
Presampled Visibility for Ambient Occlusion

Athanasios Gaitatzes
University of Cyprus

75 Kallipoleos St.

P.O.Box.20537

 Cyprus (CY-1678), Nicosia

gaitat@yahoo.com

Yiorgos Chrysanthou
University of Cyprus

75 Kallipoleos St.

P.O.Box.20537

Cyprus (CY-1678), Nicosia

yiorgos@cs.ucy.ac.cy

Georgios Papaioannou
Athens University of Economics and

Business

76 Patission St.

Greece (10434), Athens

gepap@aueb.gr

ABSTRACT

We present a novel method to accelerate the computation of the visibility function of the lighting equation, in

dynamic scenes composed of rigid, non-penetrating objects. The main idea of the technique is to pre-compute

for each object in the scene its associated four-dimensional field that describes the visibility in each direction for

all positional samples on a sphere around the object, we call this a displacement field. We are able to speed up

the calculation of algorithms that trace visibility rays to near real time frame rates. The storage requirements of

the technique, amounts from one byte to one bit per ray direction making it particularly attractive to scenes with

multiple instances of the same object, as the same cached data can be reused, regardless of the geometric

transformation applied to each instance. We suggest an acceleration technique and identify the sampling method

that gives the best results based on experimentation.

Keywords
indirect lighting, pre-computed visibility, uniform distribution, hemisphere, queries, query-point, tracing rays.

1. INTRODUCTION
Ray based solutions to the rendering problem have

been popular for over two decades now. An

enormous amount of work has been done by

researchers in order to accelerate the tracing of rays,

especially through the use of spatial acceleration

structures. However, such methods typically have a

non-constant cost for ray-intersections. We propose

an acceleration method for speeding up the visibility

term of ray casting and apply the method to the

approximation of the secondary diffuse illumination,

namely the ambient occlusion.

Ambient occlusion is defined as the attenuation of

ambient light due to the occlusion of nearby

geometry. It is a technique that approximates the

effect of indirect global illumination and does not yet

try to simulate the interplay of incident and reflected

light. In Ambient occlusion the indirect component

can be computed as:

() () ()⋅∫f f f f f
o o oΩ

1
A x,n = V x,ω ω n dω

π

where ()f
o

V x,ω is an empirical function that maps

distance from surface point x to the closest surface

along direction
f

o
ω to visibility values between 0 (no

visibility) and 1.

Figure 1: A hemisphere of rays emanating from

the bounding sphere towards the object is

precomputed for a large number of sample

points on the sphere.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

Journal of WSCG 17 ISSN 1213-6972

By tracing rays outward from a given surface point x

over the hemisphere around the normal n
f

, ambient

occlusion measures the amount that a point is

obscured from light. This average occlusion factor is

used to simulate soft-shadowing.

The method proposed in this paper uses a

discretization approach. It accelerates the ray-object

intersection test and in turn the computations of the

visibility function of the lighting equation, by

separating the task in two subtasks. First, at pre-

processing time, we construct the displacement maps

(Figure 1). These store the intersection distances of a

hemisphere of rays originating from sample points on

the bounding sphere of an object and directed

towards the model itself. We construct one map for

each sample point (Algorithm 1). Then, at run time,

when a ray from the environment towards an object

intersects its bounding sphere, we perform a simple

ray-sphere intersection test and recover from the pre-

computed maps the rest of the distance of the

incoming ray at the given angle.

The advantage of our method is that the bulk of the

computation is moved to a pre-processing stage. The

results are stored in compact grayscale textures (one

byte per ray direction), providing for each object a

constant size of additional information independent

of the complexity of the original model. Then the

real time algorithm performs a simple intersection

test and a constant-time map lookup as in Algorithm

2.

We show that, in applications such as ambient

occlusion, maps that use 1-byte of storage per ray

give almost the same result as maps that use 4-bytes

of storage space. If the model changes level of detail

the same maps can still be used. In addition, the

displacement maps contain information that is

transformation invariant. As such, no additional

information has to be computed when the rigid object

moves in the environment. For dynamic scenes with

rigidly moving objects, displacement fields

accelerate the computation of the approximation of

the indirect lighting term of the rendering equation to

real-time frame rates as well as the computation of

collision detection algorithms and ray casting.

