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Abstract

An idealized model of an arterial wall is proposed as a two-layer system. Distinct mechanical response of each

layer is taken into account considering two types of strain energy functions in the hyperelasticity framework. The

outer layer, considered as a fibre-reinforced composite, is modelled using the structural model of Holzapfel. The

inner layer, on the other hand, is represented by a two-scale model mimicing smooth muscle tissue. For this model,

material parameters such as shape, volume fraction and orientation of smooth muscle cells are determined using

the microscopic measurements. The resulting model of an arterial ring is stretched axially and loaded with inner

pressure to simulate the mechanical response of a porcine arterial segment during inflation and axial stretching.

Good agreement of the model prediction with experimental data is promising for further progress.
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1. Introduction

Mechanical response of an arterial wall is often predicted using hyperelastic models in the

framework of continuum mechanics. In that case, the stress-strain relationship is defined via

the so-called strain energy function representing the density of the Helmholtz free energy. In

order to fit experimental data, phenomenological models such as the Mooney-Rivlin, the Ogden

or the exponential model of the Fung’s type are introduced using the empirical formulae of strain

energy functions, see e.g. [3,14]. Although widely used (see e.g. [1,2,18]), their application on

the description of arterial wall is limited due to its complex microstructure. Phenomenological

models may be suitable for the description of an overall mechanical response, however, they

are incapable of providing the insight into the microscopic level. At the same time, physical

meaning of the material constants appearing in these models is not always clear. The least-

squares fitting instead of direct measurements must be applied for their identification, as it is

detailed e.g. in [13].

Therefore, an increasing effort has been made in developing so-called structural models that

are able to relate the overall mechanical response to the corresponding effects at microscopic

level. An example of the strain energy function, proposed with respect to the underlying mi-

crostructure, is shown in [7] and [9]. In both cases, anisotropy and the structure of arterial layers

are taken into account via a single parameter representing the angle between preferred fibre di-

rections. The first mentioned model is later improved in [5] by considering the dispersion of

fibres orientation. Possible application is shown in [6] for the soft tissue remodeling, i.e. the
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alignment of collagen fibres along the directions of principal stresses. In [10], an anisotropic

hyperelastic model is proposed for fibre-reinforced materials. Taking into account an arbitrary

number of fibre families, the strain energy function is proposed as a sum of exponential func-

tions which makes it suitable for the description of soft collagenous tissues. Also, an issue of

polyconvexity as a favourable property of strain energy functions is addressed. The model is

generalized in [4] and applied for the description of uniaxial and biaxial tension tests with hu-

man coronary arteries and abdominal aorta. In this case, five material parameters are determined

upon the comparison with experimental data.

Another approach of including the fibrous nature of the soft tissue into a hyperelastic model

is demonstrated in [20]. Here the eight chain model is introduced as a representative volume

element of the arterial layer. As a result, orthotropic strain energy function of the tissue is

obtained respecting the entropy elasticity of individual polymer chains. Especially in this case

of the bottom-up approach, all material parameters have a clear physical meaning related to the

microstructure. However, as in the case of the angle between fibre orientation in [7], most of

these parameters have to be determined by the least-squares fitting as their direct identification

is not feasible.

The aim of this work is to contribute to the trend of the bottom-up approach in the constitu-

tive modelling of arteries by employing the two-scale hyperelastic model which is based on the

arrangement of soft tissues at the cellular level. The paper is organized as follows. In section

2 an idealized model of an artery is proposed as a two-layer thick walled tube composed of

media and adventitia layers. Description of kinematics follows the approach proposed in [7]

considering three configurations. Hence, residual stresses are taken into account via a parame-

ter representing the opening angle of the arterial ring at the reference state. Distinct mechanical

properties of individual layers are taken into account by considering two types of strain energy

functions. Adventitia, the outer layer, is represented by the structural model of Holzapfel et al.

proposed in [7]. Media, on the other hand, is described using the so-called “balls and springs”

(BS) model introduced in [8].

