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Abstract

The problem of memory based complete automatic music transcription is
considered. The complete automatic music transcription, i.e., estimation of
(i) all sounds in time, (ii) their instrumentation and (iii) their loudnesses, is
a di�cult and in some cases even not solvable problem. Even though the
three named music content features carry the entire information for the orig-
inal music signal composition, they can represent observed data for further
processing, e.g., of the music piece tempo as another music content feature.
Therefore the practical complete automatic music transcription follows a sce-
nario � an intention � and tries to capture all the features within the scenario.
In this work, the inverse music sequencer as a speci�c scenario for the com-
plete automatic music transcription is de�ned. A monoaural music signal
and the library of sounds as an input of the inverse music sequencer is con-
sidered. The sounds in the library are to be composed of harmonic sounds
(a piano, a �ute, ...) and drum sounds. A probabilistic model containing
unobserved variables which re�ect information of truncation parameters of
library sounds sought in the observed signal their displacements in time and
their amplitudes is designed. The detection of subparts of the library sounds
is a distinct feature of our approach in comparison to other approaches that
consider only full sequences of frames. Variational Bayes method to calcu-
late equations of estimates of the unobserved variables is applied. Evalu-
ation methods for the speci�c intention of the inverse music sequencer are
introduced. In the experimental part, the sensitivity analysis respecting an
observed music signal, library of sounds, nuisance parameters and various
modi�cations of the transcription algorithm is carried out. In experiments,
one sound library contains harmonic sounds of one music instrument, thus
music instrument recognition is not a part of our experiments although the
proposed transcription algorithms are developed for this too.
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Abstrakt

Diserta£ní práce se zabývá problémem úplné automatické hudební transkripce.
Úplná automatická hudební transkripce, tj. detekce (i) v²ech zvuk· v £ase,
(ii) nástroj· jejich reprodukce a (iii) jejich hlasitostí, je sloºitý a v n¥kterých
p°ípadech dokonce teoreticky ne°e²itelný problém. I kdyº zmín¥né t°i charak-
teristiky hudebního obsahu nesou úplnou informaci k reprodukování skladby,
n¥kdy tvo°í jen data pro dal²í zpracování, nap°. pro získání tempa skladby
jako dal²í charakteristiky hudebního obsahu. Proto se úplná hudební tran-
skripce omezuje na scéná° � zám¥r � v rámci kterého usiluje o zachycení v²ech
charakteristik. V této práci de�nujeme inverzní hudební sekvencer jako tento
scéná°. Mono-audio hudební signál a knihovna (banka zvuk·) tvo°í vstupní
data inverzního hudebního sekvenceru. V knihovn¥ mohou být nahrávky
harmonických zvuk· (piano, �étna, ...), zvuky bicích nástroj·, p°ípadn¥
celé nahrávky jimi tvo°ené. Navrhujeme pravd¥podobnostní model, jehoº
odhadované prom¥nné nesou informaci o parametrech zkrácení knihovních
zvuk· hledaných ve vstupním hudebním signálu, jejich rozmíst¥ní v £ase
a jejich amplitudách. Detekce pod£ástí knihovních zvuk· je vlastnost, kterou
detekujeme jen ve scéná°i na²eho inverzního hudebního sekvenceru, jiné pos-
tupy pracují se zvukem jako s celkem. Pro výpo£et neznámých prom¥nných
je aplikována varia£ní Bayesovská technika. Zavádíme metody vyhodnocov-
ání pro scéná° inverzního hudebního sekvenceru. V £ásti �Experimenty�
provádíme citlivostní analýzu v závislosti na vstupním hudebním signálu,
knihovn¥ zvuk·, volných parametrech modelu a r·zných modi�kacích tran-
skrip£ního algoritmu. Jedna knihovna zvuk· v na²ich experimentech ob-
sahuje pouze zvuky � tóny jednoho harmonického hudebního nástroje, a tak
rozpoznávání hudebních nástroj· není sou£ástí test·, i kdyº navrºené tran-
skrip£ní algoritmy jsou vhodné i pro n¥j.
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Chapter 1

Introduction

Automatic music transcription (AMT) is a process of analysis of an acoustic
music signal so as to write down the pitch, onset time, duration and source
of each sound that occurs in it [1]. In Western tradition, written music
uses note symbols to indicate these parameters in a piece of music. The
note symbols are contained in a music score. Another parameter resulting
from the AMT can be the loudness1 of a sound source. Besides the common
musical notation, the transcribed products can take many other forms. E.g.,
chord symbols are usually su�cient for a guitar player to describe his role in
an orchestra. DJs operate with tempo (�speed� of a music piece) and meter
key (number of note lengths on a bar). A genre classi�cation can be utilized
for indexing of music. In a transcription system, a MIDI2 �le is often an
appropriate format for musical notations.

A complete AMT � i.e., resolving pitch, loudness, timing and instrumen-
tation of all sound events in an input audio music signal � is very di�cult or
even not theoretically possible in some cases [1], therefore the goal of practi-
cal AMT is rede�ned as being able to notate as many of constituent sounds
as possible (complete AMT) or to transcribe some well-de�ned part of the
music signal, for example, the dominant melody or the most prominent drum
sound (partial AMT). The complete AMT follows a speci�c scenario.

As a scenario, the auditory scene analysis (ASA) in music signals can be
considered (Kashino et al. [4]). The ASA aims at extracting entities like notes
and chords from an audio signal. Sound source models (low level) operate
on algorithms devised from psychophysical �ndings regarding the acoustic
�clues� that humans use to assign the spectral components to their respec-

1Contrary to note symbols the volume of loudness is speci�ed for larger parts in a music
score.

2Musical Instrument Digital Interface (MIDI) is a standard format for exchanging per-
formance data and parameters between electronic musical devices [2, 3].
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tive sources. Musicological3 models (higher level) are also applied. Another
scenario represents the music scene description (Goto et al.) [5], where the
aim is to obtain descriptions that are intuitively meaningful to an untrained
listener without trying to extract every musical note from input music signal.
This includes the analysis of melody, bass lines, metrical structure, rhythm
and chorus and phrase repetition. The last example of scenarios concerns
the signing transcription. The system of Ryynänen et al. [6] is capable to
convert a recorded singing into a sequence of discrete notes and their starting
and ending points in time. It consists of two stages � low level � estimation
of continuous pitch track, higher level � segmentation of the pitch track into
discrete note events and quantizing their pitch values. They utilized the
framework of the Gaussian mixture model with the hidden Markov model
(GMM / HMM) [7].

Another division of the AMT considers two classes: memory-based and
data-based AMT. The former utilizes sound models corresponding to cer-
tain musical instrument sounds, therefore it can be used to identify instru-
ments. The latter utilizes only rules which hold in general, e.g., harmonic
sounds have most prominent magnitude spectrum peaks approximately in
k-multiplies of their fundamental frequency (F0).

1.1 Terminology

The following terms are de�ned in [1]. Timbre is a term for �sound color�.
Pitch represents the perceived fundamental frequency of a sound. While ac-
tual fundamental frequency (F0) can be precisely determined through phys-
ical measurement, it may di�er from perceived pitch because of overtones
(or partials) in the sound. The partials are frequencies of higher intensity
which change the sound timbre. Tone is a representation of a sound having
detectable pitch. Tones are written as notes in a score. Given the reference
fundamental frequency of a tone, one octave frequency range is a multiple of
two of the reference fundamental frequency. There are 12 tones in one octave.
In normal tuning, the closest upper tone frequency to a tone of frequency
frequencyref is given by 21/12 · frequencyref . A harmonic tone is a tone having
its partials (called harmonics here) approximately in the k-multiplies of its
fundamental frequency. Harmonic sounds are produced, e.g., by a piano,
violin, acoustic guitar. Musical key of a piece usually refers to the �rst note
of a chord, which gives a subjective sense of arrival and rest of a music piece.
Musical meter refers to rhythmic patterns produced by grouping together

3Musicological models include relations between music content events, e.g., note tran-
sitions, chord tones in given a music key, etc.
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strong and weak beats. The meter may be duple (2 beats in a measure),
triple (3 beats in a measure), quadruple (4 beats in a measure) and so on.

1.2 Signal Representations

Discrete Fourier transform (DFT), Mel-frequency cepstral coe�cients
(MFCC), chroma, frames, spectrogram (overview in [1]): the DFT produces
a frequency representation of a stationary sound. A modi�cation of the DFT
is short-time Fourier transform (STFT) [8]. Given any music signal, the
STFT takes that signal, segment by segment, applies windowing function4

and calculates the DFT. This way we obtain a time-frequency representation
of an audio / music signal � a spectrogram, its vectors over time are called
frames. The MFCCs re�ect the timbral aspects of the music signal. They are
calculated on a segment, like the DFT, so that the segment sound is processed
by a discrete cosine transform (the imaginary part of the DFT is disregarded),
the obtained coe�cients are summed on the frequency logarithmic Mel-scale,
the resulting sums are forwarded to logarithm and processed by an inverse
DFT. Chroma is an approximated 12-dimensional vector of simultaneously-
sounding pitches irrespective of octaves. It is used as a feature vector for
music signal pitch similarity de�nition.

1.3 Approaches to One-channel Automatic

Music Transcription

Most audio recordings can be viewed as mixtures of several audio signals,
called source signals, which are usually active simultaneously. The sources
may have been mixed synthetically with a mixing console or by recording a
real audio scene using microphones. If the number of microphones is greater
or equal to the number of sources, then the unsupervised separation of convo-
lutive mixtures in time domain or mixtures without convolution in a complex
frequency domain enables, theoretically, a perfect separation of sources [9].
The imperfections can be caused by recording devices or audio data quanti-
zation. If the number of microphones is smaller, the problem is underdeter-
mined. We can still utilize the unsupervised convolutive separation methods
[9], but various techniques like sparse coding or statistical approaches need
to be utilized as aids [9, 10, 11]. Usually, a separation of a real audio signal
is a strongly underdetermined problem � the observational data are picked

4The windowing function reduces side-lobes in the resulting spectrum � frame.
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up from one or two microphones. Information of the AMT can be obtained
by additional processing of the separated sources (see Unsupervised Learning
Methods).

In the following paragraphs, approaches to one-channel automatic music
transcription are presented. They can be divided into two groups: those using
an observation signal model of source superposition (unsupervised learning
methods, statistical methods (1), (2) and those which do not (the remaining).
Author's proposed solution operates on the former set. Much of the designer's
e�orts with the signal model methods is spent on �nding such representations
of equations whose space of unobserved variables is not large.

Computational Models of Human Auditory System

At the present time the ears and the brain of a trained musician are the most
reliable music transcription system available. Compared with any arti�cial
audio processing tool, the analytical ability of human hearing is very good
for complex mixture signals: in natural acoustic environments, we are able
to perceive the characteristics of several simultaneously occurring sounds in-
cluding their pitches [12]. These computational models follow the operations
of (i) con�rmed physical processes of human ear and (ii) presumed process-
ing of human brain. The former are represented by �ltering using �lters
spread equally on a logarithmic scale, then the model of inner-hair cells is
followed. The inner hair cells model is described by a sequence of the follow-
ing operations: compression, half-wave recti�cation and lowpass �ltering of
the �lter outputs [13]. The latter is represented by autocorrelation function
[14] or a combination of adaptive oscillators and neural networks [15]. The
resulting algorithms are focused on F0-calculations [14, 15, 16] or acoustic
feature extraction (MFCC coe�cients), e.g., for onset detection [17] or music
sound classi�cation ([1], Chapter 6; [18]). The outer and inner ear processes
are utilized to enhance the sound separation problems solution, e.g., by an
emphasis on low frequencies of the input signal [19].

Auditory Scene Analysis

ASA refers to the human capability to perceive and recognize individual
sound sources in mixture signals [1]. It can be viewed as a two stage process:
�rst, the audio signal is transformed into a time-frequency representation,
second, the components (bins) of the time-frequency plain are grouped into
their respective sound sources. In humans, the grouping stage has been found
to depend on various acoustic properties (�clues�) of the components, such as
their harmonic frequency relationships, common onset times, or synchronous
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frequency modulation [12]. The work of Brown and Godsmark [20] and
the work of Kashino et al. [4, 21] can be named as examples. Kashino's
transcription system uses a memory bank of harmonic sounds to identify
musical instruments and to help the ASA with grouping techniques. It also
uses chord-note relations, chord transition relations and perceptual rules. Its
ASA part and the musicological models are connected in a Bayesian network.
Currently, this work represents one of the most elaborate music transcription
systems.

Unsupervised Learning Methods

These methods do not utilize the source-speci�c prior knowledge and learn
sources from a long segment of an audio signal. They are determined by the
following (observed) signal model representing a superposition of sources:

yτ ≈ Fgτ , (1.1)

Here yτ , τ = 1, . . . , t denotes the observed audio signal � input of the method.
Output of the unsupervised learning methods is the memory sound source
bank F of size φ× k (denoted here as the library of sounds) whose columns
represent sound sources. The second output is the vector of gains gτ of the
sources. The quantities yτ or F are represented either by the magnitude
or by the power spectrum (spectra). It is possible to represent yτ by time-
domain data. In this case, the matrix F contains sines and cosines of the
due frequency values [22], similar signal models for unsupervised learning
methods in the time domain can be seen in [1, 23]. The complete AMT can
be carried out by postprocessing of the unsupervised learning method product
F , gτ : the instruments are identi�ed by classi�cation techniques between the
detected source library F and the memory bank labeled by instrument names
(see [1], Chapter 6), if the detected sources represent monophonic recordings,
the pitch detection becomes a simple problem. The gain gτ determines a
presence of a source for the unsupervised learning methods to be applied. It
must be held: k � t and in order to provide a reasonable sound separation,
k must be given beforehand.

One of the unsupervised learning methods is the independent component
analysis (ICA). It assumes that the elements of the vector yτ are independent
and non-Gaussian. The core of the ICA algorithm carries out the estimation
of an unmixing matrix W ≈ F−1 to result in the source vector estimate
ĝτ = Wyτ where the estimated sources are denoted by ĝτ . The matrix W
is estimated so that the rows of the output data matrix G̃ = [ĝ1, . . . , ĝt] are

5



maximally independent. In order to ensure an approximate independence of
the ICA input data rows [y1, . . . ,yt], the whitening needs to be performed:

ỹτ = U(yt − µ), (1.2)

where ỹτ is the whitened vector, U is the whitening matrix obtained from
the eigenvalue decomposition and µ is the empirical mean.
Remark. The whitening [24, 25] is the decorrelation method. When y1, . . . ,yt
are regarded as realizations of a random quantity of a covariance matrix Σ,
the whitening transforms them into a set of new random quantity whose
covariance is a.I, where a is a scalar value and I is the identity matrix.
The new random variables are uncorrelated and have their variance equal
to 1. The whitening (1.2) by the eigenvalue decomposition is termed as the
principal component analysis (PCA) [1, 26]. Besides the decorrelation, the
PCA is capable to reduce the dimensionality by omitting small eigenvalues
and the due eigenvectors. Another whitening procedure called �scaling� may
be seen in Chapter 3.

After the ICA and calculation of ˆ̃gτ with the decorrelated ỹτ , the inverse
of the decorrelation on ˆ̃gτ must be applied. The ICA algorithm input and
output data can be both the time and frequency domain data. The standard
ICA [27] is not aimed at underdetermined problems � in one-channel tasks
the vector ỹτ would become a scalar value instead. Consider the data Y T =
[y1, . . . ,yt]

T , GT are represented by a magnitude or the power spectrum.
Then the ICA with whitening is suitable for the separation of sources. Such
approach is referred to as the independent subspace analysis (ISA) [1, 28,
29]. The musical components, we look for, are not mutually independent,
therefore, after we obtain Ĝ

T
from the ICA algorithm, its rows need to be

grouped into the musical components. The grouping requires measuring of
dependencies between the rows. This is termed as the multidimensional ICA
[30].

In the case of magnitude and power spectra in Y , it is advantageous to
restrict the representation of sources to be entry-wise non-negative and also
not to allow negative gains. Even though the non-negative ICA has been
studied, e.g., in [31], the standard ICA does not allow the non-negativity
to impose on Y ,G,F . Lee and Seung proposed two cost functions and
estimation algorithms [32, 33, 34] to obtain Y ≈ FG. The algorithm is
called non-negative matrix factorization (NMF). Here the meaning of F and
G is swapped � the cost functions for gains G and sources F are given by
Euclidean distance:

deuc(Y ,FG) =
∑
n,τ

([Y ]n,τ − [FG]n,τ )
2 (1.3)
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and the divergence

ddiv(Y ,FG) =
∑
n,τ

D([Y ]n,τ , [FG]n,τ ), (1.4)

where the divergence5 D(p, q) is de�ned as

D(p, q) = p log
p

q
− p+ q. (1.5)

The NMF estimation algorithms iteratively minimize:

F ←F . ∗ (XGT )./(FGGT ), (1.6)

G←G. ∗ (F TX)./(F TFG) (1.7)

for the Euclidean distance and

F ←F . ∗ (X./FG)GT ./(1GT ), (1.8)

G←G. ∗ F T (X./FG)./(F T1) (1.9)

for the divergence. Here 1 is φ × t matrix having all its elements equal to
one and .∗, ./ denote element-wise multiplication and division, respectively.
In the NMF algorithm initialization step, the matrices F , G are initialized
by random positive values. As noted in [1], Chapter 9, factorization of the
magnitude spectrogram using the divergence often produces relatively good
results, and according to [35] the NMF with this divergence outperforms
the NMF with the Euclidean distance. The divergence cost of an individual
observation [Y ]n,τ is linear as a function of the scale of the input, since
D(αp, αq) = αD(p, q) for any positive scalar α whereas for the Euclidean
cost the dependence is quadratic. The NMF algorithm for the divergence
has been used in multi-pitch detection [36, 37], drum transcription [38] and
sound separation tasks [18, 19, 35, 39, 40, 37]. When the drum transcription
is considered, usually one column vector f s of the source matrix F su�ces to
represent a drum sound. When the multi-pitch transcription is considered,
one vector f s represents one pitch, e.g., in [37] of Smaragdis et al. Since the
spectra of the sources can vary a lot, Vincent et al. in [41] improved the NMF
of Smaragdis for multi-pitch detection by a special representation of source
vectors: he represented a source vector as a linear combination of narrowband
harmonic and inharmonic spectra having the bands logarithmically placed in

5The divergence reminds in some aspects the Kullaback-Leibler (KL) divergence (see
in Chapter 2), but the meaning of the KL divergence is di�erent � it operates with distri-
butions not with data elements.
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frequency domain. Virtanen proposed a convolutive model where one source
is modeled as a spectrogram F̃ s ∈ F . The columns of the spectrogram
represent a sequence of stretchings of one source vector of a pitched musical
instrument [23]. In [36], he improved this model by a modi�cation that each
core source vector f̃ s is represented by a linear combination of �excitations�
(i.e., by another source basis vectors), hence, the number of source vectors
in the model was reduced again.