In Section 2 we give an overview of the previous

work, followed by a description of our method in

greater detail in Section 3. In Section 4 we discuss

our results in one application area, that of computing

secondary diffuse illumination (termed ambient

occlusion).

2. PREVIOUS WORK
We distinguish the previous work in three different

areas: ray tracing acceleration algorithms, ambient

occlusion computation, and various field

computations around an object for accelerating

different types of algorithms.

Ray Tracing Algorithms
Traditionally ray-scene intersection is accelerated

through the use of hierarchical data structures.

Bounding Volume Hierarchies [Gol87a] [Rub80a]

[Cla76a], Voxel Grids [Sny87a] [Fuj86a],

Hierarchical Grids [Kli97a] [Caz95a] [Jev89a],

Octrees [Gla84a], Binary Space Partitioning Trees

[Sun92a], kd-Trees [Hav02a] [Nay93a] [Mac90a]

[Arv88b] [Jan86a] are just a few.

Recently, a new set of algorithms have been

developed for interactive ray tracing and ray tracing

of dynamic scenes. The work of Wald et al.

demonstrates real time ray tracing for small scenes

using in-expensive off-the-shelf PCs with SIMD

floating point extensions [Wal01a] [Wal01b] and for

larger scenes on shared memory multiprocessor

machines by Parker et al. [Par98a] and on PCs using

generate bounding sphere sample points

generate samples of hemisphere of rays

for all bounding sphere sample points (u, v) do

align hemisphere of rays to normal at (u, v)

for all rays (φ, θ) do

if ray intersects the object then

normalize the distance (divide by 2 * R)

record distance in displacement map

else

record distance in displacement map as 2 * R

end

end

Algorithm 1: Pseudo code of basic algorithm for

displacement fields computation at preprocessing

time.

generate hemisphere of ray samples

for each occlusion receiver object do

for all points x on the occlusion receiver surface

do

for all emanating rays do

if ray intersects bound sphere of occluder obj.

discretize intersection point (u, v)

discretize ray (φ, θ)
access distance in displacement map

end

use distance for occlusion approximation

end

compute occlusion at x

end

end

Algorithm 2: Pseudo code of basic algorithm for

ambient occlusion rendering using displacement

fields during real time processing.

Journal of WSCG 18 ISSN 1213-6972

a cluster architecture by Wald et al. [Wal01b]

[Wal01a]. The main issue of these algorithms that

accelerate spatially coherent rays, is that their

speedup on secondary ray intersection tests is

limited.

Ambient Occlusion
Ambient occlusion was first introduced by Zhukov

and Iones et al. [Ion03a] [Zhu98a]. Their algorithm,

depending on the size of the scene, could run in real

time producing adequate results. For offline

rendering, ambient occlusion is usually pre-

computed at each vertex of the model, and stored

either as vertex information or into a texture. For

real-time rendering, recent work by Kontkanen et al.

[Kon05a] suggests storing ambient occlusion as a

field around moving objects, and projecting it onto

the scene as the object moves. The interactions of

multiple dynamically moving rigid objects can be

combined in real-time. Zhou et al. [Zho05a]

approximate the ambient occlusion by computing a

field around an object that describes the shadowing

effects of the model at points around it. The field is

represented by Haar Wavelets or Spherical

Harmonics making it more accurate than the method

of Kontkanen et al. but also more expensive to

calculate. Finally Malmer et al. [Mal05a] surround

the object with a regular 3D grid, pre-computing

ambient occlusion at the center of each grid cell with

high memory costs for moderately complex scenes.