Direct identification of some of the model parameters is done in section 3. Experimental

methods of stereological assessment are performed for the smooth muscle tissue of a porcine

abdominal aorta and a gastropod as it is detailed in [16, 17]. Thus the structural information is

obtained, namely the relative volume fraction of smooth muscle cells within the media, their

orientation, their size and their shape. It corresponds directly to several constants appearing

in the BS model representing the material of media. Moreover, thickness of both media and

adventitia is determined for a carotid artery from a freshly killed domestic pig.

Finally, the model predictions are compared to the experimental data in section 4. The

porcine carotid artery is stretched longitudinally and pressurized at the same time following the

experimental procedure described in [19]. As a result, pressure-diameter diagram is obtained

for a given value of the axial stretch. Theoretical curves predicted by the model are obtained

using the combination of both direct measurement of material parameters and the least-squares

fitting.

2. Model of an arterial segment

2.1. Description of deformations

An arterial segment is considered as an axisymmetric thick-walled tube consisting of two lay-

ers, the media (inner) and the adventitia (outer). Its description follows the approach detailed

in [7, 19]. The reference configuration is characterized with the length L, inner and outer radii
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Fig. 1. The reference (left) and the current configuration (right) of an arterial segment loaded with inner

pressure and axial stretch

Rin, Rout, media thickness Hm and the opening angle α, see Fig. 1. Loaded with the inner

pressure ∆P and the axial stretch λz, the segment occupies the current configuration charac-

terized with the length λzL, and the inner and outer radii rin, rout. Clearly, we assume the

segment remaining as an axisymmetric tube also at this configuration, see Fig. 1. Due to the

symmetry of the geometry and the loading, the description of kinematics is in fact reduced into

a one-dimensional problem of the deformed radius r(R). Applying the assumption of incom-

pressibility, it is given with the formula

r(R) =

√

R2

hλz
+ C. (1)

Here, h is a parameter related to the opening angle as

h =
2π

2π − α
, (2)

quantifying in fact the residual stress and C is a constant to be determined from the boundary

conditions. Applying the constitutive equations of hyperelasticity,

σ =
∂Ŵ

∂F
F

T − pI, (3)

we obtain the relationship between ∆P and C,

∆P =

∫ Rin+Hm

Rin

r′

r

(

hr

R
Ŵm

2 − r′Ŵm
1

)

dR +

∫ Rout

Rin+Hm

r′

r

(

hr

R
Ŵ a

2 − r′Ŵ a
1

)

dR. (4)

Here, σ is the Cauchy stress tensor, Ŵ the strain-energy function, F the deformation gradient, p
the hydrostatic pressure and the superscripts m and a refer to the media and adventitia, respec-

tively. The notion Ŵi stands for the partial derivative of Ŵ with respect to the corresponding

diagonal component of the deformation gradient,

Ŵi =
∂Ŵ

∂λi

, λi = Fii. (5)
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2.2. Material models

In agreement with [7], the adventitia is considered as a fibre-reinforced composite, characterized

by the strain energy function

Ŵ a =
µ

2

(

Î1 − 3
)

+
κ1

2κ2

[(

eκ2(Î4−1)2 − 1
)

+
(

eκ2(Î6−1)2 − 1
)]

, (6)

where µ, κ1 and κ2 are material constants, Î1, Î4 and Î6 are invariants and pseudo-invariants,

respectively. They are defined as

Î1 = tr Ĉ, Î4 = Ĉ : A1, Î6 = Ĉ : A2, A1 = a01 ⊗ a01, A2 = a02 ⊗ a02. (7)

Here, Ĉ is the distortional component of the right Cauchy-Green tensor,

Ĉ = (detC)−1/3
C, C = F

T
F. (8)

The material is supposed to be reinforced by two families of fibres with predominant directions

a01 and a02.

Note that the strain-energy function (6) is in fact composed of two contributions. The first

one corresponds to the isotropic mechanical response of the matrix and is represented by the

neo-Hookean term. The second one corresponds to the anisotropic mechanical response due to

collagen fibres. The fibres are supposed to form a symmetrical structure so that their direction

vectors can be expressed as

a01 = [0, cosβ, sin β]T , a02 = [0, cos β,− sin β]T . (9)

The angle β between the fibres represents an additional parameter appearing in the material

model, see Fig. 2.