Statistical Methods

If a source-speci�c prior knowledge is to serve as an aid in a parameter identi-
�cation, it is convenient and often necessary to use the Bayesian framework,
see in Chapter 2. The statistical methods occur in all aforementioned ap-
proaches. They can be divided into:

1. Methods using the signal model (1.1) in its observation distribution
p(yτ |F , gτ ,ψ), where ψ denotes hyperparameters of the probabilistic
model. Probability models allow to incorporate various knowledge of
the music signal behavior, e.g., a sparsity on gains which yields the
log-posterior density

log p(G|Y ,F ) = −λ
∑
n,τ

([Y ]n,τ − [FG]n,τ )
2−
∑
n,τ

log p([G]n,τ ) (1.10)

and a temporal continuity (i.e., if a sound is present at time τ , it is
possibly present at time τ + 1 too) [35]6. The gains G can be obtained
from (1.10) by gradient descent methods [42], the sources F can be
learned from p(Y ′,F ) =

∫
G∗ p(Y

′|G,F )p(G)dG by gradient descend
methods, too. Here Y ′ can represent either the observed data (unsu-
pervised approach) Y or the training musical audio data (supervised
approach). This approach was presented in [43], for instance. Another
approach [44] uses a signal model, where, similarly to [36], a source
tone spectrum is represented by a linear combination of basis spectra.
The basis spectra are learned from training data. In the set of su-
pervised AMT approaches there are models whose hyperparameters of
prior sources ψ are learned instead of spectra [22, 45, 46]. Should be
noted that the AMT algorithms mostly operate on harmonic sounds in
their observed data.

6We refer to [35], where its signal model is not expressed in terms of probability model,
however it allows reformulation in terms of probability model [39].
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2. Methods of Smaragdis et al. which use multinomial distributions (see
Appendix) in source separation algorithms [47, 48]. The magnitude
spectrograms of observed and training data are concerned to be drawn
from these distributions. Their signal model of superposition di�ers
of the signal model (1.1) � the number of draws from the distribution
of combined signal is equal to a sum of draws from distributions of
sources, thus it contains no gain term g. The probabilistic model of
the whole separation is given by:

Pt(f) =
∑
s

Pt(s)
∑
z∈{zs}

Ps(f |z)Pt(z|s). (1.11)

where Pt(f) is the probability of observing frequency f in time frame
t in the mixture spectrogram; Ps(f |z) is the probability of frequency f
in the z-th learned basis vector from source s; Pt(z|s) is the probability
of observing the z-th basis vector of source s at time t; {zs} represents
the set of values the latent variable z can take for source s; and Pt(s) is
the probability of observing source s at time t. The distribution terms
corresponding to each training set are learned by an EM algorithm
[49]. The reconstruction itself is performed by another EM algorithm.
If observed data is long enough, the algorithm does not need the learned
reconstruction term Ps(f |z) to get a reasonable result � the separation
can be performed unsupervised. The sparse coding in the form of an
entropic prior is applied to decrease a number of �active� elements in
speaker-dependent mixture weight distributions Pt(z|s) and the source
priors Pt(s). Even though the methods have been published mainly to
solve the source separation problem, they could be utilized for pitch
and instrument identi�cation [50].

3. Methods using the GMM / HMM framework adopted, e.g., from the
automatic speech recognition. It occurs, e.g., in the singing transcrip-
tion system [6], here each considered MIDI tone was represented by
a three-state HMM model. The features were collected from the dif-
ference between the estimated fundamental frequency candidates7 and
the model tone fundamental frequency, along with the onset attack pa-
rameters. The transitions of the HMMs were trained with Baum-Welch
algorithm [7] on a set of annotated singing data.

4. Pattern recognition approaches for music instrument recognition [52]

7They were calculated by computational model of human auditory system of Klapuri
[51].

9



or music genre classi�cation [53] may be statistical, too8 � linear dis-
criminative analysis, Bayes classi�er, GMM.

5. Bayesian network in the AMT system of Kashino et al., see the ASA
approach above.

1.4 Motivation

Our scenario is to design an algorithm that can identify arbitrary sounds in
observed music signals. In order for this task to be accomplished, the prior
knowledge for sources � memory bank � must be passed to the algorithm.
Since they are arbitrary, some subpart of a sound of the memory bank can
be perceptually similar to another sound from the memory bank. E.g., one
sound can be a tone C1 of a piano and another sound can be a sequence of
piano tones C1 � G1. Moreover, there are more types of pianos, they can
be recorded under various acoustic conditions. Our aim is to cover various
instrumental properties in order to reduce the number of sounds in the mem-
ory bank but still to allow music content identi�cation. E.g., if our algorithm
manages to identify a subpart of the memory bank sound with the observed
audio, we do not have to keep both C1 and C1 � G1 in the bank. If the algo-
rithm manages a pitch shift of a sound, then in the memory bank there can
be just a few pitches of tones of an instrument. The memory bank and the
labeling of its sounds specify the purpose of the algorithm, i.e., of the tran-
scription. If its purpose is, for instance, the multiple fundamental frequency
estimation, a library sound representing a tone can be combined from more
instruments and loudnesses so that the observed signal timbre does not a�ect
the estimation. Whereas if the purpose is the �ute and piano identi�cation,
the sound library should not contain other instrument sounds.

Intuitively, our formalization of the problem can be understood as an
�inverse music sequencer�, Fig. 3.1. Music sequencers have a pre-recorded
library of sounds (sound components) which are combined together to create
a music signal. The input to the sequencer is a MIDI �le which contains
information about the beginning of music events in time, their duration, IDs
of sounds (in our case the pre-recorded sound components), their amplitude
and modi�cation type. In the proposed solution of this thesis, we consider
only component truncation as a possible modi�cation9. The output of the

8The music instrument recognition or genre classi�cation is not only a matter of sta-
tistical approaches, but also a matter of approaches as (i) k-nearest neighbors, neural
networks (see an overview in [1], Chapter 6) or (ii) support vector machines [54].

9Another modi�cations not considered in this thesis are, e.g., strech/shrink of a library
sound resulting in its pitch shift.
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sequencer is an audio signal. The input of our �inverse music sequencer� is a
recorded music signal and its output is the estimated (transcribed) MIDI-like
representation of music events.

The truncation also imposes some restrictions on sounds which are iden-
ti�ed and identi�cation methods themselves. The sounds which evolve in
time, are also allowed to be a part of the sound library. E.g., a drum loop of
a typical drum set or a sequence of notes of a harmonic instrument represent
feasible sounds of the library. However, gaining a general time-varying sound
for the bank to allow the identi�cation in the observed signal can be di�-
cult. Consider, e.g., a sound of thunder or �owing water or a DJ's scratch of
a playing record. It can be complicated to record them �twice the same�. The
structural di�erences between the sounds of the observed recording and the
library sounds can be overcome by a lesser number of sounds in the library.

There have been approaches designed so as to identify arbitrary sounds
(not just harmonic or drum) which may overlap [55] using the GMM / HMM
approach, however, they do not allow the identi�cation of the truncations
of the library sounds. We used statistical approaches allowing us to specify
a signal model of the superposition of more segments (frames) from sounds
in the library. The additional restrictions of the statistical model allow the
detection of the truncation parameters and reduce the number of free pa-
rameters in the model. In Subsection 1.3, we recall that harmonic musical
instruments and drums are suitable to be identi�ed by the signal model ap-
proaches. In our experiments, however, we deal only with harmonic sounds,
since the number of results is already large.

1.5 Applications

Current AMT applications encompass: music recommendation which, based
on set of songs, can recommend other songs; �Hit Song Science�: a tool which
claims to reliably measure the hit potential of novel songs; querying a search
engine for music by, e.g., a hummed melody instead of typing a text; audio
�ngerprinting: based on an excerpt of a music song this music song can be
identi�ed in a large database of songs; various music information retrievals:
genre, notation, control of lights in discotheques; plug-ins for the alignment
of singing imperfections in pitch. A survey of the applications can be found
in [1, 56].

We will discuss applications following the proposed motivation. With a
reasonable library of sounds being labeled, the resulting algorithm can detect
information of instrumentation, pitch and displacement of all music events.
Obtained information can be either the objective of our transcription or
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can be used further on, e.g., as feature vector(s) for identi�cation purposes.
Since it provides a complete AMT, its utilization can be large. We divide
applications of our AMT approach in the following three types:

Audio Coding

The purpose of audio coding is to reduce the size of musical data while
the quality of musical recording is retained to some degree. The output of
Section 1.4 � Motivation � is a type of a MIDI representation. MIDI �le is an
extremely compact representation of musical data by its music content. The
coding of MIDI-like information is called the structured audio coding [57] and
it is implemented in MPEG-4 standard [58]. In the MPEG-4 standard, only
the MIDI-like information is coded. The decoder uses a standardized library
of sounds to combine it with the decoded MIDI-like information.

Analysis and Manipulation

Algorithm based on our motivation performs an analysis. The analysis can
provide multi-pitch detection or instrumentation recognition. A user, having
analyzed a recording of a drum loop or an instrument melody in such a way,
can change the instrumentation, arrangement or loudness of a particular
instrument and re-synthesize the recording thereafter.

Preprocessing Step for Subsequent Music Information

Retrieval

Algorithm based on our motivation can provide features for subsequent anal-
ysis resulting in music information retrieval (MIR). Most of the current MIR
applications named in the beginning of this section utilize, or could utilize
MIDI-like features instead of features obtained directly from the audio signal.

1.6 State-of-the-art in Automatic Music Tran-

scription

A reliable complete AMT system does not presently exist. Up to this date,
transcription capabilities of skilled human musicians outperform any music
transcription system in accuracy and �exibility. However, some degree of
success has been achieved for polyphonic music of limited complexity. In
the transcription of pitched and percussive (drum) instruments, typical re-
strictions are that the number of consecutive sounds is limited, interference
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of drums and percussive sounds is not allowed in the recording, or only a
speci�c instrument is considered.

Some promising results for the multi-pitch transcription of real-world CD
music recordings (containing drums and non-harmonic sounds too) have been
demonstrated by Goto [59], Ryynänen and Klapuri [60]. In the former ex-
ample, Goto et al. detected pitch of a melody and pitch of a bass line.
The tested music recordings were hand-labeled by using their own developed
tool; they refer 88% and 80% of an average detection rate for the melody
and bass line, respectively. In the latter case, Ryynänen extended his singing
transcription system [6] using the multi-pitch detector of Klapuri [51] on
arbitrary polyphonic real music recordings; unlike Goto et al., he did not
utilize tone model spectra, but trained the transition probabilities of the
HMM model. He de�ned the evaluation rules as follows: A reference note is
correctly transcribed by a note in the transcription if (i) their MIDI notes are
equal, and (ii) the absolute di�erence between their onset times is smaller
than or equal to a given maximum onset interval given beforehand, and (iii)
the transcribed note is not already associated with another reference note.
He refers to recall10 of 39%, precision of 41%, and mean overlap ratio11 40%.
Unfortunately, it is not much clear how the testing data were labeled.

In multipitch transcription the results are better if only harmonic instru-
ment(s) are present in the observed music signal. We recall the performance
of transcription approaches described in Subsection 1.3. All of them were
evaluated on simulated observed data. Abdallah in [43] evaluated his ap-
proach by matching note-on events for each pitch to those in the original
MIDI �le, to within a tolerance of about 46 ms which was the STFT frame
length on 11025 Hz, too. Of his evaluation set, 94.3% notes were correctly
detected, while 2.2% of the triggered (note) onsets were �false-positives� that
did not match any note in the original. Marolt's transcription system [15]
achieves, for synthesized piano music, average detection and false-positive
rates of 90% and 9%, respectively, improving to 98% and 7% for a synthe-
sized Bach partita. Marolt used a set of adaptive oscillators to obtain the
features re�ecting the fundamental frequency thus did not work with a �xed
spectrum frame length. In the transcription of tone superposition of various
harmonic instruments, Klapuri [16] quotes an �error rate� of 9% for two note
chords, rising to 28% for four note chords in case of 46 ms long frames, and
6% for two note chords, rising to 12% for four note chords in case of 96 ms
STFT on 44.1 kHz. The multipitch detector of Vincent et al. based on the

10The evaluation concept of precision, recall and F-measure is widely used in evaluation
of AMT problems. It is described in our proposed solution evaluation in Section 4.6.

11The overlap ratio refers to a measure of a detected length of a note to the ground
truth length.
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NMF algorithm [41] yielded a value of 87% in the F-measure of correct de-
tected notes. Kashino's transcription system [4] resulted in 92.5% for �ute �
piano note recognition and 77.3% for �ute � piano � clarinet. The evaluation
percentage of [4] was provided in R-index:

R =

(
right− wrong

total
· 1

2
+

1

2

)
· 100%. (1.12)

The observation signal characteristics and its time-frequency analysis param-
eters were not denoted there.

In drum transcription without interference of harmonic sounds, Virtanen
and Paulus achieved 95% in recognition of bass-drum, snare-drum and hi-
hats on real recorded patterns [38] using the NMF approach. In this NMF
approach, a particular drum sound was represented by one source vector. The
source vector was calculated by a linear combination of particular drum sound
sources from training data. Performance of these approaches is summarized
in Table 4.1.

The signal models are utilized either for the pitched or drum transcrip-
tion; or, for the sound source separation methods. The evaluation of sound
source separation is a type of evaluation for music transcription tasks. The
concept is referred to as sound-to-distortion ratio (SDR) measure (4.3) and
it is characterized in Chapter 4 � Experiments. In [39], Virtanen et al. com-
pare an approach of Bayesian extension of the NMF to the previous NMF
approach in [35]. In [35] for pitched instruments: they denote 25% source de-
tection error and SDR = 9.8dB, and for drums: 22% source detection error
and SDR = 6.0dB. In [39] for pitched instruments: they denote 28% source
detection error and SDR = 12.3dB, and for drums: 20% source detection
error and SDR = 6.0dB. The testing mixtures were prepared the same way
for both approaches: by allotting a number of sources randomly (pitched
up to 12, drums up to 6), allotting a random length of pitched sounds,
random amplitude, a random number of drum sound repetitions and onset
time. Note that the evaluation concept of SDR was extended by Gribonval
et al. by introducing sound-to-artifacts (SAR), sound-to-interference (SIR)
and sound-to-noise ratio (SNR) [61]. The SDR represents a total measure
comprising SAR, SIR and SNR.

1.7 Thesis Objectives and Outline

The thesis objectives are as follows:

• De�nition of the inverse music sequencer as a scenario for the complete
automatic music transcription. A monoaural observed music signal

14



considered for the complete automatic music transcription can be com-
posed of harmonic and drum sounds.

• Design of a probabilistic model with unobserved variables which re�ect
information of truncation parameters of library sounds presented in the
observed signal, their displacements in time and their amplitudes. Ap-
plication of variational Bayes method to calculate formulas of estimates
of the unobserved variables.

• Introduction of evaluation methods for the scenario of the inverse music
sequencer.

• Experimental part:

� Sensitivity analysis with respect to an observed music signal, li-
brary of sounds, nuisance parameters and various modi�cations
of the transcription algorithm. In experiments, one sound library
contains harmonic sounds of one musical instrument, thus musical
instrument recognition is not a part of our experiments although
the proposed transcription algorithms are developed for this too.

� The evidence that the proposed solution can outperform or com-
pete with the state-of-the-art in multi-pitch detection which rep-
resents a setup option of the inverse music sequencer.

The thesis outline is as follows: Chapter 1 contains an overview of approaches
to automatic music transcription with attention to transcription of pitched
and drum sounds solved by the estimation on the basis of signal models and
statistical approaches. The state-of-the-art of the approaches containing the
values of accuracy are presented here along with the inverse music sequencer
scenario in Section 1.4. Chapter 2 introduces the necessary probability theory
that is utilized by our proposed solution. The mathematics and algorithms
of the proposed solution are explained in Chapter 3, also the previous ap-
proach is brie�y described there and reasons for halting in its development
are presented. In Chapter 4, we �rst discuss the estimation of a sound library
as one of the unobserved variables; then, we present an evaluation scheme
and evaluation methods and their algorithms; then, we provide tests of the
estimation of labels only and tests of the estimation of labels with ampli-
tudes. In Chapter 5, we summarize the resulted information and propose
future work.

The author's publications in this topic are the following references: [62,
63, 64, 65, 66, 67, 68, 69]. The same list is cited after Appendix of the thesis.
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Chapter 2

Elements of Theory Used by the

Proposed Solution

Recall the introduction and the overview of approaches in the AMT, for
the inverse music sequencer problem solution, it is suitable to deal with the
approaches using a signal model of superposition that is wrapped into a
probabilistic framework. The probabilistic framework allows the incorpo-
ration of knowledge from the restrictions in music and prior knowledge of
sought library sounds. Therefore, we introduce elements of Bayesian estima-
tion theory in this chapter. Since the variational Bayes methods represent a
core part of the proposed solution we shall shortly introduce theory regarding
this topic, too. A list of utilized probability distributions was taken from [26]
and it is placed in Appendix.

2.1 Bayesian Methods

In music signal processing, we are concerned with data D and how we can
infer a description of a source or a system that generatedD. The description
is represented by a set of unknown parameters (variables) θ � a vector. In
deterministic problems, the inference can be expressed by a rule D = g(θ),
in the point of view of superposition of sounds this rule can be interpreted
as a signal model. This rule holds for very few data contexts; in most cases,
like the superposition of music sounds is, we have to model the uncertainty
of the process.

16



2.1.1 Foundations

The modeling of the uncertainty of a process is described in the theory of
probability [70]. In terms of [70], the theory of probability is built on a
decision problem. The decision problem is characterized by the elements
(E , C,A,≤), where (i) E is an algebra of relevant events; (ii) C is a set of
possible consequences; (iii) A is a set of options which consist of functions
mapping partitions of the certain event Ω in E to compatibly-dimensioned
ordered sets of elements of C; ≤ de�ning a preference order between some
of the elements of A. The need to measure the uncertainty can be satis�ed
by the de�nition of the degree of belief attached to some event from E . The
degree of belief de�nition is built on coherence (for preventing undesirable
implications in comparison of the options A) and quanti�cation (for compar-
ing options in A and by extension the events and consequences) principles
which are designed in a set of axioms. The measure of the degree of belief
is the probability by the de�nition [70]. The probability distribution is the
sequence of the probabilities over the partition of the certain event Ω.