Field Computations around an Object
The work of Avneesh Sud et al. [Sud06b] [Sud04a]

for computing the discretized 3D Euclidian distance

to the surface of a primitive is used for speeding up

interactive collision and distance queries types of

algorithms. In our method, for the selected points

around the object, we don’t just compute the closest

distance but rather the distance in a hemisphere of

directions towards the object. In the work of Huang

et al. [Hua06a] in a pre-computation stage the object

is separated into convex segments each one

surrounded by an oriented bounding box. The OBB

is split into cells, each one recording a reference to

the primitive that is intersected by a ray through this

cell (traversal field). The multiple OBBs are needed

in order to allow inter-reflections. Due to the fact that

the number of OBBs and their corresponding

traversal fields depends on the complexity of the

original model, memory consumption may rise

significantly.

3. DISPLACEMENT FIELDS
In this section we describe the general idea of

displacement fields, while in section 4 we show their

application for ambient occlusion.

Our method bears some similarity to the

parameterization of Huang et al. [Hua06a] where

each ray was described as a vector of the parametric

incident location (u, v) on the bounding volume and

its corresponding incoming direction (θ, φ).

However, we introduce our novel displacement field

encoding pre-computation where using a similar

parameterization, we store the distance from the

entry point on the bounding volume to the surface of

the object. We further discuss the sampling

techniques used and the storage requirements of our

method along with the compression scheme.

Displacement Field Computation
The main idea of encoding displacement fields into

maps is as follows (Algorithm 1). Consider a rigid

object possibly moving through a scene. At a pre-

processing step, from a discreet set of sample points

on the bounding sphere, described as spherical

coordinates (u, v), a hemisphere of rays is cast

around the inward normal direction (Figure 1). For

each ray (u, v, θ, φ), the closest distance between the

Figure 2: 512x512 displacement maps of a model

of a cow and a cube with a hole in it. (top row)

Using uniform Sampling of rays, (middle row)

Rejection Sampling, (bottom row) Concentric

Map Sampling. Different (θ, φ) to (s, t)

mappings, produce different displacement maps.

Journal of WSCG 19 ISSN 1213-6972

bounding volume and the model surface is found and

recorded as a compact integer value after being

normalized by twice the sphere radius. Thus, for each

sample point (u, v) a displacement grayscale map is

obtained (Figure 2) that represents the distance

traveled along the ray in the direction (θ, φ) before

hitting the model surface. We define the

displacement field of the object to be the collection

of all displacement maps generated from all sample

points on the bounding sphere of the object.

Displacement Field Indexing
During the real time part of the execution (Algorithm

2) an incident ray to the object, intersects its

bounding sphere and the distance between the ray

origin and the intersection point is recorded. The

intersection point q is transformed into the object

coordinate system: 1 ,−′ = ⋅ q M q where M is the

transformation matrix with respect to the reference

frame of the ray. Depending on the sampling on the

surface of the sphere (see Section 3.3), the inverse

function is applied to ′ q in order to get the closest

corresponding point (u, v) on the sphere for which

we have a displacement map and therefore the index

of the corresponding displacement map. Next we

need to find the corresponding (θ, φ) of the incident

ray. Depending on the ray sampling method (see

section 3.4), the appropriate inverse function is

applied to the ray, thus recovering the (θ, φ) values

of the ray. We can now index into the displacement

field for the given ray (u, v, θ, φ) and extract the

distance information which is then added to the

intersection distance above and this is our

approximated distance value of the ray origin from

the object’s surface.

Selecting Samples around the Object
We need to sample entry points on the surface of the

bounding volume of the object from where the rays

originate in order to generate the displacement maps.

The method selected must also have a quick inverse

function that can convert an intersection point into

the nearest sample. In addition it should distribute the

samples over the bounding volume as evenly as

possible.

A fairly straightforward choice are the spherical

coordinates which have a fairly easy to compute

inverse function. However, the samples in this

method are concentrated more towards the poles of

the sphere.

A common bounding shape that is used to sample the

contained geometry is a axis-aligned bounding box

(AABB). During the real-time simulation we would

perform fast ray-box intersections. Special care

though is needed as the AABBs are not

transformation invariant and their oriented bounding

boxes (OBB) counterparts require more operations.

As most sampling methods deal with sampling over a

sphere, if the same methods were used to sample

over a cube there would be a high concentration of

samples near the vertices of the cube.