Media, on the other hand, is of different structure. Focusing on the contribution of the

smooth muscle tissue we use the two-scale hyperelastic model introduced in [8]. Its microstruc-

ture is formed of incompressible balls interconnected mutually via linear springs to mimic the

arrangement of smooth muscle cells and extracellular matrix. Each ball is also reinforced with

Fig. 2. Representative volume elements of the material models corresponding to the continuum points in

the adventitia (A) and the media (M) layers. Two-dimensional sections are depicted for simplicity
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linear springs representing cytoskeleton. Hence we call it the “balls and springs” (BS) model.

The representative volume element (RVE) of the BS model is depicted in Fig. 2. Here, li de-

notes the sizes of the RVE, ci the sizes of the ellipsoidal ball, K c
i the stiffness of the springs

reinforcing the ball and K∆
i the stiffness of the springs representing the extracellular matrix.

The subscript i denotes the spatial direction, i = 1, 2, 3. The strain energy function can be

expressed in the form

Wm =
3

∑

i=1
i �=j �=k

Ki

2

ki
1 + ki

lijlik (λi − 1)2 + min
ri

r1r2r3=1

3
∑

i=1
i �=j �=k

Ki

2
(1 + ki)g

2
i lijlik

(

ri − λeff
i

)2

. (10)

Here, the effective stretches are introduced,

λeff
i =

λi − 1

gi(1 + ki)
+ 1. (11)

The material parameters of this model are derived from the microscopic level as

Ki =
K∆

i

li
, ki =

Kc
i

K∆
i

, lij =
li
lj
, gi =

ci
li
. (12)

Although the strain energy function is formed solely by quadratic contributions of the

stretched/compressed springs connected in a simply-looking structure, the resulting formula

(10) is rather complex. The reason for this is due to the configuration of inner structure repre-

sented by the shape of the ball. Instead of simply assuming the shape of the ball to be governed

by the macroscopic deformation gradient (affine micro-deformations), it is “allowed” to occupy

the shape which minimizes the overall deformation energy of the RVE. Hence, the strain energy

function is split into a part describing an averaged spring elasticity of whole RVE and a part

expressing the corresponding minimization problem. The dependence on the shape of the ball

is given via dimensionless parameters ri,

ri =
c′i
ci
, (13)

where c′i represent sizes of the ball at the actual configuration. Clearly, the constraint

r1r2r3 = 1, (14)

stands for the incompressibily of the ball. Notice that the reference configuration of this model

coincides with the natural one of zero strain energy as

ri = 1, λi = 1 ⇒ λeff
i = 1, Wm = 0. (15)

It means that there is neither tension nor compression within springs forming the RVE at the

reference state and hence it is stress-free. Unfortunately, the minimization problem (10) has no

analytical solution in general. Therefore, there is no analytical formula regarding stress-strain

relationship which means that stress components have to be calculated numerically using the

definition (3).

It is worth stressing that the proposed model is orthotropic and has a large number of mate-

rial parameters. However, concerning the smooth muscle tissue within arterial wall, the assump-

tion of the transverse isotropy is employed considering the radial and longitudinal directions to

be equivalent. This assumption result in the total number of seven material parameters, namely

K1, K2, k1, k2, g1, g2 and l12.

111



J. Vychytil et al. / Applied and Computational Mechanics 6 (2012) 107–118

3. Identification of model parameters

3.1. Geometry of an arterial ring and the media thickness

A sample of carotid artery was taken from a minipig involved in another experiment performed

at the experimental facility of the Faculty of Medicine in Pilsen. The animal received humane

care in compliance with the European Convention on Animal Care and the whole project was

approved by the Faculty Committee for the Prevention of Cruelty to Animals. The carotid artery

was rinsed with Tyrode’s solution and placed in ice-cold Tyrode’s solution. An approximately