Having de�ned the probability and the distribution we can justify the
characterization of the probability independence, i.e., if E,D ∈ E : E being
independent of D, then the probability of their intersection is equal to
P (E) · P (D). Furthermore, in order to proceed, the conditional probability
P (E|D) as the conditional measure of the degree of belief of the event E
given D has to be de�ned. Then, for any F 6= ∅, we can formulate the
conditional probability theorem

P (E|D) =
P (E ∩D)

P (D)
. (2.1)

Having expressed (2.1), we can state the Bayes' theorem for any �nite parti-
tion {Ej, j ∈ J} of Ω and D 6= ∅:

P (Ei|D) =
P (D|Ei) · P (Ei)

P (D)
(2.2)

where P (D) =
∑

j∈J P (D|Ej) · P (Ej) which follows from the fact that D =
∪j(D ∩ Ej). If we regard the event D as a relevant piece of evidence, i.e.,
the data, and the events Ei corresponding to a set of hypotheses about some
aspect of the world, then the individual terms of the Bayes' formula are
called: P (Ei|D) � a posteriori probability of the Ei, P (D|Ei) � likelihood
of the Ei given D, P (Ei) � a priori (prior) probability of the Ei, P (D) �
predictive probability. This is the load of the practice � we get a result from
an observational experiment that is contained in the data D and our task is
to infer the description Ei which generated the data.
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Yet, the preference ≤ operator from the decision problem de�nition has
been discussed in terms of the events Ej. It follows from the axioms of co-
herence and quanti�cation [70] that it can be applied on the consequences
C. Thus, we can assign a price to each consequence c just as we de�ned the
probability on the events. The price is attached using the utility function
u(c) = u(c|c−, c+) where c−, c+ is the worst and the best consequence (for
elimination of the pathological, mathematically motivated choices of C), re-
spectively. It remains now to investigate how an overall numerical measure
can be assigned to an option a ∈ A which re�ects the knowledge from both
the events of a �nite partition of a certain event Ω and from the particular
consequences to which these events lead. The measure is called the expected
utility ū:

ū(a|c−, c+, D) =
∑
j∈J

u(cj|c−, c+) · P (Ej|D) (2.3)

where a ≡ {cj|Ej, j ∈ J} and D 6= ∅.

2.1.2 Generalizations

We have operated in the area of �nite partitions of the certain event Ω.
Such setting is not satisfactory because the distribution does not have to
be discrete, moreover, for further mathematical operations we need to be
able to make the distributions independent of some set of events, therefore
we need to be able to integrate. The decision problem is imposed into the
probability space characterized by {Ω,F ,P} where F is σ-algebra of Ω and
P is a complete, σ-additive probability measure on F [70]. Then we can
de�ne the random quantity as a function x : Ω → X j R (i.e., mapping
of the events into R) such that x−1(B) ∈ F , B is a Borel set; cumulative
(distribution) function summing all random quantities in a range yielding
the real number in the interval [0, 1]; probability (density) function p(θ) being
formally de�ned as a di�erentiate of the cumulative function integrated over
the Borel set (see [70], page 111]); expectation of y, E(y) = E(g(x)), where x,
y are random quantities, as the integral (or the sum � discrete case) of y ·p(y)
over y ∈ Y . Having these terms de�ned the operation of, e.g., marginalization
over its complement vector θ2 is allowed:

p(θ1|D) ∝
∫
θ∗2

p(θ|D)dθ2. (2.4)

The revision of the Bayes' theorem yields:
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p(θ|D) =
p(D|θ) · p(θ)∫

θ
p(D|θ) · p(θ)dθ

, (2.5)

p(θ|D) ∝ p(D|θ) · p(θ). (2.6)

Now, we can determine the posterior of the random quantity (discrete or
continuous) in the form of a vector θ representing some knowledge of a music
signal if we have a music signal data in the matrix D and we are aware of
the likelihood of θ, p(D|θ), and the prior knowledge of θ, p(θ). The Bayes'
rule can be rewritten in the form of (2.6) because the normalizing constant

1
p(D)

= 1∫
θ p(D|θ)·p(θ)dθ

can be usually omitted since it does not depend on θ
moreover it is usually not tractable. After generalization, the probability of
intersection of two events (2.1) corresponds to the joint distribution of two
quantities: p(θ1,θ2) ∝ p(θ1|θ2) · p(θ2).

The important quantities which can be asserted about the random quan-
tity θ are, e.g.: (i) Ep(θ)(θ)) � the mean of the distribution of the random
quantity θ; (ii) Ep(θ)(θ

k)) � the k-th non-central (absolute) moment ; (iii)
V AR(θ) = Ep(θ)((θ − Ep(θ)(θ))2) � the variance (second central moment);
DEV (θ) = V AR(θ)1/2 � the standard deviation; M(θ) � a mode of the
distribution of θ, such that p(M(θ)) = supθ∈θ∗p(θ).

2.2 Inference As the Case of Desicion Problem

With slightly revised notation and terminology, we recall the elements from
Subsections 2.1.1, 2.1.2 of the decision problem. The decision problem in
the inference context [70] is de�ned as (i) a ∈ A � available �answers� to
the inference problem; (ii) ω ∈ Ω � the unknown states of the world (e.g.,
functions or realizations of a random quantity); (iii) u : A × Ω → R � a
function assigning utilities to each consequence (a,ω) of a decision to report
of an inference of an �answer� a and the state of the world ω; (iv) p(ω) �
probability distribution of the state of the world.

The optimal choice of answer to an inference problem is an aopt ∈ A
which maximizes the expected utility:

aopt = argmaxa∈A

∫
Ω

u(a,ω)p(ω)dω. (2.7)

This operation is known as the decision making. In literature, statisticians
work usually with a so-called loss function being de�ned as l(a,ω) = f(ω)−
u(a,ω) where f is an arbitrary, �xed function. The maximization of the
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expected utility is equivalent to the minimization of the expected loss which
is sometimes called the Bayes risk∫

Ω

l(a,ω)p(ω)dω. (2.8)

The result of the minimization of the Bayes risk is referred to as the Bayes
estimate. We refer about a point estimate once A = Ω and l(a,ω) is de�ned,
thus the Bayes estimate is a special case of the point estimate. Selected
statistics to calculate a point estimate from �samples� ω ∈ Ω is called the
estimator.

The examples of the Bayes estimates, given a speci�c loss function l, are
as follows [70, 71, 72]:

• If the loss function is of the quadratic form l(a,ω) = (a−ω)TH(a−ω)
andH−1 exists, then the Bayes estimate is the mean of p(ω), hence a =
E(ω). The statistics to calculate the mean is known as the minimum
mean square error (MMSE) estimator.

• If the loss function is of the form l(a,ω) = 1 − I||a−ω||<ζ(ω) where
I is the indicator function and ζ is a small number, then the Bayes
estimate is the mode of p(ω), assuming that the mode exists. The
statistics to calculate the mode is known as the maximum a posteriori
(MAP) estimator in the case when there exists some prior knowledge on
ω ∈ Ω, otherwise it is called the maximum likelihood (ML) estimator.

2.3 Extension to On-Line Case

Let us have an in-time-dynamic system that is described by t observational
dataD = [d1, . . . ,dt] where its τ from-start-consecutive data are denoted by
Dτ = [d1, . . . ,dτ ], and, by t unknown parameters Θ = [θ1, . . . ,θt] where its
τ from-start-consecutive parameters are denoted by Θτ = [θ1, . . . ,θτ ], with
Θ0 = {} and D0 = {} by de�nition. Once again, the Bayes' rule (2.6) is
used to update our knowledge of Θτ in the light of new data dτ :

p(Θτ |Dτ ) = p(Θτ |dτ ,Dτ−1)p(θτ |Dτ−1,Θτ−1)p(Θτ−1|Dτ−1). (2.9)

In order to get the posterior of θτ instead of posterior for Θτ , we need to
integrate (2.9) over Θτ−1. If the integrations need to be carried out numer-
ically, the increasing dimensionality proves prohibitive. Let us simplify the
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Algorithm 1 Bayesian Filtering

1. The time update

p(θτ |Dτ−1) ≡ p(θτ ), τ = 1,

p(θτ |Dτ−1) =

∫
θ∗τ−1

p(θτ |θτ−1,Dτ−1)p(θτ−1|Dτ−1)dθτ τ = 2, 3, . . .

(2.12)

2. The data update:

p(θτ |Dτ ) ∝p(dτ |θτ ,Dτ−1)p(θτ |Dτ−1), τ = 1, 2, . . . (2.13)

calculation of θτ posterior p(θτ |Dτ ) by adopting assumptions of the Markov
model. Then the observational model results in:

p(dτ |Θτ ,Dτ−1) = p(dτ |θτ ,Dτ−1), (2.10)

i.e., dτ is conditionally independent of Dτ−1 given θτ , and the evolution
model is to be simpli�ed as follows:

p(θτ |Θτ−1,Dτ−1) = p(θτ |θτ−1). (2.11)

Application of (2.10), (2.11) onto calculation of posterior p(θτ |Dτ ), we obtain
the equations (2.12), (2.13), which are the part of Bayesian �ltering, see
Algorithm 1 published, e.g., in [26].

In the case when (2.10), (2.11) are linear in parameters with Gaussian
distributed noise as follows:

p(θτ |θτ−1) = N (Aθτ−1,Rθ), (2.14)
p(dτ |θτ ,Dτ−1) = N (Cθτ ,Rd), (2.15)

where Rθ, Rd, A, C are shaping parameters which must be known in ad-
vance, then the posterior (2.13) is Gaussian too. This is since the observa-
tional model (2.15) is of Gaussian distribution, for which the conjugate prior
is Gaussian (see [70], page 266). Algorithm 1 derived for (2.14), (2.15) is
called the Kalman �lter after its inventor. Prediction and update equations
for the Kalman �lter are presented, e.g., in [73].

In the case when

p(θτ |θτ−1) = N (a(θτ−1),Rθ), (2.16)
p(dτ |θτ ,Dτ−1) = N (c(θτ ),Rd), (2.17)
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and a and c are non-linear functions then by using Taylor series the matrices
A and C may be approximated by

A ≈ ∂a

∂θτ
(θ̂τ ), C ≈ ∂c

∂θτ−1

(θ̂τ−1). (2.18)

Such modi�ed Kalman �lter is called the extended Kalman �lter [73].

2.4 Distributional Approximation

There is a limited number of distributions which allow normalization of
Bayes' rule (2.5), marginalization (2.4) and evaluation of moments of poste-
rior distributions. The tractability issues can be bypassed using the numer-
ical integration or using a distribution that approximates the true posterior
distribution. The numerical integration is often computationally expensive
in higher dimensions, thus an applicable solution can be provided by the
distributional approximation

p(θ|D) ≈ p̃(θ|D). (2.19)

According to [74] we may discern

Deterministic distributional approximations : the approximated
distribution p̃(θ|D) is obtained from p(θ|D) by a technique with-
out any randomness. To the deterministic methods belong: (i)
point-based approximation (e.g., gradient search methods, ge-
netic algorithms or neural networks), (ii) Laplace approximation
[75], (iii) maximum entropy approximation [76], (iv) variational
Bayes free form approximation � our subject of interest.

Stochastic distributional approximations : the distribution is ap-
proximated using random samples from p(θ|D):

θ(i) ∼ p(θ|D),

{θ}n =
{
θ(1), . . . ,θ(n)

}
. (2.20)

Here the e�ort is to get the smallest number of random samples
the best re�ecting p(θ|D). A repeated application of random
sample sets often leads to an improvement in approximation of
p(θ|D). Having the random samples (2.20), the distribution can
be written as follows:

p̃(θ|D) =
1

n

n∑
i=1

δ(θ − θ(i)), (2.21)
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where δ(·) denotes the Dirac δ-function located at θ(i):∫
X
δ(x− x0)g(x)dx = g(x0) (2.22)

for the case if x ∈ X is a continuous variable and the Kronecker
function at θ(i)

δ(x) =

{
1, if x = 0,

0, otherwise,
(2.23)

if x is a discrete variable. Therefore the posterior moments of
p(θ|D) under the empirical approximation (2.21) are

Ep̃(θ|D)[g(θ)] =
1

n

n∑
i=1

g(θ(i)). (2.24)

For low dimensional θ, a temporary set can be generated from
a uniform distribution and used in one of standard sampling
methods [77] to obtain the representative random samples {θ}n.
Retrieval of the representative samples (2.20) for high dimen-
sional distributions is more di�cult. To the methods applicable
on sampling from high dimensional distributions belong Monte
Carlo Markov Chain (MCMC) methods [1, 22, 78], in the on-
line scenario, the representative algorithm is the Particle Filter-
ing method, see the application for multipitch detection problem
[46, 79, 80].

2.5 Variational Bayes as the Deterministic Dis-

tributional Approximation

Model equations(s) of many problems can be represented by functional(s).
The functional represents a mapping that takes a function p from the set
of functions P and maps it to a value. The term �variational� means that
the approach follows how the value of the functional changes in response to
in�nitesimal changes to the input function [81]. The optimization techniques
in variational Bayes are fully deterministic. The goal is to select a distribution
p̃(θ|D) from the space of tractable distributions Pc ⊂ P that are �close� to
the true posterior p(θ|D) ∈ P . Let us denote p̆(θ|D) ∈ Pc to be a candidate

23



for the distribution p̃(θ|D). Then the optimal selection of the approximating
function reads [26]:

p̃(θ|D) = argminp̆∈Pc∆ (p̆(θ|D)||p(θ|D)) (2.25)

here ∆ denotes a dissimilarity function that assigns a positive scalar as its
value.

The selection of an approximation p̃(θ|D) can be seen as a decision mak-
ing (Section 2.2). Regarding the form of the Bayes risk, we need to represent
the dissimilarity function ∆ as an integral of either p̆ · l(p̆, p), or p · l(p, p̆)
over θ. When the loss function l is in the form of either log(p/p̆) or log(p̆/p),
respectively, the dissimilarity function ∆ is equal to the Kullback-Leibler di-
vergence [82]. It follows from [83] that the loss function re�ecting maximum
change in information from the data is logarithmic. The Kullback-Leibler
(KL) divergence from p̆(θ|D) to p(θ|D) is de�ned as:

KL (p̆(θ|D)||p(θ|D)) =

∫
θ∗
p(θ|D)log

p̆(θ|D)

p(θ|D)
dθ. (2.26)

The important property of the KL divergence is that the KL divergence is
not symmetric thus the order of p and p̆ must be held.

2.6 Variational Bayes Method

It was �rst mentioned by Jordan [84] and MacKay [85]. The VB method
is based on the optimization functional (2.25) where ∆ is represented by
the KL divergence (2.26). It results in an iterative approach in which a
marginal distribution estimate p̃(θi|D) is obtained. It is supposed that the
approximated distribution is a joint distribution of independent distributions
for each θ1,θ2, . . . ,θq. The optimization of the functional is summarized in
Theorem 1 and the method itself in Algorithm 2. Both are published in [26].

Theorem 1. (The VB Theorem). Let p(θ|D) be the posterior distribution
of a multivariate parameter θ. The parameter is partitioned into q subvectors
of parameters:

θ = [θT1 ,θ
T
2 , . . . ,θ

T
q ]T . (2.27)

Let p̆(θ|D) be an appropriate distribution restricted to the set of conditionally
independent distributions for θT1 ,θ

T
2 , . . . ,θ

T
q :

p̆(θ|D) = p̆(θ1,θ2, . . . ,θq|D) = Πq
i=1p̆(θi|D). (2.28)
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Then the minimum of distributional approximation

p̃(θ|D) = argminp̆∈PcKL (p̆(θ|D)||p(θ|D)) (2.29)

is reached for

p̃(θi|D) ∝ exp
(
Ep̃(θ/i|D)[log(p(θ,D))]

)
, i = 1, . . . , q, (2.30)

where θ/i denotes the complement of θi in θ and p̃(θ/i|D) = Πq
i=1,j 6=ip̃(θj|D).

We will refer to p̃(θ|D) (2.29) as the VB-approximation and p̃(θi|D) (2.30)
as the VB-marginals. The parameters (statistics) of the VB-marginals (2.30)
will be called shaping parameters.

According to [26], the proof of Theorem 1 is based on the reduction of
the KL divergence

KL (p̆(θ|D)||p(θ|D)) =

=

∫
θ∗
p̆(θi|D)p̆(θ/i|D) log

(
p̆(θi|D)p̆(θ/i|D)

p(θ|D)

p(D)

p(D)

)
dθ.

The crucial step of the proof is a selection of a normalizing constant causing
reduction on the form

KL (p̆(θ|D)||p(θ|D)) =KL

(
p̆(θ|D)|| 1

ζi
Ep̆(θ/i|D)[log(p(θ,D))]

)
+

+ log p(D)− log(ζi) + γi.

When a local minimum of the right-hand side in p̆ is sought by calculation
of the right-hand side derivation, the one non-trivial solution for the VB-
marginal yields p̃(θi|D) = p̆(θi|D) = 1

ζi
Ep̆(θ/i|D)[log(p(θ,D))].

An advantageous assumption of the Theorem 1 is that in (2.30) the joint
distribution can be combined from the distributions of the same (e.g., expo-
nential) family resulting in a tractable distribution.

In [81] the way they inferred the VB theorem was di�erent. The formula
to optimize was given by

p̃(θ|D) = L(p(θ|D)) + KL (p̆(θ|D)||p(θ|D)) (2.31)

where L(p(θ|D)) =
∫
θ∗ p̆(θ|D)log p(θ,D)

p̆(θ|D)
dθ is the lower bound. The attention

is focused there on the lower bound since the minimization of the KL im-
plies maximization of the lower bound. It is explained there that the lower
bound is nothing but the negative KL divergence having the fraction in its
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Algorithm 2 Iterative VB (IVB) algorithm. Consider q = 2 for simplicity,
i.e., θ = [θT1 ,θ

T
2 ]T . The recursive algorithm is built on eq. (2.30): n-th

re�nement of the VB-marginal of θ2 uses n-th re�nement of the VB-marginal
of θ1 , and n+1-th re�nement of the VB-marginal of θ1 uses n-th re�nement
of the VB-marginal of θ2. For n = 1 the starting value of p̃[1](θ1|D) can be
chosen arbitrarily.

1. Update of the VB-marginal of θ2 at iteration n:

p̃[n](θ2|D) ∝
∫
θ1∗

p̃[n](θ1|D) log p(θ1,θ2,D)dθ1. (2.32)

2. Update of the VB-marginal of θ1 at iteration n+ 1:

p̃[n+1](θ1|D) ∝
∫
θ2∗

p̃[n](θ2|D) log p(θ1,θ2,D)dθ2. (2.33)

logarithm with the nominator equal to Ep̃(θ/i|D)[ln(p(θ,D))] and the denom-
inator equal to logp̆(θi|D). The minimum of the KL divergence happens
when the denominator and nominator equals to each other. Some authors
[86, 81, 87] use the non-decreasing value of the lower bound as the conver-
gence quality indicator. The lower bound can be also used for number of
Gaussians determinations in a Gaussian mixture model [81].

One could �nd a similarity to the EM algorithm [49, 81]. The similarity
resides in the fact that in one step we update a marginal density (E-step)
which is utilized in the following step. Unlike the EM algorithm, in the
IVB algorithm (i) the expectation formula from the following step is not
maximized; (ii) the optimum values of the (shaping) parameters of the dis-
tributions are calculated while in the EM the latent variables are updated
and optimized directly.

The KL divergence is not symmetric; in case when KL divergence has
an order from p to p̆, KL (p(θ|D)||p̆(θ|D)), then p̃(θi|D) is equal to the
marginal of p(θ|D), i.e., p(θi|D). There are two advantages of the iterative
VB algorithm over the calculation of the marginal p(θi|D): (i) iterative
VB algorithm can be summarized in the VB method procedure (Subsection
2.6.1) in which integral calculations do not have to be necessary and (ii) the
calculation of the VB algorithm leads to distributions p̃(θi|D) for all i that
avoid regions in which p(θ|D) is small (see an example in [81], page 469).
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2.6.1 Procedure of the VB Method

Using one family of distributions in design of the joint density p(θ,D) from
(2.30) does not have to ensure the tractability of Algorithm 2. The pub-
lications describing the VB approach [81, 84, 85] often do not analyze the
tractability except of, e.g., [26]. We present here the VB-method published
in [26]:

1. Choose a Bayesian (probability) model: The joint density p(θ,D)
of the model parameters and observed data is created. This step in-
cludes the selection of an observation model p(D|θ) and a prior density
p(θ) for its parameters.

2. Partition the parameters: Separating θ into q subvectors (2.27).
Usually the number of subvectors is equal to the number of latent
variables. For simplicity, we will assume that q = 2. Then we have to
verify that

logp(θ1,θ2,D) = g(θ1,D)Th(θ2,D), (2.34)

where g(θ1,D) and h(θ2,D) are �nite-dimensional vectors of the same
number of dimensions. Speci�cally, it must be checked if the logarithm
of the joint density can be written as a sum of multiples where their
�rst elements contain no θ2 elements and their second elements contain
no θ1. If the veri�cation fails then VB method will not be tractable.

3. Write down the VB-marginals: Theorem 1 is applied. Since the
expectation operator E is linear, it can be propagated on the functions
g and h. The VB-marginals yield:

p̃(θ1|D) ∝ exp
(
Ep̃(θ2|D)[log(p(θ1,θ2,D))]

)
∝ exp

(
g(θ1,D) ̂h(θ2,D)

)
, (2.35)

p̃(θ2|D) ∝ exp
(
Ep̃(θ1|D)[log(p(θ1,θ2,D))]

)
∝ exp

(
̂g(θ1,D)h(θ2,D)

)
. (2.36)

The identi�ed expectations are

̂g(θ1,D) ≡ Ep̃(θ1|D)[g(θ1,D)], (2.37)

̂h(θ2,D) ≡ Ep̃(θ2|D)[h(θ2,D)]. (2.38)

These expectations are either known from the previous iterations of
the VB method or have to be calculated. It is di�cult to forecast the
tractability for the expectations, e.g., we can operate with
Ep̃(θ|D)[log(g(θ,D))].
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4. Identify standard distributional forms: Recognize the standard
parametric distribution forms in equations (2.35) and (2.36). Within
(2.36), the expectation ̂g(θ1,D) is taken as a constant and within
(2.35), the expectation ̂h(θ2,D) is taken as a constant. The constant
̂g(θ1,D) and ̂h(θ2,D) is �assigned� by the expectation calculated from

(2.35) and (2.36), respectively. The found standard distributional forms
are

p̃(θ1|D) ≡ p(θ1|A = {a1,a2, . . . , aM}),
p̃(θ2|D) ≡ p(θ2|B = {b1, b2, . . . , bN}),

where A, B denote two sets of shaping parameters of the corresponding
VB-marginals. E.g., the Gaussian distribution has got two shaping pa-
rameters � the variance and the mean; gamma distribution has got also
two shaping parameters {b1,b2}, but the moments need to be calculated
from them (in case of the gamma distribution see Appendix).

5. Formulate necessary VB-moments: VB-moments are either calcu-
lated from the shaping parameters or they correspond to some of the
shaping parameters directly, i.e.:

ĝ(θ1) = ḡ(A), (2.39)

ĥ(θ2) = h̄(B). (2.40)

6. Reduce the VB equations: Equations (2.39), (2.40) and expressions
of the shaping parameters are reduced. Commonly, a set of implicit
equations is obtained. In rare cases the reduction removes the implic-
itness (recursion) and provides a closed form solution. In case there
are multiple closed form solutions for one VB-marginal, they must be
tested to �nd out which of them is the global minimizer of (2.29). This
was not the case in design of our models.

7. Run the IVB algorithm: If the closed form solution does not exist,
the evaluation of the VB-moments can be accomplished by applying
Algorithm 2. Having calculated the shaping parameters A[n], B[n] of
the n-th iteration, the VB-moments are obtained

ĝ(θ1)
[n]

= ḡ(A[n]), (2.41)

ĥ(θ2)
[n]

= h̄(B[n]). (2.42)
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The initial values of the shaping parameters should be chosen care-
fully, because the careful choice may lead to signi�cant computational
savings. The stopping condition is either given by the number of iter-
ations or by the di�erence between the parameter values calculated in
two consecutive iterations. Another option is to use the lower bound
as in [81, 87, 86].

8. Report the VB-marginals: Report the VB-approximation (2.28) in
the form of VB-moments.
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Chapter 3

Proposed Solution Based on

Variational Bayes Method

This chapter proposes a transcription algorithm using a sound memory bank.
It is based on the operation of the inverse music sequencer. Its input is an
observed audio music signal and its outputs are IDs of the corresponding
sounds, their locations in time, their amplitudes and their truncation param-
eters for each presence of a library sound.

In order to decrease the space of unknown variables and thus number of
possible solutions, we will consider that one library sound at a time τ can be
present just once, and one library sound will have its allotted amplitude, that
is, in our base model it will not be possible to have two presences of a sound
with two di�erent amplitudes. In the base model, the missing property of two
di�erent amplitude detections for one sound can be managed by generating a
sound in various loudnesses and inserting them into the library as one sound.

A music sequencer (not the inverse version) composes the output from
sounds stored in the library of sounds F = {F 1,F 2, . . .F S}. Each sound
F s is composed of ks segments � frames which are supposed to be played
one after each other. Its input parameters are de�ned by: (i) index of the
sound to play, s ∈ [1, . . . , S], (ii) truncation of the sound, i.e., the range of
frames from the s-th sound to play, ps, and (iii) amplitude of the sound as,
0 ≤ as ≤ 1. We claim that each sound can be played only once at a time τ .
The output sound is obtained by a linear superposition

yτ =
∑
s∈Sτ

asf(F , s,ps, τ), (3.1)

where yτ is the φ-dimensional vector of measurements at time τ that is
composed of either time- or frequency-representations of the input music
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Figure 3.1: Operation of a music and inverse music sequencer. The range of
active frames is yellowed. Note that the amplitudes are same for all events
in a track s (represented by squares of the same color).

signal segment (frame); s denotes the index of the sound from the set of
sounds active1 at time τ , Sτ ⊂ [1, . . . , S]. Function f(F , s,ps, τ) looks up
the frame from range ps of the s-th sound that is active in time τ , see
illustration in Fig. 3.1.

3.1 Mathematical model

3.1.1 State Space Model

The recorded signal Y = [y1, . . . ,yt] is modeled by a signal model:

yτ =
∑
s∈S

asF sls,τ + eτ . (3.2)

Here, yτ is the φ-dimensional vector of measurements at time τ composed of
frequency-representation of the input music signal segment (frame).

1�Active� implies that their loudness is above a threshold. Sounds of loudness under
this threshold are considered to be a silence.

31



The vector of frequency representation is obtained by the STFT [8] and
corresponds to absolute values of one window of the STFT transform, i.e.,
to a magnitude spectrum; the observations are corrupted with noise eτ of
Gaussian distribution with zero mean and known covariance matrix ω−1Iφ;
the label process ls,τ = [0, 0, . . . , 1, 0 . . . , 0]T denotes which frame of the
sound is active at time τ , the value one at the �rst position of the vec-
tor ls,τ = [1, 0, . . .]T encodes that the sound s is represented by a silence;
F = {F 1,F 2, . . .F S} is a library of S pre-recorded sounds; the sound ma-
trix F s = [f s,1,f s,2, . . . ,f s,ks+1] is a collection of temporal sequences that
consists of the STFT magnitude spectral vectors of the isolated library sound
F s. The column vectors of Y and F s are referred as frames. Since the one
at the �rst position of ls,τ is to indicate the silence, f s,1 is composed of
zeros and the �rst active frame of a sound s starts by f s,2, each of the vec-
tors f s,2, . . . ,f s,ks+1 is non-zero; as is an amplitude of the sound s which is
assumed to be constant in time2.

Remark. It could be argued that using magnitude STFT spectra in (3.2) is
not correct since: when it holds for the original time domain audio data:
time(yτ ) = time(F s1)+ time(F s2) then the superposition principle does not
hold for the expectation value of its spectral form3 [1]:

E(yτ ) ≤ E(F s1) + E(F s2). (3.3)

However, there are authors using it [39, 43], and so do we. The inequality
is compensated in amplitudes as that are our subject to estimate and are
assessed lower than their ground truth.

The sequence of frames within each library sound is ordered in a way that
the �rst frame is typically played �rst, followed by the second, etc. Formally,
the ordering of frames within a sound form a Markov chain

ls,τ = T ls,τ−1, (3.4)
ls,τ = [1, 0, 0, . . . , 0, . . . , 0], (3.5)

ls,τ+1 = [0, 1, 0, . . . , 0, . . . , 0],

ls,τ+2 = [0, 0, 1, . . . , 0, . . . , 0],

ls,τ+Mps
= [0, 0, 0, . . . , 1︸ ︷︷ ︸

ps

, . . . , 0],

ls,τ+Mps+1 = [1, 0, 0, . . . , 0, . . . , 0],

where the length of the sequence of active frames ps is denoted by Mps . The
transition matrix T is assumed to be known and of the same form for each

2This will be relaxed in Section 3.4.
3However it holds for the power spectra: E(y2

τ ) = E(F 2
s1) + E(F 2

s2) [1].
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sound:

T =


tsil tend tend . . . tend
tstart ±
tstart tnext ±
... ± tnext ±

tstart ± tnext ±

 , (3.6)

where tend denotes probability of transition from non-silent to the silent state,
tstart denotes probability of transition from silence to non-silence, tnext is
the probability of continuation of the sound to the next frame and tsil the
probability of transition from the silent back to itself.

3.1.2 Unobserved Variables

Regarding the observation model (3.2) we consider as, F s, ls,τ , ω, for s =
1 . . . S, τ = 1 . . . t to be unobserved variables. The observed data Y is not
su�cient since the space of the unobserved variables is large. Therefore
additional regularization is imposed on as (see in Section 3.2) and F s (see
in Section 3.3). Moreover, our aim is to identify the library sounds with
the sources in the observed signal. In the tests of the model, we investigate
the sensitivity analysis regarding the unobserved variables. The tests are
performed on the case when the unobserved variable is �xed to its ground
truth and when it is estimated.

3.1.3 Formulation of Observation Model by Approxima-

tion of Poisson Distribution

We try to express the signal model (3.2) in terms of a Poisson distribution
which forms the likelihood of our problem for the labels ls,τ , the library
sounds F s and the amplitudes as:

yτ ∼ Po(yτ ,
∑
s

asF sls,τ ). (3.7)

The distribution model (3.7) can be approximated by a Gaussian distribution
model

diag
(

(Y 1t ·
1

t
)−

1
2

)
︸ ︷︷ ︸

Dφ

Y diag
(

(Y T1φ ·
1

t
)−

1
2

)
︸ ︷︷ ︸

Dt

=

=diag
(

(Y 1t ·
1

t
)−

1
2

)(
FAL

)
diag

(
(Y T1φ ·

1

t
)−

1
2

)
+ Ẽ, (3.8)
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where 1t,1φ are vectors of ones of size t and φ, respectively. The term 1
t

represents a normalization factor. All library sounds here are denoted by
the matrix F = [F 1, . . . ,F S], the amplitudes are represented by the matrix
A = diag([a1, a1, . . . , a1, a2, a2, . . . , a2, . . . , aS, aS, . . . , aS]), where the number
of as on the diagonal is equal to ks+1. The term +1 is because of the silence.
All label vectors of all times τ are combined to the matrix

L =


l1,1:t

l2,1:t
...

lS,1:t

 . (3.9)

The label matrix L and amplitudes a are depicted in Fig. 3.2.

1 5 10 15 20

C# 61
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amp.
a27

{amp.
a28
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[to
ne

s]

submatrix l26,1:t

Figure 3.2: Label matrix L and amplitudes a when ks = 10 for all sounds
s. The blue lines in the �gure denote limits corresponding to one sound.
The depiction of L is �ipped upside down, therefore the frame sequences run
upwards instead of downwards. Such convention will be used in all following
displays of L. The silence frames are omitted in the picture.

Linear transformation on Y and FAL in (3.8) corresponds to scaling in
order to whiten the observation noise ẽ1:t = [ẽ1, . . . , ẽt]. We use the scaling
from the physiological model of medical image sequences in [26] with an
extra term 1

t
that represents the normalization over length of time. The

scaling vector diag(Dφ) is depicted in Fig. 4.6, 4.7, 4.8, 4.9. Minimization
of d([Y ]f,τ , [FAL]f,τ ) leads to a ML estimator when the observations are
generated by a Poisson process with mean value [FAL]f,τ [1, 39]. Here d
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represents the divergence de�ned in (1.5). The algorithm for the divergence
(1.5) minimization and parameter estimation, when used on the audio data,
is the NMF, see in Chapter 1.

In [43], Abdallah and Plumbley investigated an approximation of audio
data distribution by the generalized exponential density

p(yf ) =
wf exp−(wfyf )

αf

α−1
f Γ(α−1

f )
, yf > 0, (3.10)

where Γ is the gamma function Γ(z) =
∫∞

0
xz−1e−xdx. The audio data yf

were the magnitude spectral bins as in our model. They tried to �t the
distribution parameters wf > 0, αf > 0 to the audio data using the maximum
likelihood criterion. The f indices of wf values correspond to the elements
of the scaling vector diag(Dφ) in our model. They concluded, that wf is
statistically low for the low frequency bins and high for the high frequency
bins ranging between [100, 104]. This is the same conclusion that can be seen
from the elements of diag(Dφ) in Fig. 4.7 � 4.9. In [43], the values of αf
were estimated oscillating around 0.5 . In our model, we use the Gaussian
distribution, that is, αf = 2.

The equation (3.8) can be reduced so that operations of Dφ can be per-
formed on yτ ,F s as a pre-processing step which bene�ts further derivations.
When the scaling in spectra is termed Dφ, we have

p(ẽτ ) ∝ exp(−1

2
ω(yscτ −

∑
s

asF
sc
s ls,τ )

T (yscτ −
∑
s

asF
sc
s ls,τ )), (3.11)

yscτ = Dφyτ ,

F sc
s = DφF s.

Introducing the scaling in time Dt can be carried out for each τ separately
by introducing time varying variance V AR(ēτ ) = ω−1d−2

τ · Iφ, thus the ob-
servation distribution is

p(ēτ ) ∝ exp(−1

2
ωd2

τ (yτ −
∑
s

asF sls,τ )
T (yτ −

∑
s

asF sls,τ )). (3.12)

In the following calculations, all yτ and F s will be regarded to be scaled
thus they will refer to yscτ and F sc

s , respectively. The scalar constant d
2
τ from

(3.12) will be termed as

cτ = d2
τ . (3.13)
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In this section, we have discussed the likelihood of our problem for ls,τ ,
F s, as. It is the precision ω we do not have a likelihood for, yet. Hence, given
the signal model (3.2), the likelihood for the precision ω can be represented
by a Gamma distribution

p(Y |ω) ∝ ωtφ exp(
∑
τ

−1

2
ωcτ (yτ−

∑
s

asF sls,τ )
T (yτ−

∑
s

asF sls,τ )). (3.14)

In the following equations, the formula (3.14) is taken as a likelihood for ls,τ ,
F s, as because the term ωtφ represents a multiplicative constant in these
observation models.

3.2 Approximate Bayesian Identi�cation

The task is to estimate posterior probability of the hidden label process
Lτ = [lT1,τ , l

T
2,τ , . . . l

T
S,τ ]

T , i.e., labels of all sounds in the bank, and their
corresponding amplitudes a = [a1, a2, . . . , aS]T . Exact Bayesian inference of
model (3.8), (3.4), (3.16), (3.17) via (3.15) is computationally intractable
since the number of components in the likelihood (3.15) grows with time.
Therefore, we propose to use approximate inference based on Variational
Bayes approximation [26]. This technique was successfully used for on-line
estimation of mixture models [88]. We follow the steps of the VB method
presented in Section 2.6.

1. step:

The joint distribution is constructed:

p(l1,1:t, l2,1:t . . . lS,1:t,a,µa, ω,F = F est|y1:t) ∝
t∏

τ=1

p(yτ |Lτ ,a)p(Lτ |Lτ−1)p(L0)p(a)p(µa)p(ω), (3.15)

p(Lτ |Lτ−1) =
S∏
s=1

p(ls,τ |ls,τ−1),

where subscript 1:t denotes a time sequence, e.g., ls,1:t = [ls,1, ls,2, . . . ls,t]
and the expression F = F est corresponds to �xing of the sound library
matrix variable F on values F est. The observation and transition distribution
are given in (3.8), (3.14) and (3.4), respectively. Prior distributions p(L0)
and p(ω) are chosen as non-informative, in this case uniform and gamma,
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respectively. The a priori knowledge of amplitudes is held in the following
two distributions:

p(a) = N (µhyp,a,0 · 1,Σa,0), (3.16)

p(µhyp,a,0) = N (0, σµ,0). (3.17)

By setting of values of the variances Σa,0, σµ,0 we can manage either the same-
amplitude-for-all-components estimation or arbitrary amplitude estimation
with sparse coding or the �xing of amplitudes at one value.

2. step:

Following the methodology, the unobserved variables can be partitioned ac-
cording to (2.34), because the logarithm of the joint density (3.15)

log p(L1:t,a, µa,0, ω,y1:t) ∝ tφ · log(ω)− (3.18)

−
∑
τ

ωcτ (yτ −
∑
s

asF sls,τ )
T (yτ −

∑
s

asF sls,τ )+

+ ls,τ logT ls,τ−1 − (a− 1)TΣ−1
a,0(a− 1)+

+ σ−1
µ,0µhyp,a,0

can be split into a summation of multiplies (corresponding to the dot prod-
uct(s) in (2.34)).

3. step:

Minimizing Kullback-Leibler divergence between the left and the right hand
side of (3.15), we obtain the following set of implicit equations (VB-marginals):

p(ls,1:t|y1:t) ∝ exp
(
Ea,µa,0,ω,lσ,1:t,σ=1...S,σ 6=s(log p(L1:t,a, µa,0, ω,y1:t))

)
,
(3.19)

p(a|y1:t) ∝ exp
(
Eµa,0,ω,lσ,1:t,σ=1...S(log p(L1:t,a, µa,0, ω,y1:t))

)
, (3.20)

p(µa,0|y1:t) ∝ exp
(
Ea,ω,lσ,1:t,σ=1...S(log p(L1:t,a, µa,0, ω,y1:t))

)
, (3.21)

p(ω|y1:t) ∝ exp
(
Ea,µa,0,lσ,1:t,σ=1...S(log p(L1:t,a, µa,0, ω,y1:t))

)
. (3.22)

The eq. (3.19) � (3.22) are tractable since their logarithm can be split on
summation of multiplies where E is applied only on expressions corresponding
to moments.
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4. step:

Identi�cation of standard distributional forms: substituting (3.4), (3.5), (3.7),
(3.16), (3.17) into (3.19) and making some necessary simpli�cations (see Ap-
pendix) we obtain:

p(ls,1:t|yt) ∝ exp
(
Ea,µa,0,ω,lσ,1:t,σ=1...S,σ 6=s

(
t∑

τ=1

−1

2
cτω(yτ −

∑
s

asF sls,τ )
T (yτ −

∑
s

asF sls,τ )+

+ ls,τ logT ls,τ−1

))
, (3.23)

∝
t∏

τ=1

dim(Fs)∏
i=1

oi,τti,:ls,τ−1, (3.24)

oi,τ ∝ exp

(
−1

2
ω̂cτ (ỹτ − âsf s,i)T (ỹτ − âsf s,i)

)
·

· exp

(
−1

2
ω̂cτΣa,s,sf

T
s,if s,i

)
, (3.25)

ỹτ = yτ −
S∑

σ=1,σ 6=s

âσF σ l̂σ,τ , (3.26)

p(a|y1:t) = N (µa,Σa),

µa = Σa

(
t∑

τ=1

E(Φτ )
Tyτ + σ−1

a,0âhyp,a,0 · 1

)
, (3.27)

Σa =

(
t∑

τ=1

E(ΦT
τ Φτ ) + σ−1

a,0

)−1

, (3.28)

38



where âhyp,a,0 and ω̂ are hyperparameters of the model estimated from the
marginal distributions

p(µa,0|y1:t) = N (µhyp,a,0, σhyp,a,0),

µhyp,a,0 = σhyp,a,0σ
−1
a,0(
∑
s

âs), (3.29)

σhyp,a,0 = (
∑
s

σ−1
a,0 + σ−1

µ,0)−1, (3.30)

p(ω|y1:t) = G(a, b),

a = tφ,

b =
t∑

τ=1

(yτ −
∑
s

âsF sl̂s,τ )
T (yτ −

∑
s

âsF sl̂s,τ )

+
∑
τ

trace(σa,0I · E(ΦT
τ Φτ )). (3.31)

Note that (3.23) can be rewritten as

p(ls,1:t|y1:t) ∝
T∏
τ=1

p(ỹτ |ls,τ )p(ls,τ |ls,τ−1)p(ls,0) (3.32)

which is the standard hidden Markov model that could be solved using the
forward-backward algorithm. However, due to dependence of ỹτ on the ex-
pected values l̂σ,τ , it is used only as a subroutine within Algorithm 3.

5. step, 6. step:

Formulate VB moments and reduce them: the expectations are

l̂s,i,τ = l̂nonorms,i,τ /

ks∑
i=1

l̂nonorms,i,τ , l̂nonorms,i,τ = oi,τti,:ls,τ−1, (3.33)

â = µa, (3.34)
âhyp,a,0 = µhyp,a,0, (3.35)

E(ΦT
τ Φτ ) = ω̂cτ [F 1l̂1,τ , . . . ,F S l̂S,τ ]

T [F 1l̂1,τ , . . . ,F S l̂S,τ ], (3.36)

E(Φτ ) = ω̂cτ [F 1l̂1,τ , . . . ,F S l̂S,τ ], (3.37)

ω̂ =
a

b
. (3.38)

We note that the vector âhyp,a,0 contains identical elements equal to âhyp,a,0.
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Algorithm 3 O�-line VB algorithm for the proposed solution

1. Set initial conditions: l̂
(0)

s,τ = [0, 1
ks
, 1
ks
, 1
ks
, . . .]T ,∀s, τ , a(0) =

1, set iterative counter i = 0, set nuisance parameters
[rω, σµ,0, σa,0, tsil, tend, tstart, tnext]. If µhyp,a,0 is considered to be esti-
mated, then µ

(0)
hyp,a,0 = 1, else if it is considered to be �xed, then

µ
(0)
hyp,a,0 = value.

2. Update statistics of p(a|y1:t) using (3.27), (3.28).

3. If µhyp,a,0 is considered to be estimated, then

(a) update statistics of p(µa,0|y1:t) using (3.29),

(b) else assign the �xed value µ(i)
hyp,a,0 = value.

4. Update statistics of p(ω|y1:t) according to Algorithm 4.

5. For s = 1, . . . , S

(a) compute ỹτ using available estimates (3.26),

(b) evaluate mean l̂
(i)

s,τ via forward-backward algorithm using (3.33).

6. i = i+ 1.

7. If i < max_iterations and distance(̂l
(i)

s,τ , l̂
(i−1)

s,τ ) > threshold goto 2,
end otherwise.

7 � 8. step:

Running the IVB algorithm is accomplished through Algorithm 3 and the
variables L̂,L,â, âhyp,a,0, ω̂ are reported. The subvectors ls,τ of matrix vari-
able L contain one value of one. The position of the one in the label vector
ls,τ = [0, 0, . . . , 1, . . . , 0]T is determined by the maximum value from the ele-
ments of l̂s,τ .

The calculation of ω estimate was not done by a simple �ll in the formula
(3.38). The di�erence rτ = yτ −

∑
s âsF sl̂s,τ from (3.31) yields low values

in uninformative frequency bins too, that is, when both yj,τ and fs,j,τ are
very low. If the uninformative bins are retained in the calculation of ω
estimate, the estimated precision ω̂ results in a high value already in early
iterations hence the convergence is stopped prematurely. In Algorithm
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Algorithm 4 Calculation of ω estimate

1. Initialize the number of frequency bins that are above the threshold rω:
Nr = 0 .

2. For τ = 1, . . . , T,

(a) Calculate ŷτ =
∑

s âsF sl̂s,τ .

(b) For j = 1, . . . , φ,

i. If yτ,j > rω or ŷτ,j > rω ,

A. f̃s,i,j = fs,i,j, where fs,i,j is j-th frequency bin of the library
sound vector f s,i,
Nr = Nr + 1,

B. else f̃s,i,j = 0.

3. b̃ = b(F̃), where F̃ denotes the library of sounds calculated in A. The
modi�ed library F̃ is used in b calculation (3.38) instead of F .
ω̂ = Nr

b̃
.

4, the parameter rω represents the threshold of how the frequency bins are
informative.

3.3 Extension to Unknown Library of Sounds

When the library sounds F s are considered as unobserved variables the num-
ber of free parameters in the model (3.2) increases rapidly. In order to allow
a meaningful estimation of unobserved variables from the model either the
observed data Y need to be long enough in time or some additional regular-
ization needs to be imposed on F . Let us consider

p(F s) = N (F s|F est
s ,Σf ), (3.39)

where F est
s denotes one sound from the library of sounds for estimation (i.e.,

from the e-bank, see in Chapter 4) and F s is a sound which is to be estimated.
The covariance matrix Σf is de�ned as Σf = ξI. The coe�cient ξ can be
understood as a balance term between the blind source separation model
(ξ → 0) and a model where p(F s) depends just on the selection of the
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library (ξ →∞). The latter results in

p(F s) = δ(F s − F est
s ). (3.40)

Regarding the model (3.39) the joint distribution (3.15) is �lled in by the
prior density p(F s) � 1. step. Since p(F s) is of gaussian, the logarithm of the
joint density is split-able on functions h, g from Subsection 2.6.1 (2. step).

3. step: If eq. (3.15) is complemented by

p(F |yt) ≡
S∏
s=1

p(F s|yt) (3.41)

on the right hand side and by p(F s) on the left hand side, minimizing the
KL divergence between them we obtain a new VB marginal

p(F s|y1:t) ∝ exp
(
Ea,µa,0,ω,l1:S,1:t,F σ ,σ=1...S,σ 6=s(ln p(L1:t,a, µa,0, ω,F ,y1:t))

)
.

(3.42)
The eq. (3.42) is tractable since in case of the library the linear operator E
propagation ends at E(F v), where v is an exponent. In all other VB marginals
(3.19) � (3.22), the operator E must be applied to the variables F 1, . . . ,F S,
too.

4. step: Substituting (3.4), (3.5), (3.7), (3.16), (3.17), (3.39) into the
extended (3.19) and making some necessary simpli�cations we identify the
following new distributional form with shaping parameters:

p(F s|y1:t) ∝ N (F µs , Iks ⊗ΣF s) (3.43)

F µs = ΣF s(ω̂â
T
s Y l̂

T
s,1:t + ξF est

s ), (3.44)

ΣF s =

(
ω̂(â2

s + V AR(as))

(∑
τ

diag(̂ls,τ )

)
+ ξIks

)−1

. (3.45)

5., 6. step: The current model has to be �lled in by a new formula for
diagonal elements of E(Φ′τΦτ ) because the operator E has to be applied on
F s in p(a|y1:t), p(ω|y1:t). Thus, the set of expectations (3.33) � (3.38) must
be �lled in by the new expectations:

E(ΦT
τ Φτ )s,s = ωE(lTs,τF

T
s F sls,τ ) = ω̂l̂Ts,τdiag(E(F T

s F s)),

E(ΦT
τ Φτ )s,σ = ωE(lTs,τF

T
s F σlσ,τ ) = ω̂l̂Ts,τ F̂

T
s F̂ σ l̂σ,τ ,

E(F T
s F s) = F̂

T

s F̂ s + ΣF s ,

F̂ µs = F µs . (3.46)
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Algorithm 5 O�-line VB algorithm for the proposed solution with library
estimation

1. Set initial conditions: The initializations in Algorithm 3 are comple-
mented by initialization for the library of sounds: F̂ µ(0)

s = F est
s for all

s = 1 . . . S.

2. Identical to Algorithm 3.

3. Identical to Algorithm 3.

4. Identical to Algorithm 3.

5. For s = 1, . . . , S

(a) compute ỹτ using available estimates (3.26),

(b) evaluate mean l̂
(i)

s,τ via forward-backward algorithm using (3.33),

(c) update statistics of p(F s|y1:t) using (3.44), (3.45).

6. i = i+ 1.

7. If i < max_iterations and distance(̂l
(i)

s,τ , l̂
(i−1)

s,τ ) > threshold goto 2,
end otherwise.

Algorithm 3 is complemented by estimation of (3.46) resulting in Algorithm
5.

3.4 Extension of the Algorithm to Recursive

Estimation

Algorithm 3 can be easily extended to recursive form by running on a moving
window of length w. This would allow estimation of amplitudes changing over
time. We carry out the Bayesian estimation of labels on the moving window
Lτ−w:τ via the Bayes rule:

p(Lτ−w:τ |y1:t) ∝
t∏

τ=t−w

p(yτ |as,Lτ )p(Lτ |Lτ−1)p(Lτ−w)p(a). (3.47)

The prior distribution p(Lτ−w) in the Bayes rule (3.47) is the delayed pos-
terior and amplitudes a are now considered stationary only with respect to
the moving window. The estimation is carried out in Algorithm 6.
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Algorithm 6 Recursive VB algorithm

(i ) Set initial estimates L̂
(0)

0 ,a(0).
(ii) For each time τ do:

• The following operations concern quantities within a window determ-
ined by τ . Use estimates from the previous step as initializers, i.e.,
∀s : l̂

(0)

s,τ−w:τ = [̂l
(iτ−1)

s,τ−1−w:τ−1, l̂
(0)

s,τ ]
T , â

(0)
s,τ = â

(iτ−1)
s,τ−1 , set iterative counter

iτ = 0. Set nuisance parameters [rω, σµ,0, σa,0, tsil, tend, tstart, tnext]. If
µhyp,a,0 is considered to be estimated, then µ

(0)
hyp,a,0 = 1, else if it is

considered to be �xed, then µ(0)
hyp,a,0 = value.

1. Execute points (2), (3), (4), (5) from Algorithm 3.

2. iτ = iτ + 1.

3. If i < max_iterations and distance(̂l
(iτ )

s,τ , l̂
(iτ−1)

s,τ ) > threshold
goto (a).

The window length w allows to tune properties of the algorithm. In
each step and for each sound s, the algorithm estimates w time delayed
labels and one amplitude. The delayed labels are improved estimates of
previous labels and the amplitude. For window-length w > 1, the online
algorithm re-iterates estimates of the labels from the previous steps thus,
e.g., for max_iterations = 1, the estimates at the discrete times after the
window length w are iterated w times. Each window can be processed by a
separate sound library which can be prepared in the pre-processing stage, as
it is pointed in Section 4.7.

3.5 Properties of Algorithm 3

An important property of the algorithm lies in its strong discrimination
among frames of a library sound. This is demonstrated in Fig. 3.3: there
we have a visual comparison between two algorithms estimating parame-
ters from the same observation model (3.7), the �rst is the proposed varia-
tional Bayes algorithm that uses the model without the transition part (i.e.,
l̂nonorms,i,τ = oi,τ ), the second is the NMF algorithm based on the ML estimate
from (3.7).
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3.6 Previous Approach Resulting in Extended

Kalman Filter Algorithm

In Eusipco 2010 [68], we described an online model. The model did not
contain the restriction that only one frame of a library sound can be present
at time τ . The amplitude was allowed to move over time. The observational
model was given by the following formula

p(yτ |aτ ,F ) = N (Faτ , ω
−1Iφ). (3.48)

The task was to estimate posterior density of aτ given available data,
p(aτ |F ,Y τ ), where Y τ = [y1, . . . ,yτ ]. The constraints on amplitudes were
transformed into the Gaussian prior p(aτ |aτ−1), which is parametrized by a
mean value of size N and covariance matrix of size N ×N .

We de�ned a simple transformation between discrete variable ατ and
continuous amplitude aτ , speci�cally

p(ai,τ |αi,τ ) =

{
N (1, kσ1), if αi,τ = 1,

N (0, σ1), otherwise.
(3.49)

Intuitively, zero values of αi,τ (i.e., representation of silence) were mapped
on ai,τ which are close to zero and αi,τ = 1 were mapped to ai,τ close to
1. The proximity was modeled by variance parameter σ1. Since we allowed
lower amplitudes of the tone, we modeled the variance of the �rst component
of the distribution in (3.49) to be k times greater than that of the second
component. Inverse mapping of aτ to ατ can be obtained by the Bayes rule:

p(αi,τ |ai,τ ) = p(ai,τ |αi,τ )p(αi,τ )/p(ai,τ ). (3.50)

In the discrete parametrization (3.1), the transition between frames was mod-
eled by a simple Markov transition:

p(αi,τ |αi−1,τ−1) αi−1,τ−1 = 0 αi−1,τ−1 = 1
αi,1 = 0 ζ0 1− ζ0

αi,1 = 1 1− ζ1 ζ1

where τ0, τ1 are constant probabilities that the discrete amplitude is not
changed by the transition from τ − 1 to τ . This transition model can be
combined with (3.50) as follows:

p(ai,τ |ai−1,τ−1) =
∑
αi,τ−1

∑
αi−1,τ−1

p(ai,τ |αi,τ )p(αi,τ |αi−1,τ−1)p(αi−1,τ−1|ai−1,τ−1).

(3.51)
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Direct application of this rule would result in prior p(at) being a mixture of
4Kt components which is not computationally tractable. Hence, we projected
(3.51) into the single Gaussian density

p(ai,τ |ai−1,τ−1) = N (µi,τ−1, σi,τ−1) (3.52)

using geometric merging of probabilities [89]. Since p(aτ |aτ−1) was non-
linear, the extended Kalman �ltering (EKF) algorithm was utilized to esti-
mate aτ . Moreover, in order to utilize knowledge also after τ to estimate aτ ,
the Rauch-Tung-Striebel two-pass smoother [73] was applied. The transfor-
mation of discrete ατ onto continuous aτ in the model considerably increased
the accuracy of estimation over simple multiplication of the transitional and
sparsity constraints, both given by Gaussians, see in [68].

A visual comparison between the EKF algorithm based on this model
and the current VB algorithm can be seen in Fig. 3.3. We stopped the
development in the EKF approach because:

• Each prior knowledge on aτ needs to be transformed in such a way to
get a Gaussian p(aτ |aτ−1). This prevents the greater freedom in suit-
able distribution selection and further improvements. Another approx-
imation is performed using derivatives in the extension of the Kalman
�lter, see in Section 2.3.

• In spite of the proper model for p(aτ |aτ−1), it does not prevent playing
two frames of one library sound simultaneously. This can be forbidden
by introducing the multinomial distribution (see in Appendix), how-
ever, the EKF cannot be used then.

3.7 Summary and Outline of Testing

In this chapter we presented a scenario for the complete automatic music
transcription following the idea of an inverse music sequencer. It allows
working with a bank of drum and harmonic music sounds as a memory base
(the �sound library for estimation�). The music sounds in the observed audio
signal are not identi�ed only with the whole library sounds but also with
their subparts. A probabilistic model containing unobserved variables of
noise, amplitudes, labels (presences of sound segments � frames) and true
inner library sounds was designed.

The variational Bayes technique was utilized to reduce the model equa-
tions and provide the algorithms for estimation of unobserved variables. It
was shown (see in Section 3.5) that in the estimation of labels in our model
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the variational Bayes outperforms the estimation (see the Extended Kalman
Filtering algorithm in Section 3.6) in discrimination of the labels.

The estimation of noise, amplitudes and labels is a part of Algorithm
3 following from the base model and it is tested in Sections 4.8, 4.9. The
base algorithm was extended by (i) Algorithm 5 for estimation of frames of
the sound library and it is tested in Section 4.1; (ii) Algorithm 6 represents
an online extension of the base algorithm with a bene�t of distinct sound
amplitude estimation in each time. In (ii), the algorithm testing is not a
part of our experiments and it is kept as an option for a future work.

Other outputs of the thesis are worked on in the experimental part, in par-
ticular, (a) selection of evaluation measures, Algorithm 7 for our hit measure
calculation � Section 4.3; (b) calculation of the nuisance parameters of the
transition matrix T � Section 4.4; (c) comparison to multiple fundamental
frequency estimation state-of-the-art � Section 4.10.
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Figure 3.3: Example of simulated and transcribed piece of polyphonic music
in the representation de�ned in Fig. 3.2. Vertical axes denote tone with
the due midi keys. Horizontal axis denote discrete time (time units). Blue
horizontal lines correspond to the beginning of the frame sequence due to a
tone. a) original music excerpt; b) transcription via the extended Kalman
�lter model [68]; c) transcription via the NMF without any constraints (1.9);
d) maximum values of the posterior estimates L̂ using the current model �
result of our estimation using values of T having a higher value of the ratio
tend : tnext than in the best case; e) posterior estimates of the current model L̂
without silence � the same not proper value of the ratio as in d); f) maximum
likelihood L̂ estimates (without the transition part) using the current model.
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Chapter 4

Experiments

Before we start to describe the elements of evaluation, let us denote the
sound library, which the input observed signal was combined from, the �o-
bank� or the ground truth sound library � F obs. The sound library, which
the estimated signal was combined from, the �e-bank�, is denoted by F est as
it is above.

4.1 Estimation of Sound Library Matrix

The possible bene�t of the library estimation lies, e.g., in more robust es-
timation of L when the e-bank F est is not selected properly. In this case
the desired information is gathered from the observed data y1:t of su�cient
length t. The test of F = F obs estimation was performed on generated ob-
served data y1:t. The purpose of the test was to estimate the length of the
observed data y1:t in order the sound library matrix F obs, label matrix L
and amplitudes a to be estimated reasonably. The setting of the test was as
follows: the balance coe�cient (re�ecting precision) ξ → 0, number of tones
S = 3 within the sound library, number of frames ks = 2 within each sound s
and number of spectral bins in yτ , f s,i was equal to 50. In order to suppress
the a�ect of uncertainty in the observation model, we set ω → ∞ (re�ect-
ing precision). Necessary equations for the VB algorithm are presented in
Section 3.3.

We assigned t to be long enough: either = 160 or = 80. All combinations
of ones in the label vectors ls,τ can be repeated at least 2 times for t = 80.
Both t = 160 and t = 80 yielded similar results: being L and a �xed, the
sound library matrix F obs could be reasonably estimated. As soon as L was
estimated too and a was kept �xed, it resulted in these observations:

• Having t ≥ 80 and the number of frequency bins greater than 50 did
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not bring any improvement.

• Having ξ = 0.0001 (i.e., ξ → 0) the order of frames f s,i within F
is not determined uniquely by the model. The value of ξ must not
approach 0 and the e-bank F est needs to be selected suitably in order
the appropriate frame order within F to be estimated.

• The tests have proven that the model for F is not suitable for handling
di�erences in magnitudes of peaks within the harmonic spectra between
F est and F obs. In Fig. 4.1, several tests for various ξ are depicted. It is
shown that even for greater ξ the space of unknowns in F estimation
is still large and if ξ is chosen even greater then F converges to F est.
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Figure 4.1: Estimation of the sound library F test. The ground truth li-
brary F obs was generated to simulate a harmonic sound magnitude spec-
trum (a), using Matlab functions the e-bank was generated by F est =
rand(size(F obs))·∗F obs (b), the assessed libraries F for ξ = 0.0001, ξ = 0.01,
ξ = 1, ξ = 1000 are depicted in (c) � (g), respectively.

In order the space in unknowns to be reduced the following modi�cations are
proposed:

1. The variance for each frequency bin re�ects the scaling matrix DF s,φ
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of F s:

p(F s) ∝ exp

(
tr

{
−1

2
(F s − F est

s )T ξD−1
F s,φ

(F s − F est
s )

})
.

2. Two adjacent frames f s,i and f s,i+1 within a component s should vary
approximately as much as the varying between f ests,i and f ests,i+1. This
knowledge can be captured by creation of a new distribution, where the
multiplication of F s or F est

s by matrix U (size ksxks− 1) denotes shift
of its columns to right and removing of the last column. Multiplication
by matrix V (size ks × ks − 1) denotes removing of the last column
only:

U =


0 0 0
1 0 0
0 1 0
0 0 1

 , V =


1 0 0
0 1 0
0 0 1
0 0 0

 .
Imposing such phenomenon into the tested model yields:

p(F s) ∝ exp

(
tr

{
−1

2
Σ−1
F s

(F s − F est
s )T (F s − F est

s ))

})
, (4.1)

where ΣF s = (ξ1I +
[
ξ2(U − V )(U − V )T

]
)−1. The scalar ξ2 denotes

a new variable of a balance.

3. When the library sounds are represented by harmonic tones, frames of
one tone do not di�er signi�cantly. Thus each frame could be repre-
sented as a linear combination of a small number of base vectors. The
base vectors can be calculated by principal component analysis (see
in Section 1.3) on F est. A necessary number of base vectors for a li-
brary sound representation can be assessed according to the number of
signi�cant eigenvalues.

The capturing of the proposed modi�cation in our model would demand more
tests. We decided this to be a subject of future work. In experiments of this
thesis, various e-banks are chosen to test, i.e., the prior density p(F s) is used
from (3.40).

4.2 Simulated Data Testing Settings and

Scheme

The simulated data were generated from piano midi �les. Each note was
represented by pitch, onset time, duration and o�set in the sound library.
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The o�set is our extension of the midi format and it forms the truncation
parameters. Such note parameters were represented by the ground truth
label matrix Lgt and by the ground truth vector of amplitudes agt. Midi
notes, which were not available in the library of sounds, were omitted and
the notes longer than1 ks = 10 were truncated to this length. Since one piano
cannot play the same note simultaneously, it is ensured that there will be at
most one active frame of the same sound at time t.

The o-bank was made from 61 library sounds (corresponding to midi notes
36 � 96), each of them having ks = 10 window. Each window contained 4096
samples at 44.1 kHz sample rate and the windows did not overlap. After the
STFT and taking the absolute values from the complex spectra we obtained
2048 relevant samples. Considering the �rst half of frequency bins follows
from the fact that all bins higher than the Nyquist frequency are a�ected by
aliasing phenomenon [90]. The �rst 600 frequency bins of these were taken
to represent the frame (a magnitude spectrum) f s,i. This approximately
corresponds to 6 kHz for the highest frequency bins which was used in tests
of multiple fundamental frequency detector of Klapuri [16, 51]. The same
processing was applied on the observed signal time(yτ ), i.e., the time domain
signal before processing by the STFT.

Remark. Contrary to Klapuri we did not consider the processes of the human
ear and human brain model, except of the compression which is represented
by scaling in our model.

Following the scheme in Fig. 4.2, the observed audio signal was generated
using model (3.1). Since the observed audio signal is generated according to
Lgt, agt, it does not contain any subsiding sound or a sound of a tone onset
outside the frame sequences. The observed audio signal is fed into Algorithm
3 along with the nuisance parameters δ = [rω, σµ,0, σa,0, tsil, tend, tstart, tnext]
and the e-bank. The e-bank contained the same number of sounds, however
each of them can have more than ks = 10 non-overlapping frames � in our
experiments up to 50. The label matrix L̂ and amplitudes â are estimated
by Algorithm 3. In evaluations, the quantities L,L̂, â,âcorr are used. The
di�erence between L and L̂ lies in that that the label L represents the value
of the phenomenon and contains zeros and ones only whereas L̂ represents
the mean of the phenomenon and can contain any real numbers, see the
multinomial distribution de�nition in Appendix and Section 4.3 to describe
the value assignment to L. The introduction of a corrected estimate of
amplitudes âcorr:

1If the sample rate is 44.1 kHz, the STFT window length is 4096 and the windows are
not overlapping, then ks = 10 corresponds to one second of a recording approximately.
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âcorr = ca · â (4.2)

is a consequence that the superposition principle does not hold for magnitude
spectra, see in Subsection 3.1.1. There are two evaluation approaches: (i) a
measure calculated from the estimated quantities (hit measures, amplitudes)
and (ii) a measure calculated from the audio signals which were made on the
basis of the quantities (sound-to-distortion ratio � SDR).

Algorithm 1
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Figure 4.2: Evaluation scheme

4.3 Evaluation Measures

The goal of Algorithm 3 is to maximize the number of hits of frames, the
SDR measures and minimize the error measure in amplitudes.
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Hit Measure

We expect that there is at most one active frame at each time τ within the
estimated signal, therefore the estimated label matrix of zeros and ones, L, is
used in hit measure calculations (not the matrix L̂ ). The hit measure repre-
sents the number of estimated tone frames (from the e-bank) corresponding
to the ground truth tone frames (from the o-bank). It is characterized by
�hits� mh as a number of correctly hit labels, �false-positives� mfp as a num-
ber of estimated labels that are not correct and �false-negatives� mfn as the
missing correct labels that should have been estimated. Let us refer to these
quantities as measures #1.

The phases of the complex STFT spectrum of time(yt) vary a lot over
time [1]. In the sounds of natural musical instruments they even vary a lot
from one recorded sample to another. Therefore, in our experiments, it can
happen very easily, e.g., that for i-th frame f s,i of the tone A2 from the
e-bank and i-th frame f̃ s,i of the corresponding tone A2 from the o-bank
(ground truth), the observational probability is higher for some other j-th
frame f s,j, i 6= j, of the same A2 than for the i-th. In other words, in a real
world often there exists a frame index within a sound from the e-bank that
resembles more to some other index than to that ground-truth one. It follows
that the estimated frame sequences within a sound often hit a correct sound,
have a correct length but do not start by the correct frame index. Sounds in
polyphony come even more under such behavior.

Hence, this situation should not be marked as an error. Therefore we
propose the hit measure #2. Let us denote the correctly hit labels mh2 and
the missing labels mfn. The false-positives are split into two measures �
the �false-positives-within-the-sound� mfp2s and the �false-positive outliers�
mfp2o. The measures #2 are calculated by Algorithm 7. In Fig. 4.3 there
is a label matrix L excerpt . The yellow squares denote the active frames
within the estimated label matrix L, whereas the black squares represent the
active frames within the ground truth matrix Lgt. At discrete times 3 and 8,
we recorded the false-positive-within-sound active frames, they were gathered
intomfp2s and at 10, 11 the false-positive outliers were identi�ed and summed
into mfp2o. The rest of yellow squares correspond to hits mh2 = 6. There
is no false-negative gathered into mfn2 and for the distance Mds,τ0

we have
Mds,τ0

= 4 . When the hit measures #1 were calculated there would not be
any hit, i.e., mh = 0, but just all false-positives represented by mfp = 8.

The false-negatives of hit measure #2 mfn2 and the number of false-
positive outliers mfp2o represent suitable quantities of error measure of the
label identi�cation for a real case. They are used to calculate the over-
all hit error rate in Section 4.6. The false-positives-within-the-sound mfp2s
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Algorithm 7 Hit measure #2 calculation.

1. Initialize mh2 = 0, mfn2 = 0, mfp2s = 0, mfp2o = 0.

2. Find all active frame sequences in the ground truth label matrix Lgt.
The active frame sequence is a representative of a tone playing without
an interruption. If there exists an active lgts,i,τ+1 for any i from the same
sound s (without the silence frame), it belongs to the frame sequence
ending up by an active lgts,j,τ+1 where j denotes a sound frame of the
sound s .

3. For all active frame sequences in all sounds s

(a) For all times τ = τ0, . . . , τend of the sequence

i. Calculate the vector elements ds,τ0−τ+1 of distances between
active frames of the estimated sequence and active frames of
the ground truth sequence, that is, ds,τ0−τ+1 = h(ls,τ )−h(lgts,τ ).
Here h applied either on the estimated or the ground truth
labels denotes the function that returns the active frame index
within the sound s.

(b) Get the most occurring distance Mds,τ0
among ds,τ0−τ+1,∀τ .

(c) For all times τ = τ0, . . . , τend of the sequence

i. if Mds,τ0
+ h(lgts,τ ) = h(ls,τ ) then mh2 = mh2 + 1,

else mfp2s = mfp2s + 1 .

4. mfp2o = �all active frames in L� −mh2 −mfp2s,
mfn2 = �all active frames in Lgt� −mh2 .
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Figure 4.3: Hit measure #2 calculation � example

quantity's risk is not so serious when considering the fundamental frequency
estimation problem. It would become more serious if frames within a sound
did not resemble that much as they are when they correspond to harmonic
sounds.

SDR

In order to provide a similarity measure of the resulting audio signal to the
ground truth audio signal we calculated the total relative sound-to-distortion
ratio measure [61, 91].

We utilized three approaches in the SDR calculation (termed 1., 2., 3.,
respectively). Each consists of the time and the frequency option (termed
(a), (b), respectively). The calculation formula common for all of them reads

SDR = 10 · log10

∑
jτ [ŝjτ ]

2∑
jτ [b · sjτ − ŝjτ ]2

, (4.3)

where b is a scalar �tting2 sτ = b · ŝτ + noise where noise ∼ N (0, c · I). The
calculated constant b can produce as good or better estimates of SDR as 1

ca
,

therefore âcorr is not considered in calculations here and â is used instead.

1. MAP estimate #1. The position of the one in the label vector ls,τ =
[0, 0, . . . , 1, . . . , 0]T is determined by the maximum value from the el-
ements of l̂s,τ . We note that by the time operator in the following
equations it is meant that the original time domain signal is used in-
stead of the magnitude STFT spectrum. The operator mstft implies

2The calculation of b is accomplished by the least squares method.
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the transforming of the time domain signal into the spectral domain by
the STFT and using its magnitude spectrum.

(a) ŝτ = time(F est)ÂLτ , sτ = time(yτ ) = time(F obs)ÂLgtτ .
(b) ŝτ = F estÂLτ , sτ = yτ = mstft(time(F obs)ÂLgtτ ).

2. MAP estimate #2. Contrary to MAP estimate #1, the o-bank F obs is
used for the estimated time domain signal calculation ŝτ .

(a) ŝτ = time(F obs)ÂLτ , sτ = time(yτ ).
(b) ŝτ = F obsÂLτ , sτ = yτ .

3. Mean estimate. The label matrix mean values L̂ are used along with
the e-bank F est.

(a) ŝτ = time(F est)ÂL̂τ , sτ = time(yτ ).
(b) ŝτ = F estÂL̂τ , sτ = yτ .

Amplitudes

Two cases are dealt: (i) there is one common amplitude for all components
which is not changed over time, (ii) each component can have its own am-
plitude which is not changed over time. In the former case, the amplitude
is estimated by running Algorithm 3 with the settings de�ned in Subsection
4.9.3, while in the latter case, with the settings de�ned in Subsection 4.9.2.
Because in the latter case the amplitudes to be estimated have the same
value, we used their standard deviation as an assessment of the estimation.

Summary on SDR, Hit Measures and Amplitudes

Evaluation methods re�ecting measures of hits in labels and sound-to-distortion
values were proposed. Both measures are important � the �hits� represent
accuracy in the target music content information retrieval while the SDR
assesses the overall audible result with respect to prior information largely
in�uenced by the sound library selection. When we take a library sound as a
whole, it always corresponds to the whole ground truth library sound, most of
all library sounds (see explanation in Section 4.5). However the resemblance
does not hold for the frames within the sound, therefore we proposed Algo-
rithm 7 for a new hit measure calculation. The SDR and both types of hit
measures are applied in the evaluation of the proposed algorithms in Section
4.8 and 4.9. For the amplitudes, we calculate their common amplitude; or,
estimate the amplitudes individually and provide their standard deviation as
an estimation evaluation.
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4.4 Nuisance Parameters of the Transition

Matrix

The transition values [tsil, tend, tstart, tnext] can be obtained by maximizing the
posterior distribution of Lgt in the training phase. Given Lgt, the observed
data Y and the transition matrix T are mutually conditionally independent,
therefore the transition values can be calculated by seeking a maximum of
the probability density on T only. It corresponds to maximizing the function

g(T |Lgt) =
∑
τ,s

lgts,τ logT lgts,τ−1.

Moreover, the parameters can be obtained directly by summing up transi-
tions in Lgt in order to avoid using optimization algorithm like Matlab's
fminsearch. There we have two possibilities: either to sum up transitions
[tsil, tend, tstart, tnext] individually for each tone, or to sum up the transitions
over all tones. In our experiments, we utilized the former approach since in
most cases, it provided around 3% improvement in the hit #2 measures.

4.5 Simulation Data and Sound Libraries

This section contains a description of the simulation data and sound libraries,
we do not bring any contribution of the thesis in this section, we only name
main properties of the input data. Due to a computation load, the length of
time for estimation tests was chosen up to six minutes, see in Section 4.7.

The observed music signal was made by using the o-bank. The feasible
library of sounds for estimation, the e-bank, needs to satisfy these conditions:
when we take a library sound as a whole, it always corresponds to the whole
sound of the ground truth library (o-bank), most of all its library sounds.
We de�ne that the correspondence is determined by the approximation of the
Poisson distribution, i.e., ∀s, σ ∈ S, σ 6= s : Po(F est

σ |F obs
s ) < Po(F est

s |F obs
s ).

The correspondence is not required for the frames within the sound. We have
to note that neither one of the frames f obss,i , f

est
s,i starting by i = 2 is a zero

vector. The i = 1 is reserved for the frame of silence, see in Subsection 3.1.1.

Sound Libraries

In experiments we used the following sound libraries of a piano:

1. Sound library #1 (SL #1) � University of Iowa Piano � mezzo-forte
[92] (Fig. 4.4),
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2. Sound library #2 (SL #2) � University of Iowa Piano � forte [92] (Fig.
4.4),

3. Sound library #3 (SL #3) � 4Front Piano Module Free VST library
[93] (Fig. 4.5),

4. Sound library #4 (SL #4) � 4Front E-Piano Module Free VST library
[93] (Fig. 4.5).

Figure 4.4: Sound library #1 and #2 represented by ln(F ). In F , a few
values are around e−30.

Simulation Data

In Fig. 4.7, simulation data characteristics are depicted. In the picture a)
there are [tsil, tend, t

∗
start, tnext] for all components. Since the onset of a note
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Figure 4.5: Sound library #3 and #4 represented by ln(F ). A few values in
F are around e−30.

in a MIDI �le does not contain information where to start in the library
sound, we chose, in the label matrix Lgt, for all note onsets to start by the
�rst sound frame. Therefore, when we calculate tstart in all elements of the
transition matrix T using such Lgt we get only the �rst top tstart element
of non-zero value. Since the note onset frame can be anywhere within a
sound s, we decided the obtained non-zero probability tstart to be termed
t∗start and it is independently identically distributed among all tstart of T ,
thus tstart = t∗start/ks .

In the picture b) of Fig. 4.7 there is the polyphony characteristic and
in the picture c), d), e), f) there are values of diag(Dφ) used to scale the
frequency bins of yt .

Simulation Data #1 are the longest and in our experiments, we only use
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[tsil, tend, tstart, tnext] obtained from this. In the �gures, we can notice that
t∗start and tend are identical and neither one of the simulation data contains
any sounds after 56th tone of the 61. In order to enable the library sounds
57 � 61 estimation in our experiments, we assigned ones to the four-duple
[tsil, tend, t

∗
start, tnext] of the sounds 57 � 61. In the pictures of polyphony,

the �occurrence� concerns a library sound frame, not the whole polyphony.
The number of a distinct polyphony can be obtained simply by division of
a number-of-occurrence bar by the polyphony number. In the pictures of
diag(Dφ), we can see oscillations. Calculating diag(Dφ) on longer observed
data and using a variety of musical instruments in the library results in the
oscillations occurring at 12 cycles per octave [43].

The list of simulation data characteristics is as follows:

• Simulation Data #1 (SD #1) � Fig. 4.6; length 48 minutes, 35 seconds.

� Mozart: * Sonata No. 11 A major (Alla Turca) , KV 331 (1783)
(13:52, 6:06, 3:11)

� Debussy:

∗ I. Doctor Gradus ad Parnassum Modérément animé 2:24
∗ Jimbo's Lullaby Assez modéré 3:09

� Bethoveen:

∗ 1. Movement Allegro molto e con brio 6:31
∗ 2. Movement Adagio molto 6:32
∗ 3. Movement Prestissimo 3:37

� Bach: * Prelude and Fugue in C minor BWV 847
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Figure 4.6: Simulation Data #1 characteristics

61



• Simulation Data #2 (SD #2) � Fig. 4.7.

� Debussy: I. Doctor Gradus ad Parnassum Modérément animé 2:24
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Figure 4.7: Simulation Data #2 characteristics. The pictures c), d), e), f)
denote diag(Dφ) gained from simulation data generated from SL #1, SL #2,
SL #3, SL #4, respectively.
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• Simulation Data #3 (SD #3) � Fig. 4.8; length 5 minutes, 18 seconds.

� Debussy: Clair de Lune Andante tres express; length: 1:02

� Chopin: No. 7 Andantino; length: 0:36

� Mozart: 2. Movement Andante � part, length; 0:40

� Bach: Prelude and Fugue in C major BWV 846; length: 1:46

� Beethoven: For Elise Poco moto; length: 1:14
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Figure 4.8: Simulation Data #3 characteristics. The pictures c), d), e), f)
denote diag(Dφ) gained from simulation data generated from SL #1, SL #2,
SL #3, SL #4, respectively.
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• Simulation Data #4 (SD #4) � Fig. 4.9; 50 tones on 500 frames (top
11 of 61 tones from the sound library are omitted).
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Figure 4.9: Simulation Data #4 characteristics. The pictures b), c), d)
denote diag(Dφ) gained from simulation data generated from SL #2, SL
#3, SL #4, respectively.

4.6 Descriptions of Figures with Results

In Fig. 4.10 there are types of result representations which can be met in
Subsections 4.8, 4.9.
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Figure 4.10: Types of representation of results

Top-left picture represents SDR measures and hits #2 measures as a
function of the threshold rω. The hit #2 measures are transformed from
[mh2,mfn,mfp2s,mfp2o] to precision P2, recall R2 and F-measure F2 de�ned
as

P2 =(mh2 +mp2s)/(mh2 +mp2s +mfp2o) · 100% (4.4)
R2 =(mh2 +mp2s)/(mh2 +mp2s +mfn) · 100% (4.5)
F2 =2 · (P2 ·R2)/(P2 +R2) · 100% (4.6)

The precision measure can be simply understood as a normalized measure
of false-positive outlier quantity mfp2o and recall as a normalized measure of
missing frames mfn. In order to provide one overall measure in hits, the
F-measure F2 was de�ned. In the text there are also SDR measures and hits
#2 as a function of σa,0 in Fig. 4.20 in Section 4.9.

Top-right is a representation of L̂ in a piano-roll instead of the represen-
tation without any transformation as it is in Fig. 3.2. The transformation of
representation of L̂ in Fig. 3.2 into the piano-roll is accomplished by omit-
ting information of frame index i within a sound s and by displaying only
the maximum value from each vector l̂s,τ . The colors in the piano-roll im-
age are selected according to Matlab �gray� color map where the white one
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is assigned to zero value and the black color to a value one. The values �
probabilities in L̂ are not a representation of amplitudes.

Bottom-left: red squares on value 1 denote that any frame from the sound
index s is present in the ground truth. Hence, when there is no red square
but a blue circle, we have some frames from the sounds not present in the
ground truth; and, when the situation is vice versa, the sound is completely
without presence in the testing simulation data. In Section 4.9, the standard
deviation of the blue circled values, which matches the positions of the red
squares, is calculated. If, in its calculation, a blue circle is missing on the
position of a red square, the value corresponding to the missing circle is
assigned to zero.

Bottom-right: The two left panels contain error-rate measurements of
precision P2 (the blue bar), recall R2 (the green bar) and of the error measure
of false-positives-within-the-sound in all frames in the correct sound H2,err

(the red bar):

H2,err =

(
1− mfp2s

mh2 +mfp2s

)
· 100%. (4.7)

The left panel with error-rate measurements contains P2, R2, H2 for each
polyphony and the right panel with error-rate measurements displays them
overall. The right panel with SDR measures contains several values: 1 �
MAP estimate #1 (a), 2 � MAP estimate #1 (b), 3 � MAP estimate #2 (a),
4 � MAP estimate #2 (b), 5 � Mean estimate (a), 6 � Mean estimate (b).
They were de�ned in Section 4.3 � SDR.

4.7 Computational Load

One run of Algorithm 3 (10 VB-iteration cycles) on Simulation Data #2 of
length 5 minutes, 15 seconds, using the library of sounds for estimation (e-
bank) with sixty-one 5-second long sounds, took approximately 2 hours and
15 minutes on a cluster computer with a six-core AMD processor in Metacen-
trum3. The program was written in Matlab. The calculation of amplitudes
took 5% and the calculation of labels 95% from the whole algorithm running
time. The computational load increased linearly with: (i) increase of frames
in the library, (ii) increase of the length of time of the observed signal.

The huge computational load is caused by large data: Simulation Data
#2 with 5-second sounds in the library is represented by the label matrix L

3Catch-all MetaCentrum Virtual Organization operates and manages distributed com-
puting infrastructure consisting of computing and storage resources owned by CESNET
as well as those of co-operative academic centers within the Czech Republic.
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of more than 10 million labels which must be assessed in each VB-iteration.
The computational savings can be achieved by excluding the sounds which
are not present in the observation, e.g., in a pre-processing stage. Moreover,
the observation signal can be split into shorter windows containing just a
several tones, in sequel the pre-processing can save even more of the load.
This is a part of a future work.

4.8 Tests without Estimation of Amplitudes

In order to estimate, without amplitudes, Algorithm 3 is used so that the
amplitude mean value µhyp,a,0 is being �xed to the assessed best estimate
and σa,0 is selected close to zero. Since the best estimate value is not known
(because the superposition principle does not hold here � see eq. (3.3)), the
amplitude value µhyp,a,0 can be estimated (i) as in Subsection 4.9.3 or (ii) by
the estimation of the coe�cient b from (4.3). In this subsection we selected
µhyp,a,0 = 0.65 for all tests, which is, from (4.2) we have ca = 1

0.65
. The

max_iterations in Algorithm 3 was set to 10.
Each of the following subsections represents the change in one aspect

while the others are retained. The aspects are

1. observed signal,

2. sound library,

3. length of observed signal,

4. length of sounds,

5. scaling in frequency vs. no-scaling at all,

6. time and frequency scaling vs. frequency scaling only,

7. exact �t tests.

4.8.1 Change in the Observed Signal While Other

Parameters Not Changed

In the following �gures there are three triples of tests according to three o-
bank and e-bank combinations. The tests inside each triple can be compared
to each other since, except for the observed signal, all other parameters are
the same. Fig. 4.11 contains the �rst triple and represents tests when o-bank
is SL #1, e-bank is SL #2, i.e., the most �tting case of o-bank and e-bank;
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the second triple in Fig. 4.12 is tested when o-bank � SL #3, e-bank � SL
#1, i.e., the less �tting case of synthesized piano vs. true piano; the third
triple in Fig. 4.13 when o-bank � SL #4, e-bank � SL #1, represents the
case when the timbre of e-bank and the o-bank are much di�erent, see in
Fig. 4.4, 4.5.

The triple is a test of a sequence of one second long notes and two di�erent
parts from SD #3. The left column contains tests on SDR and hit #2
measures whereas the right column is a piano-roll representation of the test
for rω = 0.24 from the left column. The �rst row: the note sequence. There
are 50 tones from 61 on 500 length, the rest of 11 tones is omitted; the second
row: Mozart part from SD #3; the third row: Debussy part from SD #3,
all of them of the same length of 500 frames. The two 500-frames-long parts
from SD #3 were taken from the part of Mozart, Debussy. Regarding all hit
and SDR measures contained in the graphs, we conclude that the Debussy
piece is more di�cult to transcribe than the one of Mozart. In spite of the
fact that the sequence of notes is a monophony, it yields worse results both in
the SDR and the hit #2 measures than the two pieces of Mozart and Debussy.
It can be explained by a di�erent transition distribution in the note sequence
than the one characterized in [tsil, tend, tstart, tnext] and by higher number of
distinct notes in the observed signal.

4.8.2 Change in the Sound Library While Other Param-

eters Not Changed

This subsection was tested on SD #2. In Fig. 4.14, it can be seen the depen-
dency of SDR and hit #2 measures on the used sound library, other settings
for the 5-duple tests were not di�erent. We conclude that the switch between
o-bank and e-bank does not lead to a signi�cant change in the measured val-
ues. One of the examples is using the shifted version of the o-bank in the
e-bank. That is, total length of SL #1 sounds is more than 6 seconds. The
o-bank is made up of the �rst second of the 6 seconds and the e-bank is made
up of the remaining 5 seconds. From the results, we can see that using the
same set of sounds � natural harmonic tones � for the creation of the o-bank
and the e-bank does not necessarily lead to better results than if the o-bank
and the e-bank were created from di�erent sounds.
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4.8.3 Change in Length of Library Sounds While Other

Parameters Not Changed

In Fig. 4.15 there is revealed what happens when 5-second-long library
sounds are considered (right column) against one-second-long library sounds
(left column). Note that the one-second library sounds correspond to the
�rst second of the 5-second in the right column. The results are similar since
most of the detected frames from the 5-second library are the frames from
the �rst second. Tests where o-bank and e-bank �t (i) the most, (ii) less and
(iii) the least are shown in top, middle and the bottom row, respectively. See
in Fig. 4.15.

4.8.4 Change in Length of Observed Signal While Other

Parameters Not Changed

In Fig. 4.16, the results can be seen when the Mozart subpart of SD #3, 500
frames long (left column), is tested against the whole SD #3 (right column).
The result could be a�ected by the scaling-in-frequency matrix Dφ when it
is calculated from the shorter observed data against when the observed data
are longer. The result is as such: the length of the observed data does not
a�ect the estimation accuracy, it is the number of distinct notes that a�ects
it. We also tried only observing 80-frame-long signal, and the result was the
same approximately. It must be mentioned here, that Dφ is normalized, see
eq. (3.8). In Fig. 4.16, as in Subsection 4.8.4, the tests where o-bank and
e-bank �t (i) the most, (ii) less and (iii) the least are shown in top, middle
and the bottom row, respectively. All tests had 5-second-long library sounds.

4.8.5 Scaling in Frequency vs. No-scaling at All

In Fig. 4.17 it can be seen that with no scaling Dφ (left column) the results
are worse both in the SDRs and in the hits #2 than with scaling in frequency
(right column). Moreover, the range of rω narrows without scaling and its
maximum shifts to lower values. The tests were performed on the SD #2. In
Fig. 4.17, as in Subsections 4.8.3, 4.8.4, the top, middle and the bottom row
correspond to the most, less and the least e-bank and o-bank �t, respectively.
All tests had 5-second-long library sounds.
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4.8.6 Time and Frequency Scaling vs. Frequency Scal-

ing Only

In Fig. 4.18, the reader can compare tests with scaling in frequency that
were performed along with (left column) and without scaling in time (right
column). The results almost do not di�er, both in the curves of shape of SDR
and in hits #2. Only in the last comparison (the least �t), we have di�erent
shapes of the result curves. The F-measure in the hits #2 has almost the
same highest value regardless of scaling in time application. We conclude
that the e�ect of the scaling in time cannot be assessed. The tests were
performed on the SD #2. In Fig. 4.17, as in Subsections 4.8.3, 4.8.4, 4.8.5,
the top, middle and the bottom row corresponds to the most, less and the
least e-bank and o-bank �t, respectively. All tests had 5-second-long library
sounds.

4.8.7 Exact Fit Tests

In order to prove the algorithm and model accuracy the exact �t tests were
carried out. By the exact �t tests we mean an experimental setup where
the o-bank and e-bank are identical in their length and content. In Fig.
4.19, it can be seen that the exact �t tests reach almost 100% accuracy in
F-measure over a wide range of rω. Then we can see how at least a low
selected rω contributes to a signi�cant increase in accuracy both in the SDRs
and in hits #1 and hits #2. And also, we can see that curves of hits #1
and hits #2 accuracy matches. It implies that there are no false-positives-
within-the-sound. The exact �t tests were accomplished on SD #2 and SL
#2.
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Figure 4.11: Testing sound libraries: o-bank � SL #1, e-bank � SL #2. The
left column contains SDR and hit #2 measures for di�erent rω whereas the
right column is a piano-roll representation of L estimate for rω = 0.24 from
the left column. The �rst row: the note sequence. There are 50 tones from
61 on 500 length, the remaining of 11 tones are omitted; the second row:
Mozart part from SD #3; the third row: Debussy part from SD #3.
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Figure 4.12: Testing sound libraries: o-bank � SL #3, e-bank � SL #2. The
left column contains tests on SDR and hit #2 measures whereas the right
column is a piano-roll representation of the test for rω = 0.24 from the left
column. The �rst row: the note sequence; the second row: Mozart part from
SD #3; the third row: Debussy part from SD #3.
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Figure 4.13: Testing sound libraries: o-bank � SL #4, e-bank � SL #2. The
left column contains tests on SDR and hit #2 measures whereas the right
column is a piano-roll representation of the test for rω = 0.20 from the left
column. The �rst row: the note sequence; the second row: Mozart part from
SD #3; the third row: Debussy part from SD #3.
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Figure 4.14: Top-left: o-bank � sound library (SL) #2, e-bank � SL #1
(forte vs. mezzo-forte piano); middle-left: o-bank � SL #3, e-bank: SL #2;
bottom-left: o-bank � SL #2, e-bank � SL #3; top-right: o-bank � SL #2,
e-bank � SL #2 � one-second shifted; middle-right � o-bank: SL #4, e-bank
� SL #2.
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Figure 4.15: Top-left: SD #3, o-bank � SL #2, e-bank � SL #1, one-second-
long library sounds; top-right: SD � #3, o-bank � SL #2, e-bank � SL #1,
5-second-long library sounds; middle-left: SD #3, o-bank � SL #3, e-bank
� SL #2, one-second-long library sounds; middle-right: SD #3, o-bank � SL
#3, e-bank � SL #2, 5-second-long library sounds; bottom-left: SD � #3, o-
bank � SL #4, e-bank � SL #2, one-second-long library sounds; bottom-right:
SD #3, o-bank � SL #4, e-bank � SL #2, 5-second-long library sounds.

76



0 0.1 0.2 0.3 0.4 0.5 0.6
6.5

7.22

7.93

8.64

9.35

10.07

10.78

11.49

12.2

S
D

R
 m

e
a

s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
40

47.5

55

62.5

70

77.5

85

92.5

100

h
it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

0 0.1 0.2 0.3 0.4 0.5 0.6
8.81

9.13

9.46

9.78

10.11

10.43

10.75

11.08

11.4

S
D

R
 m

e
a

s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
50

56.25

62.5

68.75

75

81.25

87.5

93.75

100

h
it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

0 0.1 0.2 0.3 0.4 0.5 0.6
1.3

1.84

2.38

2.92

3.45

3.99

4.53

5.07

5.6

S
D

R
 m

e
a

s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
20

30

40

50

60

70

80

90

100
h

it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

0 0.1 0.2 0.3 0.4 0.5 0.6
2.4

2.84

3.28

3.72

4.16

4.59

5.03

5.47

5.9
S

D
R

 m
e

a
s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
30

38.75

47.5

56.25

65

73.75

82.5

91.25

100

h
it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.78

1.15

1.53

1.9

2.28

2.65

3.03

3.4

S
D

R
 m

e
a

s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
0

13.75

27.5

41.25

55

68.75

82.5

96.25

110

h
it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.85

1.11

1.35

1.6

1.85

2.1

2.35

2.6

S
D

R
 m

e
a

s
u

re
s
 (

d
B

)

rω

 

 

MAP estimate #1
Mean estimate

0 0.1 0.2 0.3 0.4 0.5 0.6
0

11.25

22.5

33.75

45

56.25

67.5

78.75

90

h
it
s
 #

2
 m

e
a

s
u

re
s
 (

%
)

 

 

hits #2 F−measure
hits #2 precission
hits #2 recall

Figure 4.16: Top-left: the Mozart subpart of SD #3, o-bank � SL #2, e-
bank � SL #1; top-right: SD #3 (whole), o-bank � SL #2, e-bank � SL
#1; middle-left: the Mozart subpart of SD #3, o-bank � SL #3, e-bank �
SL #2; middle-right: SD #3 (whole), o-bank � SL #3, e-bank � SL #2;
bottom-left: the Mozart subpart of SD #3, o-bank � SL #4, e-bank � SL
#2; bottom-right: the Mozart subpart of SD #3, o-bank � SL #4, e-bank �
SL #2.
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Figure 4.17: All tests were performed on SD #2. Top-left: o-bank � SL
#2, e-bank � SL #1, no scaling; top-right: o-bank � SL #2, e-bank � SL
#1, scaling in frequency; middle-left: o-bank � SL #3, e-bank � SL #2, no
scaling; middle-right: o-bank � SL #3, e-bank � SL #2, scaling in frequency;
bottom-left: o-bank � SL #4, e-bank � SL #2, no scaling; bottom-right:
o-bank � SL #4, e-bank � SL #2, scaling in frequency.
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Figure 4.18: All tests were performed on SD #2. Top-left: o-bank � SL #2,
e-bank � SL #1, both scaling; top-right: o-bank � SL #2, e-bank � SL #1,
scaling in frequency; middle-left: o-bank � SL #3, e-bank � SL #2, both
scaling; middle-right: o-bank � SL #3, e-bank � SL #2, scaling in frequency;
bottom-left: o-bank � SL #4, e-bank � SL #2, both scaling; bottom-right:
o-bank � SL #4, e-bank � SL #2, scaling in frequency.
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Figure 4.19: Top-left: SDR measures and hits #2 measures, top-right: SDR
measures and hits #1 measures, bottom: comparison with non-exact �t test
� here we operate with one-second SL #1 in the e-bank (when the o-bank is
from SL #2).

4.8.8 Summary on Tests without Estimation of Ampli-

tudes

In this section, we kept the amplitudes �xed at the best average estimate
value. In order to see what is the strength of the in�uence by a parameter,
we need (i) one test when the parameter is held �xed on the ground-truth
or the best estimate and (ii) a set of tests of the parameter realizations.
E.g., the ground truth for selection of F est is F obs, we carried out tests for a
several F est. Sometimes, the ground-truth or the best estimate is not known
beforehand and we can only test the realizations (ii) as, e.g., in the case of
the covariance structure of noise ω or, e.g., when the parameter �application
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of scaling� has its support on values �yes�, �no�.

• The covariance structure of noise ω was estimated as one scalar for each
element of the observation covariance matrix. Since most of the fre-
quency bins in the higher frequencies of the observed data have very low
magnitudes (even after scaling of the data), those below the threshold
need to be excluded from the noise scalar estimation. A single thresh-
old could not be set for all tests, the shape of the hit measures on the
threshold support yields a concave curve in most cases, whereas the
curve for the SDRs was usually monotonically decreasing.

• The estimation of labels is signi�cantly a�ected by the selection of the
sound libraries for estimation, by the number of sounds in the sound
library, by the number of distinct sounds in the input signal, by the
values of the transition matrix and by the application of scaling in
frequency. It is insigni�cantly in�uenced by longer library sounds when
the sound intrinsic subsegments do not match other sounds from the
library. It is not in�uenced by the length of the observation signal.
The e�ect of scaling in time was not conclusive. If the input recording
is combined from piano sounds played �forte� and the sound library
is collected by piano sounds played �mezzo-forte�, the results in hits
of the F-measure get over 90% and in the SDR exceed 10 dB in all
simulated data sets. However, when the input recording was made
from a di�erent type of piano (e.g., the electric piano) then the richer
and more polyphonic recording produced signi�cantly worse results,
whose F-measure value ranged between 60 � 70%.

4.9 Tests of Estimation with Amplitudes

The estimation from the model with amplitudes was tested with two distinct
settings of the distributions on amplitudes. The �rst (see in Subsections 4.9.1,
4.9.2) sets up that there is no relation between amplitudes and, second (see
in Subsection 4.9.3), that all amplitudes are the same approximately. The
tests were performed on SD #3 with sound libraries having 5-second-long
sounds.

4.9.1 Investigation of Sparsity Constraint on Amplitudes

without Any De�ned Relation among Each Other

The requirement is characterized by a distribution of amplitudes as ∼
N (µhyp,a,0 = 0, σa,0), i.e., µhyp,a,0 being �xed at zero and σa,0 denoting the
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level of sparsity constraint and representing the investigated parameter. In
Fig. 4.20, the x-axis represents values of σa,0 = ε. A reader may notice
that at the variance σa,0 = 0.002 the sparsity constraint proves itself in
a slight accuracy improvement in hits #2. If the o-bank and the e-bank
correspond enough (top �gure from the triple) then εoptim for the hits #2
curves corresponds to εoptim in the SDR curves. In case of a bigger di�erence
between o-bank and e-bank (bottom graph in Fig. 4.20), the variance εoptim
for hits #2 curves is shifted to a higher value and is not matched with the
εoptim for SDR curves. The threshold for ω calculation rω was set to 0.2 for
all tests of dependency on ε in Fig. 4.20.

4.9.2 Amplitudes without Any De�ned Relation between

Each Other � Tests with Optimal ε

We consider as ∼ N (µhyp,a,0 = 0, σa,0 = εoptim), εoptim = 0.002 for all tests.
The tests of the most, less and the least o-bank and e-bank �t are denoted in
Fig. 4.21 (the most) and 4.22 (less and the least), respectively. The threshold
for ω calculation rω was set to 0.2 for all tests. After 10 cycles of convergence,
the F-measure in labels F2 reads values 93%, 80%, 63% for the most, less
and the least �t between o-bank and e-bank, respectively. Their standard
deviations in amplitudes correspond to 0.17, 0.23, 0.22.

4.9.3 All Amplitudes Have the Same Value a Approxi-

mately

Let us consider such settings: µhyp,a,0 is estimated, σa,0 is positive and close
to zero4 and σµ,0 →∞. This setup corresponds to the requirement when all
amplitudes a have the same value and the number of variables for amplitudes
is decreased from S to one. In Fig. 4.23 � 4.28 there are tests of cases in
which σa,0 = 10−6 and σa,0 = 10−5 . The value of σa,0 close to zero ensures
that the amplitudes will be forced to move together in their value while
iterating in Algorithm 3. It can be seen from the �gures that the tests with
σa,0 = 10−5 converge faster in µhyp,a,0 but the amplitudes di�er more, whereas
the tests with σa,0 = 10−6 converge slowly in µhyp,a,0 but the di�erences among
amplitudes are negligible. Due to the computation load and the provided
time span of 24 hours for the program run itself, the maximum number of
cycles was about one hundred. The tests of the most, less and the least �t
in o-bank and e-bank are denoted in Fig. 4.23, 4.26 (the most), 4.24, 4.27
(less) and 4.25, 4.28 (the least), respectively. From the �gures can be seen

4But not as close to attack not-a-number numeric representation.
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that the common estimated amplitude for all library sounds is not the same
in the tests and decreases from most to least �t in the banks. The tests were
performed on SD #3 with sound libraries having 5-seconds long sounds.

In Fig. 4.29 there are results of the hit #2 and the SDRs of the last
iteration of the convergence when σa,0 = 10−5 for the three ��t cases�. After
examination of the bottom image of the piano-roll in Fig. 4.29, one could
observe that the result is really poor in this case. In fact the total F-measure
for this case is 58%. It can be reasoned by the high recall value which
increases the total F-measure. After convergence, the F-measure F2 reads
values 92.5%, 82.5%, 56% for Fig. 4.26, 4.27, 4.28, respectively.

The common estimated amplitude µhyp,a,0 di�ers according to the o-bank
and e-bank �t � if the o-bank and e-bank �t is the greatest, the estimated
µhyp,a,0 is of the highest value while if the o-bank and e-bank �t is the lowest,
the estimated µhyp,a,0 is the lowest, too. The estimated value of µhyp,a,0 ranges
between 0.55 to 0.82 while the tests with the �xed amplitude (in Section 4.8)
were performed using the value 0.65. The di�erence between µhyp,a,0

.
= 0.55

and µhyp,a,0
.
= 0.65 in experiments with �xed value (see in Fig. 4.16 in its

bottom-right image) does not have much impact on results.
The next observation is that the tests with estimation of the common

amplitude (this Subsection) and the tests with 61 amplitudes (Subsection
4.9.2) do not signi�cantly di�er in results, that is, the increase of the number
of unobserved variables by estimating of amplitudes did not signi�cantly
changed the total results. Only in the least suitable selection of the library
for the estimation (the electric piano instead of the �classical� piano) we can
see, that the common amplitude test yielded 7% worse result in hits #2 (F-
measure) over the tests with amplitudes estimated for all library sounds. This
can be explained by the fact that errors (i.e., unsuitability) in the estimation
library are compensated by more free parameters in the model.
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Figure 4.20: ε tests. Top: o-bank � sound library #2, e-bank � sound library
#1; middle: o-bank � sound library #4, e-bank � sound library #2; o-bank
� sound library #3, e-bank � sound library #2.
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bottom-right: total results.
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Figure 4.23: Convergence of quantities when amplitudes are forced to move
together in their amplitude, the case when o-bank � SL #2, e-bank � SL #1.
Upper: σa,0 = 10−6 , lower: σa,0 = 10−5 . X-axis: iteration cycle, y-axis:
quantity value.
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Figure 4.24: Convergence of quantities when amplitudes are forced to move
together in their amplitude, the case when o-bank � SL #3, e-bank � SL
#2. Upper: σa,0 = 10−6, lower: σa,0 = 10−5 . X-axis: iteration cycle, y-axis:
quantity value.
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Figure 4.25: Convergence of quantities when amplitudes are forced to move
together in their amplitude, the case when o-bank � SL #4, e-bank � SL
#2. Upper: σa,0 = 10−6, lower: σa,0 = 10−5 . X-axis: iteration cycle, y-axis:
quantity value.
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Figure 4.26: Last iteration of the convergence of amplitudes when they are
forced to move together in their amplitude value, the case when o-bank � SL
#2, e-bank � SL #1. Left: σa,0 = 10−6, right: σa,0 = 10−5.
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Figure 4.27: Last iteration of the convergence of amplitudes when they are
forced to move together in their amplitude value, the case when o-bank � SL
#3, e-bank � SL #2. Left: σa,0 = 10−6 , right: σa,0 = 10−5.
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Figure 4.28: Last iteration of the convergence of amplitudes when they are
forced to move together in their amplitude value, the case when o-bank � SL
#4, e-bank � SL #2. Left: σa,0 = 10−6, right: σa,0 = 10−5.

90



1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

E
rr

or
 r

at
e 

(%
)

Polyphony
All 123456

−2

0

2

4

6

8

10

S
D

R
 (

dB
)

SDR Type

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

E
rr

or
 r

at
e 

(%
)

Polyphony
All 123456

−1

0

1

2

3

4

5

6

7

8

S
D

R
 (

dB
)

SDR Type

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

E
rr

or
 r

at
e 

(%
)

Polyphony
All 123456

−2

−1

0

1

2

3

S
D

R
 (

dB
)

SDR Type

Figure 4.29: Last iteration of the convergence when amplitudes are forced
to move together. Top: o-bank � SL #2, e-bank � SL #1, corresponding
amplitude image in Fig. 4.26; middle: o-bank � SL #3, e-bank � SL #2,
corresponding amplitude image in Fig. 4.27; bottom: o-bank � SL #4, e-
bank � SL #2, corresponding amplitude image in Fig. 4.28.
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4.9.4 Summary on Tests with Estimation of Amplitudes

The amplitude is estimated one for each library sound and it does not change
over time. By the settings of prior distribution on amplitudes two cases were
tested:

• 61 amplitudes are independent among each other and they are pushed
to zero by a sparsity constraint. Tests revealed that L2 norm sparsity
constraint improves slightly the accuracy. Having the best average
value for the sparsity constraint, we conclude that: even if the sound
library for the observed signal is selected well, the amplitudes may vary
a lot. In the case of the best �t of the sound library for the observed
signal, we obtained the standard deviation for the amplitudes of 0.17.

• Amplitudes are tied to each other by their variance (hyperparameter):
one common amplitude estimated, no sparsity constraint. The more
similar are the library for estimation and the library, the observed signal
was created from, the higher is the common estimated amplitude. Also
it holds, that the more the amplitudes are tied to each other, the slower
is the convergence of the VB algorithm. The decrease of the number of
unobserved variables by estimating of one common amplitude instead
of 61 (one for each library sound) did not signi�cantly change the total
results (hits #2, SDR), when the library of sounds for estimation was
of the same piano-type sound as the sound library used on creation of
the observed signal.

4.10 Comparison to Multiple Fundamental

Frequency Estimation State-of-the-art

The multiple fundamental frequency estimation is the optional functional-
ity provided by our model of the inverse music sequencer. The comparison
follows from the overview of approaches in Section 1.3 and the multiple-
fundamental frequency state-of-the-art in Section 1.6. In Table 4.1, the ap-
proaches are presented with their accuracies. In that table, our approach is
represented by a test result from the sparsity test with estimation of ampli-
tudes in Fig. 4.20, upper picture. In our compared approach, the o-bank
and e-bank are distinctly recorded but very close libraries and the sparsity
tuning parameter σa,0 is set to the optimum. In all the methods to compare,
we selected the most comparable tests and their settings, all percentages cor-
respond to the tests on simulated data. The abbreviations used in the table
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are explained in List of Abbreviations at the beginning of the thesis. We
conclude that:

• The most similar approach to ours is of Abdallah and Plumbley [43].
Besides the signal model and the parameter estimation method(s), ours
and [43] di�er in the prior source knowledge selection. Whereas in [43],
the data sources are calculated in advance from the observed data itself
and the meaningful spectral vectors are selected by hand, our approach
needs to select a suitable sound library before starting the estimation
algorithm, no human step into is necessary.

• If it is possible we provide the R-index evaluation (1.12) for the meth-
ods. It is clear to see that the proposed solution compete well with the
state-of-the-art.
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Chapter 5

Conclusions

We have presented a model for polyphonic music signal and an approximate
algorithm for estimation of its parameters based on the Variational Bayes
approximation. The model is based on the operation of a music sequencer
and it is designed to operate with general music sounds. The algorithm is
capable of identifying sounds and their amplitudes that do not change over
time in the input polyphonic music signal. Only sounds within a given sound
library can be identi�ed. Additionally, unlike the state-of-the-art, the model
allows identi�cation of arbitrary subparts of the library sounds, not only the
sound as a whole. We term this feature the �modi�cation�. The model can be
extended by other modi�cations, e.g., the pitch-shift of a library sound. We
have devised an evaluation method and applied it along with other standard
methods in the algorithm evaluation. Simulated data, prepared by assigning
real and synthesized piano sounds to classical music pieces in MIDI format,
was used for the evaluation.

5.1 Contributions

• A scenario for the complete automatic music transcription [1] following
the idea of an inverse music sequencer was presented. It allows working
with a bank of drum and harmonic music sounds as a memory base (the
�sound library for estimation�). Musical sounds in the observed audio
signal are matched not only with the whole library sounds but also with
their subparts.

• A probabilistic model containing unobserved variables of noise, ampli-
tudes, labels (presences of sound segments � frames) and true inner
library sounds was designed. The Variational Bayes technique was uti-
lized to reduce the model equations and provide the algorithms for
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estimation of unobserved variables, in particular Algorithm 3 and its
modi�cations Algorithm 5 and Algorithm 6. It was shown that in
the estimation of labels in our model the variational Bayes approach
outperforms our previous estimation by the extended Kalman �lter in
discrimination of the labels.

• Evaluation methods re�ecting measures of hits in labels and sound-to-
distortion values were proposed. One of them, �hit mesure #2�, was
designed by the author and resulted in Algorithm 7. The methods were
then applied in the evaluation of the proposed algorithms.

• The estimation of unobserved variables:

� Sound library: its distribution is determined by the sound li-
brary for estimation. Considering such distribution, our tested
model did not prove that 1/ the proposed distribution shape or
2/ greater length of the observed data can lead to improved re-
sults. Thus, in the further experiments, the sound library was
considered to be a �xed parameter of the model, not a distribu-
tion1.

� Covariance structure of noise: it was estimated as a scalar for
each element of the observation covariance matrix. Since most of
the frequency bins in the higher frequencies of the observed data
have very low magnitudes (even after scaling of the data), those
below the threshold need to be excluded from the noise scalar
estimation. A single threshold could not be set for all tests.

� Labels: amplitudes are held �xed close to their average ground
truth value. The estimation of labels is signi�cantly a�ected by
the selection of the sound libraries for estimation, by the number
of sounds in the sound library, by the number of distinct sounds in
the input signal, by the values of the transition matrix and by the
application of scaling in frequency. It is insigni�cantly in�uenced
by longer library sounds when the sound intrinsic subsegments do
not match other sounds from the library. It is not in�uenced by
the length of the observation signal. The e�ect of scaling in time
was not conclusive. If the input recording is combined from piano
sounds played �forte� and the sound library is collected by piano
sounds played �mezzo-forte�, the results in hits of the F-measure
get over 90% and in the SDR exceed 10 dB in all simulated data

1Note that the �xed parameter can be expressed as a distribution too, see (3.40).
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sets. However, when the input recording was made from a di�erent
type of piano (e.g., the electric piano) then the richer and more
polyphonic recording produced signi�cantly worse results, whose
F-measure value ranged between 60 � 70%.

� Labels with amplitudes: the amplitude is estimated one for
each library sound and it does not change over time. Having
the same type of piano instrument in the sound library as in the
observed signal, the tests with and without estimation of ampli-
tudes do not signi�cantly di�er in results, that is, the increase of
the number of unobserved variables by estimating of amplitudes
did not signi�cantly change the total results. By the settings of
prior distribution on amplitudes two cases were tested:

∗ amplitudes are mutually independent: they are pushed
to zero by a sparsity constraint. Tests revealed that L2 norm
sparsity constraint improves slightly the accuracy. Having the
best average value for the sparsity constraint, we conclude
that even in the well selected sound library for the observed
signal the amplitudes may vary a lot. In the case of the best �t
of the sound library for the observed signal, we obtained the
standard deviation for the amplitudes of 0.17 when the ground
truth amplitudes were all equal to one common amplitude of
a value between 0.5 and 1.0.
∗ amplitudes are tied to each other: this is accomplished by
setting hyperparameters for amplitudes. The observed signal
was prepared from a sound library which is di�erent from the
sound library used for the estimation. The more similar these
two libraries are, the higher the common estimated amplitude
is. The algorithm exhibited faster convergence when the
tying by the variance hyperparameter was not signi�cant.

• The multi-pitch detection represents a way how to compare the per-
formance in accuracy of our proposed method. The results show that
when the inverse music sequencer is set up for memory-based multi-
pitch detection and the library of sounds is selected suitably, we obtain
over 90% correctly detected frames, which is also the level of the state-
of-the-art of multiple fundamental frequency recognizers.
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5.2 Future Work

• To extend the sound libraries by non-harmonic sounds, e.g., drums. To
try to combine the tested sound library from sounds of instruments oc-
curring in Western tonal music. Given this library, to create simulated
data representing a popular song. In the �rst place, the tests should be
performed only with estimation of labels, the amplitudes and library
sounds would be held �xed.

• Estimation of the sound library by the three enhancements proposed
in Section 4.1.

• Calculation of amplitudes that are changing over time: calculation of
the VB algorithm for amplitudes and labels within a moving window,
see in Subsection 3.4.

• Computational load reduction: since the whole observed signal is for
disposal before the estimation is carried out, it is possible to precalcu-
late suitable sounds for the library, or libraries, in the case of processing
window by window (see in Section 3.4), in order to decrease the number
of sounds in the library.

• To extend the set of modi�cations of sounds in the library, i.e., besides
the model with truncation of sounds, we could consider the pitch-shift
of the library sounds.
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Appendix A

Required Probability Distributions

Multivariate Normal distribution

The multivariate Normal distribution of x ∈ Rp+1 is

N (µ,R) = (2π)−
p
2 |R|−

1
2 exp

{
−1

2
[x− µ]TR−1[x− µ]

}
. (1)

where R is symmetric, positive de�nite matrix. The non-zero moments of
(1) are

x̂ =µ,

x̂xT =R+ µµT .

The scalar Normal distribution is a special case of (1):

N (x, r) = (2πr)−
1
2 exp

{
− 1

2r
(x− µ)2

}
. (2)

Matrix Normal Distribution

The matrix Normal distribution of the matrix X ∈ Rp+n is

N (µX ,Σp ⊗Σn) =(2π)−
pn
2 |Σp|−

n
2 |Σn|−

p
2×

× exp

(
−1

2
tr
{
Σ−1
p (X − µX)(Σ−1

n )T (X − µX)T
})

,

where Σp ∈ Rp×p and Σn ∈ Rn×n are symmetric, positive de�nite matrices,
and where ⊗ denotes the Kronecker product [94]. The distribution has the
following properties:

• The �rst moment is EX [X] = µX .
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• The second non-central moments are

EX [XZXT ] =tr(ZΣn)Σp + µXZµX
T ,

EX [XTZX] =tr(ZΣp)Σn + µX
TZµX ,

where Z is an arbitrary matrix, appropriately resized in each case.

Gamma Distribution

Gamma distribution is as follows:

p(x|a, b) = G(a, b) =
ba

Γ(a)
xa−1 exp(−bx)χ[0,∞)(x), (3)

where a > 0 and b > 0 , χ[0,∞)(x) is the indicator function and Γ(a) is the
gamma function [95] evaluated at a. The �rst moment is

x̂ =
a

b
, (4)

and the second central moment is

EX [(x− x̂)2] =
a

b2
. (5)

Multinomial Distribution

The Multinomial distribution of the c-dimensional vector variable l where
li ∈ N and

∑c
i=1 li = γ is as follows:

p(l|a) =Mul(α) =
1

ζl(α)

c∏
i=1

αlii χNc(l). (6)

Its vector parameter is α = [α1, α2, . . . , αc]
T , αi > 0,

∑c
i=1 αi = 1. The

indicator function [95] is denoted by χNc(l). The normalizing constant is

ζl(α) =

∏c
i=1 li!

γ!
, (7)

where �!� denotes factorial.
If the argument l contains positive real numbers, i.e., li ∈ (0,∞), then

we refer to (6) as the Multinomial distribution of continuous argument. The
only change in (6) is that the support is now (0,∞)c and the normalizing
constant is

ζl(α) =

∏c
i=1 Γ(li)

Γ(γ)
, (8)
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where Γ(·) is the gamma function [95]. For both variants the �rst moment is
given by

l̂ = α. (9)
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