We opted for Slater’s [Sla02a] method, which

generates uniformly distributed points on a

hemisphere using the triangle subdivision method.

The same can be used to cover the full sphere as

well. At the same time he suggests a constant time

inverse function so, when an environment ray

intersects the bounding sphere of the object, we can

immediately associate this intersection point with one

of the pre-generated displacement maps, in order to

retrieve the angle and distance information.

Sampling a Hemisphere of Directions
There are several methods that deal with the uniform

sampling of rays distributed over a hemisphere. The

method selected must be able to uniquely discretize

its samples so that they can be stored in the

displacement maps. In addition there must exist an

inverse function that converts the displacement map

entries back into sample space.

One method is to use spherical coordinates where a

direction in the hemisphere is given by two angles

(φ, θ). But as can be seen in Figure 3a the rays

generated are concentrated towards the cap of the

Figure 3: Sampling a hemisphere of rays. (a) Polar Mapping of rays, (b) Rejection Sampling, (c)

Concentric Map Sampling.

Journal of WSCG 20 ISSN 1213-6972

hemisphere producing a good cosine term (close to

1.0) but they are not equally spaced.

In the rejection sampling method (Figure 3b)

uniformly distributed points are selected inside a unit

disk by selecting points inside the [-1, 1]2 square and

rejecting the points that fall outside the unit disk.

Using Malley’s method [Mal88a] the samples are

projected on the disk up to the hemisphere above it,

producing a cosine distribution of rays. Using this

method, about 21.5% of the samples are rejected and

so the corresponding space in the displacement map

remains unused.

Shirley et al. [Shi97a] suggest a concentric map

(Figure 3c) sampling method that maps samples in

the square [-1, 1]2 to the unit disk {(x, y) | x2 + y2 ≤

1} by mapping concentric squares to concentric

circles. The map preserves fractional area, it is bi-

continuous and has low distortion. Combined with

Malley’s method where samples on the unit

hemisphere have density proportional to the cosine

term, it provides the best solution.

4. IMPLEMENTATION & RESULTS
We have implemented the displacement fields

algorithm on an Intel Pentium 4 desktop PC running

at 3.4 GHz with 1GB RAM and an nVIDIA Quadro

FX 5500 graphics board, with 1GB Video RAM

(mach. type 1) and an Intel dual Xeon running at 3.0

GHz with 4 GB RAM and the same graphics board

(mach. type 2).

The implementation does not utilize the GPU for the

indexing calculations. The method is a generic ray

casting implementation, used in this case for ambient

occlusion and as such can not be compared with

other specialized GPU implementations.

Storage and Error Considerations
A 256x256 map stores the distance to the object for

65536 ray directions emanating from one sample. If

that map was to store the values as floats it would

require 262144 bytes of storage space while storing

them as unsigned chars it would require 65536 bytes.

In addition, if lossless compression is used (e.g. run

length encoding) then on average less storage would

be required. In application areas where integral

calculations are performed over the samples or

accuracy is not imperative, lossy compression could

be used to further reduce the storage requirements.

Given that it is essential to keep the storage

requirements to a minimum we opted to use unsigned

chars for storage as it was found in ambient

occlusion approximations that there was little to no

gain in visual quality from using floats as can be seen

in Figure 4. If higher accuracy is desired one can

consider storing more bytes per sample.

Results using the 8-bit maps
In our examples we used a large number of cast rays

per vertex (256) and achieved interactive results that

would otherwise be impossible (Figure 8). The

complexity of the displacement field method is O

(Nr) where Nr is the number of rays.

We have run several experiments in order to evaluate

Figure 4: (left) 4 bytes per ray for storage,

(right) 1 byte per ray for storage. There are no

obvious visible differences, when the

displacement fields are used for ambient

occlusion.