1 cm-long ring was taken from the artery to assess its geometrical parameters, i.e. the inner

and outer radii and the opening angle. Using three measurements at each end of the sample, the

mean values were obtained as Rin = 1.29 mm, Rout = 1.49 mm and α = 108◦.
The sample was then fixed in 10 % formalin, dehydrated in graded ethanol solutions and

embedded in paraffin blocks for histological analysis. The tissue block was cut transversally

into 5 µm-thick histological sections, mounted on slides and stained with Verhoeff’s haema-

toxylin and green trichrome [12] in order to show the overall layers of the arterial wall (the

intima, the media, and the adventitia) and to distinguish elastin, collagen fibres, and vascular

smooth muscle cells (SMC). The cytoplasm of SMC stains reddish with the acid fuchsin. Four

micrographs were analyzed using the Ellipse software (ViDiTo, Košice, Slovakia). They were

sampled in a systematic uniform random manner round the circumference of the carotid wall.

The intima-media thickness was measured using a line tool connecting the surface of the intima

with the most external layer of the compact vascular smooth muscle of the media, see Fig. 3.

As the intima was represented only by a single layer of endothelium supported with a very thin

layer of subendothelial connective tissue, it was neglected in agreement with model assump-

tions. The measurements thus resulted in a mean value of media thickness, Hm = 0.89 mm.

Fig. 3. The intima media thickness (black line) was measured three times per micrograph. Modified

green trichrome stain, scale bar 100 µm

3.2. Orientation of smooth muscle tissue within media

Unlike the contours of individual muscle cells, the nuclei are easy to be visualized in routine

histological sections. As the smooth muscle cells are spindle shaped and the long axes of their

oval nuclei run parallel to the long axis of the muscle cells, describing the orientation of the

nuclei is a good estimate for assessing the orientation of the whole smooth muscle cells. For the

model presented in this paper, we use the previously published distribution of angles between
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Fig. 4. Orientation of nuclei of smooth muscle cells in a transverse section of tunica media of porcine

aorta. Based on a method previously published in [17]

the long axes of smooth muscle cells and the circumferential direction of arterial wall [17]. In

the transverse section, the angle ranges within the interval 〈−38; 35〉◦, i.e. the orientation of

nuclei and therefore smooth muscle cells is considered as circumferential, see Fig. 4.

3.3. Model parameters of a single smooth muscle cell

Due to the variability in size and shape of individual biological cells, estimating of their typical

morphological parameters relies on stochastic geometry. Morphometric characteristics of vas-

cular smooth muscle cells have not been published so far, therefore we use the values published

in gastropod smooth muscle cells, where the mean cell volume is 1 358 µm3 [11, 16] and the

maximum transversal diameter is approx. 6 µm [15]. If the shape of smooth muscle cell is

approximated by an ellipsoid with the minor axes of the same size, its length is calculated as

72 µm.

Concerning the proposed model, the observed orientation of smooth muscle tissue and the

parameters of individual cells result in following conclusions. First, the model is considered as

transversally isotropic with the sizes of the ball c1 = c3 = 6 µm, c2 = 72 µm. Second, the main

axes of the ball and therefore the orientation of the RVE correspond to the spatial directions of

the cylindrical coordinate system as it is depicted in Fig. 2.

3.4. Volume fraction of smooth muscle cells

In order to determine the relative size of the ball within the RVE in our model, the volume

fraction of smooth muscle cells is employed. This parameter represents the ratio of the volume

of cells and the volume of the whole tunica media. We use the values for the porcine abdominal

aorta published in [17]. Here the stereological point-grid method is used, allowing a reliable

estimation of area fraction of smooth muscle cells within the media. According to the Cavalieri

principle, the volume fraction is estimated with the mean value of Vrel = 0.65.

In the BS model, let us assume the thickness of the extracellular matrix is expressed with a

constant δ in all three spatial directions, i.e.

li = ci + δ. (16)

Introducing the dimensionless parameters δ∗ = δ/c1 and c∗ = c2/c1 = 12, the expression for
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the relative volume fraction,

Vrel =
c21c2
l21l2

, (17)

leads to the equation

(δ∗)3 + (2 + c∗) (δ∗)2 + (2c∗ + 1) δ∗ +

(

1− 1

Vrel

)

c∗ = 0. (18)

As a solution of this equation, parameter δ∗ is obtained. Finally, using the definitions (12) and

