ones, i.e. TINs. The one important

aspect is about geometry batch size, not shape. The

problem of this technique is that, in order to achieve the

highest texture LODs, geometry must be highly frag-

mented, which may result in performance loss.

Ephanov et al. propose two alternatives for their Vir-

tual Textures: using the OpenGL fixed function pipeline

or using pixel shaders. The first choice is similar to

Seoane’s approach in its relation between texture LODs

and geometry tessellation and in that it does not require

programmable hardware. But Ephanov does not use

the toroidal update like Tanner and Seoane. Instead of

the continuous update of a center of detail, the paging

centers hop to positions matching the geometry. This

means an undesired coupling between texture and ge-

ometry management systems: the texturing engine must

know the geometry structure.

The second approach proposed by Ephanov extends

the previous scheme by using the programmability and

multi-texturing capabilities of new graphics hardware.

This way, they can map a geometry primitive using

several textures to achieve a higher texture detail for

this geometry than was possible with the fixed pipeline.

The drawback is that it implicates the use of several tex-

ture stages, making it difficult to combine several Vir-

tual Textures or to use them in other advanced rendering

techniques without expensive multiple render passes.

Also, the use of mipmaps for level tiles imposes a

memory usage overhead for redundant data. More-

over, the use of double buffering duplicates the graphics

memory assigned to cache the Virtual Texture.

Ben Garney [11] published a technique that emulates

clipmaps with programmable hardware. The main lim-

itation of this technique is that it requires one texture

stage for each clipmap stack level used. This drasti-

cally limits the number of stack levels that are simulta-

neously usable and, specially, it difficults the combina-

tion of several textures with programmed effects.

Later works on the topic are Mittring’s Advanced Vir-

tual Textures [17] and Barret’s [2] Sparse Virtual Tex-

tures. Both of them need at least an additional texture

for cache addressing and do not keep the texture space

continuity, what difficults high quality filtering. More-

over, none of these techniques address the management

of dynamic textures.

3 VIRTUAL DYNAMIC TEXTURING

SYSTEM

3.1 Objectives

The goals established in this work were focused on

solving the main drawbacks and limitations described

in previously mentioned works, supporting some fea-

tures required for new applications. The technique

complies with the following characteristics:

• It is based on a standard, such as OpenGL 2.0, avoid-

ing the requirement of any vendor specific hardware.

• Texture LOD is computed and applied per fragment,

resulting in an efficient cache usage and no drops of

detail in geometry boundaries.

• Efficient memory usage. Unlike in some of the pre-

vious techniques, no redundant data is to be needed

for hardware mipmaps or double buffering.

• Allows for several texture filtering types, including

dynamically configurable anisotropic filtering.

• High performance, real-time update and texturing.

• Compatibility of virtual texture with any custom ver-

tex or fragment shader.

• Use of only one hardware texture stage, allowing its

combination with custom shaders and high perfor-

mance multitexturing. This minimizes the number

of texture binds (only one) without need to sort the

geometry batches.

• Total independence from geometry. Possibility to

apply an arbitrarily large texture to a single quad

and reach its maximum LOD when the camera

approaches the textured surface. This way, it allows

the geometry engine to dynamically modify the

meshes in size, shape or topology.

Journal of WSCG 26 ISSN 1213 – 6972 



Figure 1: Overall architecture.

• As texture contents may be dynamic, cache is up-

dated not only in space but also in time.

In summary, the proposed texturing system provides

the features present in systems such as Cosman [7] and

Tanner [22], also allowing for new capabilities such

as dynamic update, multitexturing and its combination

with custom-made shaders. Moreover, the only hard-

ware requirement is a consumer graphics card.

This system can be applied to static or dynamic data

and, in both cases, data sources can be raster as well as

vectorial rendered to a procedural texture.

3.2 System architecture

The texturing system proposed is based on a two-level

cache hierarchy, following the clipmap[22] structure,

adapting it to currently available consumer hardware

and improving it to support dynamic textures with con-

tents that are continuously updated as a function of

time.

The first cache level is the texture subset stored in

TRAM, while second level is stored in RAM. Each

cache level has an associated component whose task is

to load or generate the contents stored in this cache. The

overall architecture is illustrated in Figure 1.