Reference image using Ray Casting

and 256 rays

Using 1122 displacement maps

(positional samples) of size 64 x 64

and Uniform sampling of 256 rays

Using 1090 displacement maps of size

64 x 64 and Concentric map sampling

of 256 rays

Figure 5: The image differences between the Reference image and the displacement map methods,

show that using Concentric map sampling produces much better quality results as compared to

Uniform sampling. Image differences are exaggerated by a factor of 5.

Journal of WSCG 21 ISSN 1213-6972

the method and establish which of the sampling

method is the preferred.

As we can see in Figure 5 choosing a concentric map

sampling distribution for the rays produces much

better results than the uniform sampling of rays. As

such, we opted to use this method in producing the

rest of the results.

In Figure 6 we see images of the ambient occlusion

solution produced using 4 different resolutions for

the concentric map sampling for the ray directions

and 3 resolutions for the positional samples on the

bounding sphere around the object. Here, as

expected, we see that cost of computing the

displacement field is a function of the sampling

resolutions while the cost of using it for ambient

occlusion is almost independent of the object

complexity. By looking at the root mean square (rms)

error, we observe that it drops quickly as we increase

the positional samples. In addition, we observe that

as we increase the directional samples, the error does

not decrease significantly. So a good compromise

between memory use and accuracy would be to use

the 4226 / 32x32 maps.

In Figure 8, we see the method applied to different

types of models. We observe that the cost of using

the displacement maps increases very little as we go

to higher complexity models. The only exception is

the multiple model case, where we have inter-object

interactions. The bunny is a caster, the corner is a

receiver and the other two objects are both casters

and receivers. So the results are justified by the

increase of rays cast by about 30 times.

Further Memory Optimization
When objects are further away from the viewer, the

approximate ambient occlusion calculated

previously, can be further optimized in terms of

texture space required. Instead of storing into the

map the distance between the bounding sphere and

the object, we can store only the visibility of the

 Displacement field directional samples

 32 x 32 64 x 64 128 x 128 256 x 256

2
9
0

 3.96 / 0.09462 / 2.8207 14.60 / 0.09584 / 2.4118 54.42 / 0.09809 / 2.3153 213.75 / 0.10159 / 2.2914

1
0
9
0

 14.06 / 0.09870 / 1.0653 51.23 / 0.10219 / 1.0318 193.25 / 0.10785 / 1.0294 772 / 0.11516 / 1.02871

4
2
2

6

D
is

p
la

ce
m

en
t

fi
el

d
 p

o
si

ti
o

n
al

 s
am

p
le

s

 54.79 / 0.10826 / 0.6772 204.27 / 0.11118 / 0.6315 925.05 / 0.11504 / 0.6209 3039.72 / 0.12190 / 0.6185

Figure 6: Cumulative table using 256 sample rays from each vertex of the tessellated corner (3x33x33)

with a concentric map sampling distribution. The numbers under the images correspond to the pre-

processing time, the run-time ambient occlusion computation in seconds (using mach. type 2) and the

rms error compared to the Reference image of Figure 5.

Journal of WSCG 22 ISSN 1213-6972

geometry in the given ray direction. This is a binary

value, thus the method saves about 87.5% in texture

space. The distance used in this case is the average

distance of the sample points towards the object in

the direction of the normal at the given sample point.

In Figure 7 we can see the comparable results.

5. CONCLUSIONS - FUTURE WORK
We have presented the displacement fields, a novel

discretization of the visibility around an object. We

have shown how it can be used for an interactive

ambient occlusion approximation computation. It

especially favors large model data sets, where we

maintain a constant computation time, independent

of the model complexity as shown in Figure 8. Our

method is robust, has a relatively small memory

footprint against comparable existing methods and

the time required to generate the displacement maps

depends only on the complexity of the occluder

geometry. Furthermore, our algorithm can be applied

to ray tracing calculations where exact ray hits are

not critical, for example for secondary ray

intersection tests, such as soft shadow rays.

The number and resolution of the displacement maps

used in the displacement field can be adjusted

depending on the required accuracy and available

memory.

In addition we could try to use a smaller number of

displacement maps around the sphere; just enough to

cover the surface of the sphere with little map

overlap. We would in effect be creating an

environment map. But then, our approximation

would suffer as the angle of approximation increases,

especially if our objects’ geometry possessed many

folds and creases that would provide dramatic self-

occlusion variations from different angles.