(16), three material parameters of the BS model are identified,

g1 =
1

1 + δ∗
.
= 0.81, g2 =

c∗

c∗ + δ∗
.
= 0.98, l12 =

1 + δ∗

c∗ + δ∗
.
= 0.10. (19)

4. Mechanical response of an arterial segment during inflation and axial stretching

4.1. Experimental data

In order to compare the model predictions with experimental data, a sample of porcine carotid

artery is investigated. Namely, we use the sample described in section 3.1. The experiment

follows the procedure that is detailed in [19]. Therefore, only a brief summary is given in

this section. The sample is clamped into a measurement device (Tissue bath MAYFLOWER,

Perfusion of tubular organs version, type 813/6, Hugo Sachs Electronik, Germany) with the

axial stretch of λz = 1.5 to mimic in vivo conditions. After preconditioning, the sample is

loaded with inner pressure from 0 up to 200 mm Hg. At the same time the outer diameter is

measured at the middle region of the segment. Resulting pressure-diameter diagram is plotted

in Fig. 5. Here the units are converted as 1 mm Hg = 133.322 Pa.

4.2. Model predictions

Theoretical pressure-diameter curves are obtained by the model of an arterial segment using

the formulae derived in section 2 and the material parameters obtained in section 3. As an

axisymmetric tube formed of two layers, its geometry is described with inner radius Rin =

Fig. 5. Experimental pressure-diameter diagram and the theoretical curves
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1.29 mm, outer radius Rout = 2.49 mm, opening angle α = 108◦ and the media thickness

Hm = 0.89 mm. Adventitia, the outer layer, is considered as the structural material model of

Holzapfel with four unknown material parameters, µ, κ1, κ2, β. Concerning the media, de-

scribed using the BS model, three material parameters related to the microstructure of smooth

muscle tissue are determined by the microscopic measurements, namely g1 = 0.81, g2 = 0.98
and l12 = 0.10. However, four material parameters related to the stiffness of smooth muscle

cells and extracellular matrix are unknown, i.e. K1, K2, k1 and k2. All the unknown pa-

rameters (eight in total) are obtained by the comparison of the theoretical pressure-diameter

curve with the experimental data using the least-squares fitting. The result is plotted using the

solid line in Fig. 5. Material parameters, obtained by the least-squares fitting, are listed in

Table 1.

For comparison, two other models are considered. In the first one the isotropic restriction

of the BS model is considered for media (dashed line). It corresponds to the cubic shape of

the representative volume element containig spherical ball with stifnesses that are identical in

all three spatial directions, i.e. K∆
i = K∆, Kc

i = Kc, ci = c, li = l, see Fig. 2. Number of

material parameters is thus reduced to three for this model, namely K = K∆/l, k = Kc/K∆,

g = c/l. The structural parameter is identified using the volume fraction of smooth muscle

cells as g = 3
√
Vrel

.
= 0.87. The rest of the material parameters (six in total) is left for the

least-squares fitting.

Table 1. The list of material parameters identified by the least-squares fitting

BS (m) + Holzapfel (a) BS isotropic (m) + Holzapfel (a) Holzapfel (m+a)

K1 = 5.9× 105 Pa K = 5.9× 105 Pa µm = 1.8 kPa

K2 = 5.9× 105 Pa k = 9.8× 10−3 κm
1 = 1.1 kPa

k1 = 1.8× 10−2 κm
2 = 0.2

k2 = 2.1× 10−4 βm = 42◦

µ = 82 Pa µ = 66 Pa µa = 1.3× 102 Pa

κ1 = 1.4× 102 Pa κ1 = 1.3× 102 Pa κa
1 = 1.8× 102 Pa

κ2 = 2.2 κ2 = 2.4 κ2 = 1.5

β = 2.4◦ β = 18◦ βm = 26◦

In the second case, the structural material model of Holzapfel is considered for both media

and adventitia (dash-dotted line). In fact, it corresponds to the description of arterial wall as it is

proposed in [7]. All material parameters (eight in total) must be determined by the least-squares

fitting, namely µm, κm
1 , κm

2 , βm, µa, κa
1, κa

2, βa. Here the superscripts m and a refer to the media

and the adventitia, respectively.

In all three models, good agreement with experimental data is provided. However, combi-

nation of the BS model with the model of Holzapfel seems to be more accurate in comparison to

the case when the model of Holzapfel is considered for both media and adventitia. Concerning

the material parameters related to the Holzapfel model, the values obtained by the least squares

fitting are comparable to those considered for the rabbit carotid artery in [7]. Obviously, there

is only a slight difference in the mechanical response of the BS model and its isotropic restric-

tion. This is caused by the influence of adventitia which dominates the mechanical response for

higher pressure (due to the exponential character of the model).
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5. Conclusion

In this paper, an idealized model of an arterial segment as an axisymmetric tube is proposed.

Although real arteries are composed of three layers, intima (the innermost layer) is very thin

and makes an insignificant contribution to the overall mechanical response in healthy young

arteries. Hence, it is neglected in this model.

Static analysis and description of deformations for the given load (axial stretch and inner

pressure) follow the approach detailed in [7]. Due to the symmetry of the loading, the arterial

segment keeps the shape of an axisymmetric tube also at the current configuration. During the

experiment, on the other hand, the sample is clamped within the device and perfused intralu-

minarly which results in a more complex shape at the current configuration. However, accu-

racy of this simplification for the presented experimental setting is confirmed by FE analysis

in [19].

Structural model of Holzapfel et al., employed for the description of the mechanical re-

sponse of adventitia, is characterized with three material parameters related to stiffness and one

material parameter related to structure. Although having a transparent physical meaning (angle

between preferred fibre directions), direct identification of this parameter has not been done so

far. Hence, the least-squares fitting is applied for all material parameters related to adventitia.

BS model, representing the material of media, is proposed using the bottom-up approach which

leads to the transparent physical meaning of all material parameters. Although this model is or-

thotropic in general, we use the transverse isotropic restriction upon the fact that smooth muscle

cells are of approximately ellipsoidal shape with equal minor axes. Resulting material model

is characterized with seven material parameters, three of them are identified directly using the

microscopic measurements. It is worth stressing that the measurements take place using also

the samples of porcine aorta and the smooth muscle tissue of gastropod even if the model repre-

sents an arterial segment of porcine carotid artery. Nevertheless, we assume this inconsistency

to be tolerable for the particular parameters (relative volume fraction of smooth muscle cells in

porcine aorta and shape of smooth muscle cells in gastropod). Performing these measurements

in one sample corresponding to the model is favourable in future work though.

Comparison of the model prediction with the mechanical response of real arterial segment is

performed using the porcine carotid artery undergoing inflation test. Theoretical curves exhibit

a good agreement with experimental data, however, there are still eight material parameters

identified by the least-squares fitting (six material parameters in the case of isotropic restriction).

In the case of BS model, the resulting material parameters are of the order Ki ∼ 105 Pa,

ki ∼ 10−4 ÷ 10−2, meaning the living cells to be much softer compared to the extracellular

matrix within smooth muscle tissue. Concerning the Holzapfel model, the resulting material

parameters are comparable and of the same order as the parameters published for rabbit carotid

artery in [7]. Only the value of the angle β is scattered, however, there is no measurement so

far which could be useful in identifying this structural parameter. Moreover, the existence of

preferred fibre directions of collagen fibres within adventitia is questionable.

Difference in the mechanical response of the presented model and its isotropic restriction is

of small significance namely for higher pressures. This is caused by the exponential character

of the mechanical response of adventitia which dominates in the overall mechanical response

and acts as a stiff tube reinforcing the arterial segment. This phenomena is in agreement with

experimental observations, although undesirable in our research. To be able to study the effect

of material parameters related to microscopic level on the overall mechanical response, loading

of the media alone is preferable.
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Another goal for future studies is to increase the number of material parameters identified

directly and not using the least-squares fitting. Also, the presented material model of media is

a very drastic simplification of real soft tissue. Improvement of this model using for instance

polymer chains instead of linear springs or embedding motor proteins might help in studying

some effects related to microscopic level such as prestress or smooth muscle tissue activation.
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