Following the clipmap structure, the pyramid (com-

plete levels) as well as the stack (incomplete levels) are

cached on TRAM.

Because the use of a single texture stage is a require-

ment of the system, as previously mentioned in the ob-

jectives, only a single texture could be used to store the

cache contents. We chose to use an OpenGL 3D tex-

ture to store all cache contents, because it offers several

advantages to both quality and performance of the sys-

tem. Storing each stack level on its own texture slice,

continuity is kept so bilinear filtering in the level can

be automatically done by hardware without noticeable

overhead. Moreover, this continuity simplifies texture

addressing. Both advantages assume the toroidal up-

dating and addressing of the stack levels, as described

by Tanner. The clipmap pyramid can be stored com-

pletely inside two slices in case of square virtual tex-

tures or one slice in rectangular ones. The storage of

the clipmap structure in a 3D texture is illustrated in

Figure 2.

This storage in a single texture is a big advantage over

the mosaic of textures approach followed by many other

Figure 2: Clipmap structure on a 3D texture.

techniques, critical for the independence between tex-

ture management and geometry management, regard-

ing structure as well as LOD management. It also frees

precious texture units that can be used for other pur-

poses in a custom shader that use the dynamic virtual

texture proposed combined with other textures of any

kind. This way, a user can access several virtual tex-

tures and use them for any purpose beyond just apply-

ing them as fragment color. Some examples of inter-

esting applications for virtual textures beyond color are

described by Ephanov [10].

The NVIDIA SDK white paper [18] proposes a struc-

ture using texture arrays, that can be an alternative to

the use of 3D textures, and the algorithms described in

our paper can be applied to this structure as well.

3.3 Updating

The cached region of the virtual texture that will be used

in the render is computed from the center of detail sup-

plied by the user. As the center of detail is moved over

the virtual texture space, the contents of the caches must

be replaced to keep the right information.

The update process implies several decisions affect-

ing cache efficiency and so the final visual quality,

though they must never affect the real-time perfor-

mance of the system. To guarantee this premise,

update process is divided in both a synchronous and an

asynchronous update. The synchronous update uploads

texture data to TRAM, competing for time with the

render tasks, and so it has time restrictions to avoid

frame drops. These time restrictions are dynamically

changed in function of the render load.

The synchronous update, that feeds the first level

cache, involves several important decisions. First of all,

which levels to load, which regions inside each level

and, in both cases, the loading order. Apart from that,

there are also some other aspects we must take into con-

sideration, such as temporal updating of dynamic data

and asynchronous, predictive RAM cache updating to

minimize second level cache misses.

Level loading order Regarding the order of loading,

the classic bottom-up approach has the advantage of

making the larger areas available first and then refining

detail as soon as possible in progressively smaller areas

around the center of detail. This is the strategy followed

by the great majority of systems, including Cosman [7]

and Tanner [22]. Although it is the best solution for

static data, in a dynamic data texturing system such as

Journal of WSCG 27 ISSN 1213 – 6972 



the one proposed, it is not. This scheduling scheme can

lead to situations in which the camera is focused on a

small detail of the texture that will never be available

because coarser levels covering bigger areas are contin-

uously reloaded even though they are not needed at all.

This problem is more severe as the updating frequency

of the data increases.

Frequently updated dynamic textures require a dif-

ferent approach for the update scheduling. We need to

know in the update stage what texture LODs will be re-

quired (not in the fragment shader, as before), and that

introduces an extra computation for the CPU. The scene

must be examined to determine what range of texture

LODs will be needed.

The computation of the exact LOD range needed in

the render can be complex and costly, and so affect the

system performance. We compute a conservative esti-

mation of the LODs needed in function of the distance

of the viewer to the textured geometry, the field of view

of the camera and the screen resolution. The distance is

estimated by casting some rays through the corners and

the center of the viewport (and optionally some other

samples, depending on the available computing power)

to intersect the terrain. This approximation results quite

adequate and needs reduced CPU time.

Inter-level loading order Concerning the update inside

a texture level, there are two possible approaches for

updating the TRAM texture cache of one texture level:

updating variably sized regions of invalidated data ac-

cording to center of detail displacement, as described

by Tanner [22], or tessellate the virtual texture space in

square tiles of fixed size, as described by Seoane [21].

Although the first approach can gain a bit of perfor-

mance in some circumstances, while introducing more

complexity to the update and specially to the load time

control, the second approach guarantees that loaded

texture blocks have an adequate size to maximize trans-

fer rate, avoiding inefficient small block transfers and

leaving this time available for other tasks in this frame.

For this reason we use the second approach, loading

fixed-size square tiles of texture. Tile size is either spec-

ified in the configuration or automatically computed

at startup time. The adjustment of this parameter is

very important for tile loading, as the transfer rate from

RAM to TRAM is strongly affected by it.

In case of procedural textures (tile render on-

demand), the tile size is also critical because it affects

the render efficiency. The usual behavior is that the

bigger the block to upload or render, the higher the

transfer rate or the rendering efficiency. However, for

an adequate load time control, the load/render quantum

must not be too big. In the special case of very dynamic

textures, modified every frame, the best option is to

render each whole level in one pass (tile size = clip

size) as long as the render time of a level does not

exceed the available update time.

Figure 3: TRAM tiles loading order. Example for a

given flight direction.

Figure 4: TRAM tiles loading order for a single quad

around center of detail. Example for a given flight di-

rection.

Following with the case of loaded tiles (instead of

rendered ones), our tests showed that the optimum tile

size for loading texture is dependent on the graphics

hardware, but it is usually around 128 square texels. It

is the smallest size before a severe drop of transfer rate.

Whatever the source of data, raster loaded or vecto-

rial rendered to texture, the tiles loading order inside a

texture level is defined with the following goals:

• To prioritize the loading of tiles close to the center

of detail, that contain the information located in the

region that will capture the user’s main attention.

• To progressively load rectangular areas around the

center of detail, i.e. to construct, as soon and as big

as possible, areas directly usable in the render.

• To prioritize those tiles that, for the current flight

direction, will be kept valid for more time, i.e. load

first the tiles in the direction of movement.

Following these goals, the sorted list of tiles to load

is generated in concentric squares around the center of

detail (innermost to outermost), as showed in the exam-

ple in figure 3. The order in each of these concentric

squares is illustrated in figure 4.

Journal of WSCG 28 ISSN 1213 – 6972 



Temporal update In case of dynamic textures, cache

tiles must be updated, not only when the center of de-

tail is moved, but also in function of time. The time of

life of a tile can be determined in two ways. An asyn-

chronous mechanism allows the client of the texturing

engine to invalidate any single tile, level or the whole

cache. Nevertheless, the usual temporal update is man-

aged through a synchronous mechanism based on an

expiry timestamp assigned to each tile. When this ex-

piry time is reached, the data is no longer valid and must

be requested again to the next cache level.

This expiry scheme has a problem that produces visi-

ble flickering on the render because, when some texture

tiles reach their expiration time and so become obso-

lete, those tiles that could not be updated in this frame

will cause a drop of quality in the render.

We solved this problem with a two-level expiration

scheme, with hard and soft expiration times. Soft expi-

ration refers to that there is new data available and its

loading should be scheduled, but old data can be used

meanwhile. Hard expiration implicates that this data is

obsolete and while new data is not available, this tile

or buffer cannot be used. With this technique, dynamic

data will be updated smoothly, keeping the highest level

of detail.

The expiration time is established by the data source

as part of some metadata attached to each tile, so this

information is propagated and taken into consideration

in every cache level.

One of the other parameters in this metadata is the

“absent” flag that avoids continuous request to the

cache pipeline of elements that are not available in the

data source. This allows to efficiently manage texture

with incomplete levels or heterogeneous detail in the

virtual texture. This concept was introduced by Tanner

as “high resolution insets”.

The dynamic virtual texture can vary the available in-

formation through time, so the absent state also has a

lifespan assigned and, once expired, this data can be re-

quested again. Apart from supporting dynamic data that

change, not only in contents, but also in spatial and de-

tail availability, it allows the use of existing information

in a texture database while it is still being generated.

Asynchronous predictive updating First level cache

(TRAM) is updated by its loader from the information

available in the second level cache (RAM), that struc-

tures the virtual texture space in square buffers with a

size that is a multiple of TRAM tile size.

As the transfer rate from secondary storage or even

network to RAM is much slower than from RAM to

TRAM, this will be the bottleneck of the updating. This

is why a prediction system, instead of an on-demand

approach, must be designed to minimize cache misses

and so avoid loss of detail or a slow refinement.

Figure 5: Loading order of RAM cache buffers.

Buffer loading priority is critical. In our experience,

the best results have been achieved with the following

algorithm (illustrated in Figure 5).

For each texture pyramid level (from coarser to finer),

the set of buffers conforming the region that contains

the current clipmap stack is computed. This set is called

“region A”. The L-shaped set of buffers surrounding the

region A, following the movement of the center of de-

tail is called “region B”.

The buffers in each region are sorted and loaded by

priority. Region A buffers are loaded innermost to out-

ermost in concentric rings and each ring is loaded be-

ginning with the buffers in the position towards which

the center of detail is moving, in a similar way as de-

scribed for TRAM tiles. Buffers in region B are loaded

from the center to the edge of each arm, beginning with

the arm in the main direction of movement. This way,

buffers closest to the center of detail are loaded first to

have valid data as soon as possible. Also, higher load-

ing priority is assigned to those buffers that presumably

have a longer life expectation, because they are in the

direction of movement.

Region A contains the buffers immediately needed

by TRAMCache, so they have the highest priority. But,

there is an important design decision about how to do

the loading along the clipmap levels.

Loading region A first for each clipmap level from

coarser to finer and then beginning with region B in

the same order gives the user the highest detail as soon

as possible, but the camera movement can make the

clipmap levels invalid very soon.

The other alternative is to load region A and then re-

gion B for each level in the clipmap, from coarser to

finer. It takes a little more time to reach the highest lev-

els of the clipmap, but once they are loaded they will be

much more stable and suffer little or no drops of detail.

The first strategy is more adequate when the camera

movement is very slow or when the application needs

to show the information very quickly in some points,

instead of showing a smooth visualization of a flight.

As the behavior is application dependent, we decided to

make it configurable and support both strategies. More-

over, this behaviour can be dynamically changed in run

time, so RAM cache loading schedule can be set as a

Journal of WSCG 29 ISSN 1213 – 6972 



function of the speed and/or kind of movement of the

camera.

After completion of regions A and B, as described,

the surrounding buffers are prefetched (region C),

sorted by proximity and clipmap level, until the

memory allocated to the cache has been filled.

Once all the available buffer storage space is filled,

an LRU policy is applied to discard old buffers and load

new ones. Only region C buffers are in the LRU queue;

regions A and B buffers are always kept in RAM.

It is important to state that the RAM cache can be

shared between several TRAM caches in applications

with several views of the same scene with different cen-

ters of interest. Regions A and B are dependent on the

client (TRAM cache) and they can be overlapped. To

keep these buffers locked in cache, a reference count

mechanism is used, so no buffer is sent back to the LRU

until it is out of every client region A and B.

3.4 Rendering

The kernel of the texturing system is in the fragment

shader code. A GLSL function (VTfetch) is provided

to access the dynamic virtual texture inside any user

shaders for whatever purpose.

The GLSL source code for this function is gener-

ated at run-time, during the initialization phase of the

TRAM cache, depending on its configuration. This

way, this performance critical code is highly optimized

for the exact intended use.

The fragment shader uses several parameters, being

the most important the texture coordinate set, received

from the vertex shader.

Some of the parameters used are the texture sampler

used by TRAM cache, the virtual texture size in texels,

the number of levels in the clipmap pyramid and stack,

the clip size, the tile size, the wrapping mode of the vir-

tual texture, the LOD offset and the limit of anisotropic

samples allowed.

The function, as well as these uniform parameters are

prefixed with a texture stage identifier in order to allow

several instances of virtual textures to coexist in differ-

ent texture stages and so be combined in a user custom

shader.

The main tasks of VTfetch are to compute the texture

levels of detail needed for the fragment, check the avail-

ability of the needed texels in the cache and select the

most adequate level for the fragment, address the real

3D texture to fetch the needed samples and combine

them performing the desired filtering scheme.

The computation of texture LOD is done using the

partial derivatives of texture coordinates in screen

space. In case of isotropic filtering, it is done in

a similar way to the one described in the OpenGL

specification [20].

After calculating the LOD, it is clamped down to the

immediate equal or lower level present in cache for the

texel. The fragment shader needs to know the status

of the TRAM cache, i.e. the availability of each texel

in the virtual texture full pyramid. This information

is communicated to the fragment shader through a set

of parameters containing the rectangular valid area for

each level, computed by the update process described

before.

How many texels and in what coordinates they are

fetched depends on the filter used for the virtual texture.

To avoid interpolation errors because of hardware bilin-

ear filtering on the 3D texture, a border of half a texel

around the valid area is considered unavailable, which

means that immediate coarser level texels will be used

instead. Supported filters include nearest neighbor, bi-

linear, trilinear and anisotropic.

As texture fetches are the most time consuming oper-

ation in the fragment shader, the number of anisotropic

samples is limited by an uniform parameter that can be

dynamically updated each frame, depending on the cur-

rent system stress.

3.5 Stress management

A stress management system was developed with the

objective of sustaining the frame rate of the visualiza-

tion. It has, among others, the responsibility of dis-

tributing the available update time for each frame be-

tween the virtual textures. This way, the update time

adapts to the time available until the next screen buffers

swap and textures can be prioritized in function of their

relevance or update status.

It can also dynamically adjust some of the quality pa-

rameters, such as the number of anisotropic samples, in

function of the system stress to avoid frame drops. As

the limit of anisotropic samples is a uniform parameter

to the fragment shader, it can be changed every frame

with no cost.

Monitoring the camera movement enables the render-

ing engine to increase quality (e.g. by improving the fil-

tering) when the camera stops, in applications that are

not frame rate critical and can allow frame drops in this

situation, or to change the update scheduling strategy as

described before.

3.6 Scalability issues

When virtual texture size is big (for example texturing

the whole planet with submetric detail), several prob-

lems arise, affecting quality as well as performance and

required resources:

• Memory requirements increase due to the amount of

stack levels in the cache.

• Update time increases for the same reason.

• 32-bit numeric precision of graphics hardware is

insufficient to accurately address the virtual space,

producing visible deviations in the texture coordi-

nates.

Journal of WSCG 30 ISSN 1213 – 6972 



Filter Render time

Nearest neigbour 1.6 ms

Bilinear 1.6 ms

Trilinear 1.6 ms

Anisotropic (1 sample) 1.7 ms

Anisotropic (2 samples) 3 ms

Anisotropic (4 samples) 4.4 ms

Anisotropic (8 samples) 5.4 ms

Anisotropic (16 samples) 7.3 ms

Anisotropic (32 samples) 8.5 ms

Anisotropic (64 samples) 9.9 ms

Anisotropic (128 samples) 11 ms

Table 1: Rendering performance.

In such situations, we solve these problems by not

caching all the stack levels, but only a subset (floating

stack) that is located depending on the proximity be-

tween the camera and the textured objects. This place-

ment of this window of levels is computed in a similar

way to the one mentioned for the level loading order

in very dynamic textures. Apart from the reduction of

levels stored, the texture area managed by the texturing

system is reduced to an extension between the address-

ing limits of 32-bit arithmetic precision of the hardware.

Therefore, the application updates the location of this

floating stack, as well as the center of detail position.

The active texture area can be supplied by the geome-

try engine (that will suffer the same precision problems

for the vertex coordinates and so it must work in lo-

cal coordinate systems) or it can be automatically com-

puted by the texturing engine following the position of

the center of detail. The update of the floating stack

as the cached window is moved, is performed in a cir-

cular way to minimize memory transfers and optimize

performance.

4 RESULTS

The current implementation of the described technique

has been integrated in our real-time terrain visualiza-

tion system in order to test it in a real production en-

vironment. For debugging, testing and verification pur-

poses, a standalone texture visualization tool was also

developed, that provides detailed graphic information

about the internal state of the texturing engine. All

the tests presented in this section have been performed

on an NVIDIA GeForce 8800 Ultra with driver version

1.4.0.90 for Linux 32-bit.

For the rendering performance and quality analysis,

we used a 1048576×1048576 texels (20 levels) texture

with its cache fully updated, so no texture loads could

affect performance. The cached window for each level

(clip size) was 2048×2048 texels. This virtual texture

was mapped to a frame filling plane viewed from a shal-

low angle to force a highly anisotropic situation. Screen

resolution was 1280x1024 pixels. In table 1 we can see

performance measurements for the different supported

filter types and, in the case of anisotropic filtering, dif-

ferent number of samples.

For the testing of update performance, a dynamic tex-

ture with high update ratio was used. Texture virtual

size was 131072×65536 (17 levels), with a clip size of

1024×1024 and a TRAM cache tile size of 128×128.

The data source was taken from NASA Blue Marble

data set, showing the Earth appearance along a year.

Texture update rate was set to one second, with a grace

period of another second to reload the information be-

fore invalidating it.

This dynamic texture was applied to a model of the

Earth globe and moved around, zooming in and out to

examine different places as in a typical usage.

The update time assigned for each frame was 3 ms,

data was accessed through a network, and cache con-

tents were completely replaced every second. The high-

est detail was available for the most time, especially

with still camera or slow movements. Drops of detail

matched the fast movements of the camera (and so the

center of detail) but they were barely noticeable because

in these situations the user is far away and higher levels

are not applied.

The size of the cached window or clip size is an

important decision. With static data it is beneficial

to have a higher size, because it allows to make fast

moves, keeping the maximum detail, but with dynamic

data it can be counterproductive, because update time

is wasted with information that will expire before being

used. In highly dynamic information, it is very critical

to adjust the clip size to the minimum required for the

screen resolution. We usually chose 1024 for high up-

date ratios (near to a second) and 2048 for low update

ratios or static data.

The scalability of the system was successfully tested

with a static virtual texture of 227
×226 texels covering

the whole planet, reaching a resolution of 0.25 m/texel

in the area of highest detail.

5 CONCLUSION AND FUTURE

WORK

We have developed a geospecifical, dynamic, virtual

texturing engine that fulfills the objectives proposed in

section 3.1 and we are beginning to successfully test

the system in real environments. We have focused on

terrain texture or similar applications, where detail is

located around a unique area, and not on other ap-

plications that need sparse detail textures. Planetary

sized dynamic textures with submetric resolution are

supported through the virtualization mechanisms de-

scribed.

One of the most important achievements of the pro-

posed system is to offer all the previously mentioned

features while keeping full geometry independence.

This allows homogeneous, high quality aerial image to

be mapped over irregularly tessellated terrain, enabling

us to use this virtual texturing engine in applications

like the one shown in Fig. 6, where terrain geometry

Journal of WSCG 31 ISSN 1213 – 6972 



Figure 6: Texturing a TIN-based terrain with embedded

3D models.

Figure 7: Examples of use of the texturing engine.

cannot have a regular tessellation because it must be

accurately adapted to a 3D model of a highway.

Multitexture capabilities have been tested blending

raster virtual textures together and blending them with

vectorial data rendered to another virtual texture, such

as technical drawings or GIS layers. Figure 7 shows

these examples, as well as the use of the texturing en-

gine within a shader that desaturates some regions de-

pending on their color.

Concerning dynamic update of textures, we have

found that quantitative results have outperformed

the needs of real applications managing dynamic

geographic information, where usual update cycles do

not fall below one minute.

We are exploring the benefits of the described tech-

nique in some fields of application, combining visual-

ization of high resolution aerial image with dynamic

raser and vectorial data over 3D terrain models. This in-

cludes projects in real-time traffic management, urban

planning, infrastructure project analysis and fire extinc-

tion, among others.

REFERENCES

[1] Arul Prakash Asirvatham and Hugues Hoppe. Terrain rendering

using gpu-based geometry clipmaps, 2005.

[2] Sean Barrett. Sparse virtual textures.

http://silverspaceship.com/src/svt/, 2008.

[3] Anders Brodersen. Real-time visualization of large textured ter-

rains. In GRAPHITE ’05: Proceedings of the 3rd international

conference on Computer graphics and interactive techniques in

Australasia and South East Asia, pages 439–442, New York,

NY, USA, 2005. ACM Press.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,

and R. Scopigno. Bdam – batched dynamic adaptive meshes

for high performance terrain visualization, 2003.

[5] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Mar-

ton, Federico Ponchio, and Roberto Scopigno. Planet-sized

batched dynamic adaptive meshes (p-bdam). In VIS ’03: Pro-

ceedings of the 14th IEEE Visualization 2003 (VIS’03), page 20,

Washington, DC, USA, 2003. IEEE Computer Society.

[6] David Cline and Parris K. Egbert. Interactive display of very

large textures. In VIS ’98: Proceedings of the conference on Vi-

sualization ’98, pages 343–350, Los Alamitos, CA, USA, 1998.

IEEE Computer Society Press.

[7] Michael A. Cosman. Global terrain texture: Lowering the cost.

In Eric G. Monroe, editor, Proceedings of 1994 IMAGE VII

Conference, pages 53–64. The IMAGE Society, 1994.

[8] Carsten Dachsbacher. Interactive Terrain Rendering: Towards

Realism with Procedural Models and Graphics Hardware. Uni-

versität Erlangen, 2006.

[9] Jürgen Döllner, Konstantin Baumman, and Klaus Hinrichs.

Texturing techniques for terrain visualization. In VIS ’00: Pro-

ceedings of the conference on Visualization ’00, pages 227–234,

Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[10] Anton Ephanov and Chris Coleman. Virtual texture: A large

area raster resource for the gpu. In The Interservice/Industry

Training, Simulation and Education Conference (I/ITSEC).

I/ITSEC, 2006.

[11] Ben Garney. Game Programming Gems 7, chapter Clipmapping

on SM1.1 and Higher, pages 413–422. Charles River Media,

2008.

[12] Alex Holkner. Hardware based terrain clipmapping, 2004.

[13] Tobias Hüttner. High resolution textures. In Visualization ’98

- Late Breaking Hot Topics Papers, pages 13–17, November

1998.

[14] Reinhard Klein and Andreas Schilling. Efficient multiresolu-

tion models for progressive terrain rendering. it - Information

Technology, 44(6):314–321, 2002.

[15] Sylvain Lefebvre, Jerome Darbon, and Fabrice Neyret. Uni-

fied texture management for arbitrary meshes. Technical Report

RR5210-, INRIA, may 2004.

[16] Frank Losasso and Hugues Hoppe. Geometry clipmaps: ter-

rain rendering using nested regular grids. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers, pages 769–776, New York, NY,

USA, 2004. ACM Press.

[17] Martin Mittring and Crytek GmbH. Advanced virtual texture

topics. In SIGGRAPH ’08: ACM SIGGRAPH 2008 classes,

pages 23–51, New York, NY, USA, 2008. ACM.

[18] NVIDIA. Clipmaps - white paper (wp-03017-001_v01), febru-

ary 2007.

[19] Boris Rabinovich and Craig Gotsman. Visualization of large

terrains in resource-limited computing environments. In VIS

’97: Proceedings of the 8th conference on Visualization ’97,

pages 95–102, Los Alamitos, CA, USA, 1997. IEEE Computer

Society Press.

[20] Mark Segal and Kurt Akeley. The opengl graphics system: A

specification (versión 2.1). Technical report, 2006.

[21] Antonio Seoane, Javier Taibo, Luis Hernández, Rubén López,

and Alberto Jaspe. Hardware independent clipmapping. In

WSCG ’2007: The 15t h International Conference in Central

Europe on Computer Graphics, Visualization and Computer Vi-

sion 2007 - Full Papers Proceedings II, pages 177–183. Euro-

graphics Association, 2007.

[22] Christopher C. Tanner, Christopher J. Migdal, and Michael T.

Jones. The clipmap: a virtual mipmap. In SIGGRAPH ’98:

Proceedings of the 25th annual conference on Computer graph-

ics and interactive techniques, pages 151–158, New York, NY,

USA, 1998. ACM Press.

Journal of WSCG 32 ISSN 1213 – 6972 


	!_J_WSCG2009_Numbered.pdf
	A79-full