For future work, for objects that leave too much void

space in their bounding sphere, a hierarchical scheme

could be used such as a sphere tree [Bra02a]. This

would result in tighter sphere placement and denser

partial displacement maps at the expense of texture

storage.

Furthermore, it is possible to map the displacement

field indexing procedure to a shader program and

stack the displacement maps into one 3D texture.

Then the distance determination can be executed in

the GPU with the added advantage of a trilinear

interpolation of the distance for an arbitrary ray from

 Lemon Tree Bunny Igea Multiple Objects

Model

Triangles 26,300 39,000 67,200 142,300

Rays cast 836,352 836,352 836,352 26,444,800

Ray casting

time
196.20 s 331.10 s 616.35 s 4,286.8 s

Pre-processing

(4226 / 32x32)
99.54 s 54.79 s 243.76 s 334.6 s

AO calculation 0.240 s 0.228 s 0.204 s 4.692 s

Figure 8: The displacement field algorithm applied to several different types of models and their

respective timings (using mach. type 1). In the above images we used 256 sample rays with a concentric

map sampling distribution. The ambient occlusion computation is done using the 4226 / 32x32 maps.

Figure 7: Using the 1 bit per direction

optimization method with 4226 occlusion maps

(positional samples) of size 64x64 and

Concentric map sampling of 256 rays we get

results which are comparable with the

corresponding image from Figure 6 but slightly

brighter (giving an rms error of 4.4030).

Journal of WSCG 23 ISSN 1213-6972

distances measured at the discrete sample points

(third 3D texture coordinate) and discrete directions

(s, t plane texels).

6. REFERENCES
[Arv97a] Arvo, J., Kirk, D.: Fast ray tracing by ray

classification. In Proc. SIGGRAPH ’97 (1997).

[Arv88b] Arvo, J.: Linear time voxel walking for octrees.

Ray Tracing News 12(1), (1988).

[Bra02a] Bradshaw, G., O'Sullivan, C.: Sphere-Tree

Construction using Medial-Axis Approximation. In

Proc. of the 2002 ACM Symposium on Computer

Animation, SCA 2002, San Antonio, Texas.

[Caz95a] Cazals, F., Drettakis, G., Puech, C.: Filtering,

Clustering and Hierarchy Construction: A new solution

for ray tracing complex scenes. Computer Graphics

Forum 14, 3 (1995), pp. 371–382.

[Cla76a] Clark, J. H.: Hierarchical geometric models for

visible surface algorithms. Communications of the

ACM 19, 10 (1976), pp. 547–554.

[Fuj86a] Fujimoto, A., Tanaka, T., Iwata, K.: Arts:

Accelerated ray tracing system. In Proc. IEEE

Computer Graphics and Applications 6, 4 (1986), pp.

16–26.

[Gla84a] Glassner, A.: Space subdivision for fast ray

tracing. In Proc. IEEE Computer Graphics and

Applications 4, 10 (1984), pp. 15–22.

[Gol87a] Goldsmith, J., Salmon, J.: Automatic creation of

object hierarchies for ray tracing. In Proc. IEEE

Computer Graphics and Applications 7, 5 (1987), pp.

14–20.

[Hav02a] Havran, V., Bittner, J.: On improving kd-trees

for ray shooting. In Proc. of WSCG ’02 Conference,

(2002), pp. 209–17.

[Hua06a] Huang, P., Wang, W., Yang, G., Wu, E.:

Traversal fields for ray tracing dynamic scenes. In

ACM Symposium on Virtual Reality Software and

Technology (VRST ’06), Limassol Cyprus, November

1-3, 2006.

[Ion03a] Iones, A., Krupkin, A., Sbert, M., Zhukov, S.:

Fast, realistic lighting for video games. In Proc. IEEE

Computer Graphics and Applications 23, 3 (May

2003), pp. 54–64.

[Jan86a] Jansen, F. W.: Data structures for ray tracing. In

L. R. A. Kessener, F. J. Peters, and M. L. P. Lierop

(Eds.), Data Structures for Raster Graphics, Workshop

Proceedings, pp. 57–73. New York: Springer–Verlag,

1986.

[Jev89a] Jevans, D., Wyvill, B.: Adaptive voxel

subdivision for ray tracing. In Proc. Graphics Interface,

(1989), pp. 164–172.

[Kli97a] Klimaszewski, K. S., Sederberg, T. W.: Faster ray

tracing using adaptive grids. In IEEE Computer

Graphics and Applications 17, 1 (1997), pp. 42–51.

[Kon05a] Kontkanen, J., Laine, S.: Ambient occlusion

fields. In Proc. Interactive Symposium on 3D Graphics,

(2005).

[Mac90a] MacDonald, J. D., Booth, K. S.: Heuristics for

ray tracing using space subdivision. The Visual

Computer 6, 3 (1990), pp. 153–66.

[Mal88a] Malley, T. J. V.: A shading method for computer

generated images. In Master’s Thesis, Computer

Science Department, University of Utah, June (1988).

[Mal05a] Malmer, M., Malmer, F., Assarsson, U.,

Holzschuch, N.: Fast pre-computed ambient occlusion

for proximity shadows. In Tech. Rep. RR-5779,

INRIA, (2005).

[Nay93a] Naylor, B.: Constructing good partition trees. In

Graphics Interface, (1993), pp. 181–191.

[Par99a] Parker, S., Martin, W., Sloan, P.-P., Shirley, P.,

Smits, B., Hansen, C.: Interactive ray tracing. In ACM

Symposium on Interactive 3D Graphics, (1999), pp.

119–126.

[Rub80a] Rubin, S. M., Whitted, T.: A 3-dimensional

representation for fast rendering of complex scenes. In

Computer Graphics 14, 3 (1980), pp. 110–116.

[Shi97a] Shirley, P., Chiu, K.: A low distortion map

between disk and square. In Journal of Graphics Tools

2, 3 (1997).

[Sla02a] Slater, M.: Constant time queries on uniformly

distributed points on a hemisphere. In Journal of

Graphic Tools 7, 1 (2002), pp. 33–44.

[Sny87a] Snyder, J. M., Barr, A. H.: Ray tracing complex

models containing surface tessellations. In M. C. Stone

(Ed.), Computer Graphics (SIGGRAPH ’87

Proceedings), 21 (1987), pp. 119–128.

[Sud04a] Sud, A., Otaduy, M. A., Manocha, D.: DiFi: Fast

3D distance field computation using graphics

hardware. In Computer Graphics Forum 23, 3 (2004),

pp. 557–566.

[Sud06b] Sud, A., Govindaraju, N., Gayle, R., Manocha,

D.: Interactive 3D distance field computation using

linear factorization. In Proc. ACM Symposium on

Interactive 3D Graphics and Games (I3D 2006).

[Sun92a] Sung, K., Shirley, P.: Ray tracing with the BSP

tree. In D. Kirk (Ed.), Graphics Gems III, (1992), pp.

271-274. San Diego: Academic Press.

[Wal01a] Wald, I., Slusallek, P., Benthin, C.: Interactive

distributed ray tracing of highly complex models. In

Rendering Techniques 2001, 12th Eurographics

Workshop on Rendering, (2001), pp. 277–288.

[Wal01b] Wald, I., Slusallek, P., Benthin, C., Wagner, M.:

Interactive rendering with coherent ray tracing. In

Computer Graphics Forum 20, 3 (2001), pp. 153–164.

[Zho05a] Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.-Y.:

Pre-computed shadow fields for dynamic scenes. In

SIGGRAPH 2005, pp. 1196-1201.

[Zhu98a] Zhukov, S., Iones, A., Kronin, G.: An ambient

light illumination model. In Rendering Techniques—

Proc. Eurographics Rendering Workshop, Springer-

Wien, 1998, pp. 45-55.

Journal of WSCG 24 ISSN 1213-6972

	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf

