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ABSTRACT  

We present a novel method to accelerate the computation of the visibility function of the lighting equation, in 

dynamic scenes composed of rigid, non-penetrating objects. The main idea of the technique is to pre-compute 

for each object in the scene its associated four-dimensional field that describes the visibility in each direction for 

all positional samples on a sphere around the object, we call this a displacement field. We are able to speed up 

the calculation of algorithms that trace visibility rays to near real time frame rates. The storage requirements of 

the technique, amounts from one byte to one bit per ray direction making it particularly attractive to scenes with 

multiple instances of the same object, as the same cached data can be reused, regardless of the geometric 

transformation applied to each instance. We suggest an acceleration technique and identify the sampling method 

that gives the best results based on experimentation.  
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1. INTRODUCTION  
Ray based solutions to the rendering problem have 

been popular for over two decades now. An 

enormous amount of work has been done by 

researchers in order to accelerate the tracing of rays, 

especially through the use of spatial acceleration 

structures. However, such methods typically have a 

non-constant cost for ray-intersections. We propose 

an acceleration method for speeding up the visibility 

term of ray casting and apply the method to the 

approximation of the secondary diffuse illumination, 

namely the ambient occlusion.  

Ambient occlusion is defined as the attenuation of 

ambient light due to the occlusion of nearby 

geometry. It is a technique that approximates the 

effect of indirect global illumination and does not yet 

try to simulate the interplay of incident and reflected 

light. In Ambient occlusion the indirect component 

can be computed as: 

( ) ( ) ( )⋅∫f f f f f
o o oΩ

1
A x,n  =   V x,ω ω n dω  

π
  

where  ( )f
o

V x,ω  is an empirical function that maps 

distance from surface point x to the closest surface 

along direction 
f

o
ω  to visibility values between 0 (no 

visibility) and 1.  

 

Figure 1: A hemisphere of rays emanating from 

the bounding sphere towards the object is 

precomputed for a large number of sample 

points on the sphere.  
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By tracing rays outward from a given surface point x 

over the hemisphere around the normal n
f

, ambient 

occlusion measures the amount that a point is 

obscured from light. This average occlusion factor is 

used to simulate soft-shadowing.  

The method proposed in this paper uses a 

discretization approach. It accelerates the ray-object 

intersection test and in turn the computations of the 

visibility function of the lighting equation, by 

separating the task in two subtasks. First, at pre-

processing time, we construct the displacement maps 

(Figure 1). These store the intersection distances of a 

hemisphere of rays originating from sample points on 

the bounding sphere of an object and directed 

towards the model itself. We construct one map for 

each sample point (Algorithm 1). Then, at run time, 

when a ray from the environment towards an object 

intersects its bounding sphere, we perform a simple 

ray-sphere intersection test and recover from the pre-

computed maps the rest of the distance of the 

incoming ray at the given angle.  

The advantage of our method is that the bulk of the 

computation is moved to a pre-processing stage. The 

results are stored in compact grayscale textures (one 

byte per ray direction), providing for each object a 

constant size of additional information independent 

of the complexity of the original model. Then the 

real time algorithm performs a simple intersection 

test and a constant-time map lookup as in Algorithm 

2.  

We show that, in applications such as ambient 

occlusion, maps that use 1-byte of storage per ray 

give almost the same result as maps that use 4-bytes 

of storage space. If the model changes level of detail 

the same maps can still be used. In addition, the 

displacement maps contain information that is 

transformation invariant. As such, no additional 

information has to be computed when the rigid object 

moves in the environment. For dynamic scenes with 

rigidly moving objects, displacement fields 

accelerate the computation of the approximation of 

the indirect lighting term of the rendering equation to 

real-time frame rates as well as the computation of 

collision detection algorithms and ray casting.  

In Section 2 we give an overview of the previous 

work, followed by a description of our method in 

greater detail in Section 3. In Section 4 we discuss 

our results in one application area, that of computing 

secondary diffuse illumination (termed ambient 

occlusion).  

2. PREVIOUS WORK  
We distinguish the previous work in three different 

areas: ray tracing acceleration algorithms, ambient 

occlusion computation, and various field 

computations around an object for accelerating 

different types of algorithms.  

Ray Tracing Algorithms  
Traditionally ray-scene intersection is accelerated 

through the use of hierarchical data structures. 

Bounding Volume Hierarchies [Gol87a] [Rub80a] 

[Cla76a], Voxel Grids [Sny87a] [Fuj86a], 

Hierarchical Grids [Kli97a] [Caz95a] [Jev89a], 

Octrees [Gla84a], Binary Space Partitioning Trees 

[Sun92a], kd-Trees [Hav02a] [Nay93a] [Mac90a] 

[Arv88b] [Jan86a] are just a few.  

Recently, a new set of algorithms have been 

developed for interactive ray tracing and ray tracing 

of dynamic scenes. The work of Wald et al. 

demonstrates real time ray tracing for small scenes 

using in-expensive off-the-shelf PCs with SIMD 

floating point extensions [Wal01a] [Wal01b] and for 

larger scenes on shared memory multiprocessor 

machines by Parker et al. [Par98a] and on PCs using 

 

generate bounding sphere sample points  

generate samples of hemisphere of rays  

for all bounding sphere sample points (u, v) do  

align hemisphere of rays to normal at (u, v)  

for all rays (φ, θ) do  

if ray intersects the object then  

normalize the distance (divide by 2 * R)  

record distance in displacement map  

else  

record distance in displacement map as 2 * R 

end  

end  
 

Algorithm 1: Pseudo code of basic algorithm for 

displacement fields computation at preprocessing 

time.  

 

generate hemisphere of ray samples  

for each occlusion receiver object do  

for all points x on the occlusion receiver surface 

do  

for all emanating rays do  

if ray intersects bound sphere of occluder obj. 

discretize intersection point (u, v)   

discretize ray (φ, θ)  
access distance in displacement map  

end  

use distance for occlusion approximation  

end  

compute occlusion at x  

end  

end  
 

Algorithm 2: Pseudo code of basic algorithm for 

ambient occlusion rendering using displacement 

fields during real time processing.  
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a cluster architecture by Wald et al. [Wal01b] 

[Wal01a]. The main issue of these algorithms that 

accelerate spatially coherent rays, is that their 

speedup on secondary ray intersection tests is 

limited.  

Ambient Occlusion  
Ambient occlusion was first introduced by Zhukov 

and Iones et al. [Ion03a] [Zhu98a]. Their algorithm, 

depending on the size of the scene, could run in real 

time producing adequate results. For offline 

rendering, ambient occlusion is usually pre-

computed at each vertex of the model, and stored 

either as vertex information or into a texture. For 

real-time rendering, recent work by Kontkanen et al. 

[Kon05a] suggests storing ambient occlusion as a 

field around moving objects, and projecting it onto 

the scene as the object moves. The interactions of 

multiple dynamically moving rigid objects can be 

combined in real-time. Zhou et al. [Zho05a] 

approximate the ambient occlusion by computing a 

field around an object that describes the shadowing 

effects of the model at points around it. The field is 

represented by Haar Wavelets or Spherical 

Harmonics making it more accurate than the method 

of Kontkanen et al. but also more expensive to 

calculate. Finally Malmer et al. [Mal05a] surround 

the object with a regular 3D grid, pre-computing 

ambient occlusion at the center of each grid cell with 

high memory costs for moderately complex scenes.  

Field Computations around an Object  
The work of Avneesh Sud et al. [Sud06b] [Sud04a] 

for computing the discretized 3D Euclidian distance 

to the surface of a primitive is used for speeding up 

interactive collision and distance queries types of 

algorithms. In our method, for the selected points 

around the object, we don’t just compute the closest 

distance but rather the distance in a hemisphere of 

directions towards the object. In the work of Huang 

et al. [Hua06a] in a pre-computation stage the object 

is separated into convex segments each one 

surrounded by an oriented bounding box. The OBB 

is split into cells, each one recording a reference to 

the primitive that is intersected by a ray through this 

cell (traversal field). The multiple OBBs are needed 

in order to allow inter-reflections. Due to the fact that 

the number of OBBs and their corresponding 

traversal fields depends on the complexity of the 

original model, memory consumption may rise 

significantly.  

3. DISPLACEMENT FIELDS  
In this section we describe the general idea of 

displacement fields, while in section 4 we show their 

application for ambient occlusion.  

Our method bears some similarity to the 

parameterization of Huang et al. [Hua06a] where 

each ray was described as a vector of the parametric 

incident location (u, v) on the bounding volume and 

its corresponding incoming direction (θ, φ). 

However, we introduce our novel displacement field 

encoding pre-computation where using a similar 

parameterization, we store the distance from the 

entry point on the bounding volume to the surface of 

the object. We further discuss the sampling 

techniques used and the storage requirements of our 

method along with the compression scheme.  

Displacement Field Computation  
The main idea of encoding displacement fields into 

maps is as follows (Algorithm 1). Consider a rigid 

object possibly moving through a scene. At a pre-

processing step, from a discreet set of sample points 

on the bounding sphere, described as spherical 

coordinates (u, v), a hemisphere of rays is cast 

around the inward normal direction (Figure 1). For 

each ray (u, v, θ, φ), the closest distance between the 

  

  

  

Figure 2: 512x512 displacement maps of a model 

of a cow and a cube with a hole in it. (top row) 

Using uniform Sampling of rays, (middle row) 

Rejection Sampling, (bottom row) Concentric 

Map Sampling. Different (θ, φ) to (s, t) 

mappings, produce different displacement maps.  
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bounding volume and the model surface is found and 

recorded as a compact integer value after being 

normalized by twice the sphere radius. Thus, for each 

sample point (u, v) a displacement grayscale map is 

obtained (Figure 2) that represents the distance 

traveled along the ray in the direction (θ, φ) before 

hitting the model surface. We define the 

displacement field of the object to be the collection 

of all displacement maps generated from all sample 

points on the bounding sphere of the object.  

Displacement Field Indexing  
During the real time part of the execution (Algorithm 

2) an incident ray to the object, intersects its 

bounding sphere and the distance between the ray 

origin and the intersection point is recorded. The 

intersection point q is transformed into the object 

coordinate system: 1 ,−′ = ⋅  q M q where M is the 

transformation matrix with respect to the reference 

frame of the ray. Depending on the sampling on the 

surface of the sphere (see Section 3.3), the inverse 

function is applied to ′ q in order to get the closest 

corresponding point (u, v) on the sphere for which 

we have a displacement map and therefore the index 

of the corresponding displacement map. Next we 

need to find the corresponding (θ, φ) of the incident 

ray. Depending on the ray sampling method (see 

section 3.4), the appropriate inverse function is 

applied to the ray, thus recovering the (θ, φ) values 

of the ray. We can now index into the displacement 

field for the given ray (u, v, θ, φ) and extract the 

distance information which is then added to the 

intersection distance above and this is our 

approximated distance value of the ray origin from 

the object’s surface.  

Selecting Samples around the Object  
We need to sample entry points on the surface of the 

bounding volume of the object from where the rays 

originate in order to generate the displacement maps. 

The method selected must also have a quick inverse 

function that can convert an intersection point into 

the nearest sample. In addition it should distribute the 

samples over the bounding volume as evenly as 

possible. 

A fairly straightforward choice are the spherical 

coordinates which have a fairly easy to compute 

inverse function. However, the samples in this 

method are concentrated more towards the poles of 

the sphere.  

A common bounding shape that is used to sample the 

contained geometry is a axis-aligned bounding box 

(AABB). During the real-time simulation we would 

perform fast ray-box intersections. Special care 

though is needed as the AABBs are not 

transformation invariant and their oriented bounding 

boxes (OBB) counterparts require more operations. 

As most sampling methods deal with sampling over a 

sphere, if the same methods were used to sample 

over a cube there would be a high concentration of 

samples near the vertices of the cube.  

We opted for Slater’s [Sla02a] method, which 

generates uniformly distributed points on a 

hemisphere using the triangle subdivision method. 

The same can be used to cover the full sphere as 

well. At the same time he suggests a constant time 

inverse function so, when an environment ray 

intersects the bounding sphere of the object, we can 

immediately associate this intersection point with one 

of the pre-generated displacement maps, in order to 

retrieve the angle and distance information.  

Sampling a Hemisphere of Directions  
There are several methods that deal with the uniform 

sampling of rays distributed over a hemisphere. The 

method selected must be able to uniquely discretize 

its samples so that they can be stored in the 

displacement maps. In addition there must exist an 

inverse function that converts the displacement map 

entries back into sample space.  

One method is to use spherical coordinates where a 

direction in the hemisphere is given by two angles 

(φ, θ). But as can be seen in Figure 3a the rays 

generated are concentrated towards the cap of the 

 

Figure 3: Sampling a hemisphere of rays. (a) Polar Mapping of rays, (b) Rejection Sampling, (c) 

Concentric Map Sampling. 

Journal of WSCG 20 ISSN 1213-6972



hemisphere producing a good cosine term (close to 

1.0) but they are not equally spaced.  

In the rejection sampling method (Figure 3b) 

uniformly distributed points are selected inside a unit 

disk by selecting points inside the [-1, 1]2 square and 

rejecting the points that fall outside the unit disk. 

Using Malley’s method [Mal88a] the samples are 

projected on the disk up to the hemisphere above it, 

producing a cosine distribution of rays. Using this 

method, about 21.5% of the samples are rejected and 

so the corresponding space in the displacement map 

remains unused.  

Shirley et al. [Shi97a] suggest a concentric map 

(Figure 3c) sampling method that maps samples in 

the square [-1, 1]2 to the unit disk {(x, y) | x2 + y2 ≤ 

1} by mapping concentric squares to concentric 

circles. The map preserves fractional area, it is bi-

continuous and has low distortion. Combined with 

Malley’s method where samples on the unit 

hemisphere have density proportional to the cosine 

term, it provides the best solution.  

4. IMPLEMENTATION & RESULTS  
We have implemented the displacement fields 

algorithm on an Intel Pentium 4 desktop PC running 

at 3.4 GHz with 1GB RAM and an nVIDIA Quadro 

FX 5500 graphics board, with 1GB Video RAM 

(mach. type 1) and an Intel dual Xeon running at 3.0 

GHz with 4 GB RAM and the same graphics board 

(mach. type 2).  

The implementation does not utilize the GPU for the 

indexing calculations. The method is a generic ray 

casting implementation, used in this case for ambient 

occlusion and as such can not be compared with 

other specialized GPU implementations.  

Storage and Error Considerations  
A 256x256 map stores the distance to the object for 

65536 ray directions emanating from one sample. If 

that map was to store the values as floats it would 

require 262144 bytes of storage space while storing 

them as unsigned chars it would require 65536 bytes. 

In addition, if lossless compression is used (e.g. run 

length encoding) then on average less storage would 

be required. In application areas where integral 

calculations are performed over the samples or 

accuracy is not imperative, lossy compression could 

be used to further reduce the storage requirements. 

Given that it is essential to keep the storage 

requirements to a minimum we opted to use unsigned 

chars for storage as it was found in ambient 

occlusion approximations that there was little to no 

gain in visual quality from using floats as can be seen 

in Figure 4. If higher accuracy is desired one can 

consider storing more bytes per sample.  

Results using the 8-bit maps 
In our examples we used a large number of cast rays 

per vertex (256) and achieved interactive results that 

would otherwise be impossible (Figure 8). The 

complexity of the displacement field method is O 

(Nr) where Nr is the number of rays.  

We have run several experiments in order to evaluate 

Figure 4: (left) 4 bytes per ray for storage, 

(right) 1 byte per ray for storage. There are no 

obvious visible differences, when the 

displacement fields are used for ambient 

occlusion.  

Reference image using Ray Casting 

and 256 rays  

Using 1122 displacement maps 

(positional samples) of size 64 x 64 

and Uniform sampling of 256 rays  

Using 1090 displacement maps of size 

64 x 64 and Concentric map sampling 

of 256 rays  

   

Figure 5: The image differences between the Reference image and the displacement map methods, 

show that using Concentric map sampling produces much better quality results as compared to 

Uniform sampling. Image differences are exaggerated by a factor of 5.  
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the method and establish which of the sampling 

method is the preferred.  

As we can see in Figure 5 choosing a concentric map 

sampling distribution for the rays produces much 

better results than the uniform sampling of rays. As 

such, we opted to use this method in producing the 

rest of the results.  

In Figure 6 we see images of the ambient occlusion 

solution produced using 4 different resolutions for 

the concentric map sampling for the ray directions 

and 3 resolutions for the positional samples on the 

bounding sphere around the object. Here, as 

expected, we see that cost of computing the 

displacement field is a function of the sampling 

resolutions while the cost of using it for ambient 

occlusion is almost independent of the object 

complexity. By looking at the root mean square (rms) 

error, we observe that it drops quickly as we increase 

the positional samples. In addition, we observe that 

as we increase the directional samples, the error does 

not decrease significantly. So a good compromise 

between memory use and accuracy would be to use 

the 4226 / 32x32 maps.  

In Figure 8, we see the method applied to different 

types of models. We observe that the cost of using 

the displacement maps increases very little as we go 

to higher complexity models. The only exception is 

the multiple model case, where we have inter-object 

interactions. The bunny is a caster, the corner is a 

receiver and the other two objects are both casters 

and receivers. So the results are justified by the 

increase of rays cast by about 30 times. 

Further Memory Optimization  
When objects are further away from the viewer, the 

approximate ambient occlusion calculated 

previously, can be further optimized in terms of 

texture space required. Instead of storing into the 

map the distance between the bounding sphere and 

the object, we can store only the visibility of the 

 Displacement field directional samples 

  32 x 32 64 x 64 128 x 128 256 x 256 

2
9
0
 

 3.96 / 0.09462 / 2.8207 14.60 / 0.09584 / 2.4118 54.42 / 0.09809 / 2.3153 213.75 / 0.10159 / 2.2914 

1
0
9
0

 

 14.06 / 0.09870 / 1.0653 51.23 / 0.10219 / 1.0318 193.25 / 0.10785 / 1.0294 772 / 0.11516 / 1.02871 

4
2
2

6
 

D
is

p
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t 
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n
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p
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s 

 54.79 / 0.10826 / 0.6772 204.27 / 0.11118 / 0.6315 925.05 / 0.11504 / 0.6209 3039.72 / 0.12190 / 0.6185

Figure 6: Cumulative table using 256 sample rays from each vertex of the tessellated corner (3x33x33) 

with a concentric map sampling distribution. The numbers under the images correspond to the pre-

processing time, the run-time ambient occlusion computation in seconds (using mach. type 2) and the 

rms error compared to the Reference image of Figure 5.  
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geometry in the given ray direction. This is a binary 

value, thus the method saves about 87.5% in texture 

space. The distance used in this case is the average 

distance of the sample points towards the object in 

the direction of the normal at the given sample point. 

In Figure 7 we can see the comparable results.  

5. CONCLUSIONS - FUTURE WORK  
We have presented the displacement fields, a novel 

discretization of the visibility around an object. We 

have shown how it can be used for an interactive 

ambient occlusion approximation computation. It 

especially favors large model data sets, where we 

maintain a constant computation time, independent 

of the model complexity as shown in Figure 8. Our 

method is robust, has a relatively small memory 

footprint against comparable existing methods and 

the time required to generate the displacement maps 

depends only on the complexity of the occluder 

geometry. Furthermore, our algorithm can be applied 

to ray tracing calculations where exact ray hits are 

not critical, for example for secondary ray 

intersection tests, such as soft shadow rays.  

The number and resolution of the displacement maps 

used in the displacement field can be adjusted 

depending on the required accuracy and available 

memory.  

In addition we could try to use a smaller number of 

displacement maps around the sphere; just enough to 

cover the surface of the sphere with little map 

overlap. We would in effect be creating an 

environment map. But then, our approximation 

would suffer as the angle of approximation increases, 

especially if our objects’ geometry possessed many 

folds and creases that would provide dramatic self-

occlusion variations from different angles.  

For future work, for objects that leave too much void 

space in their bounding sphere, a hierarchical scheme 

could be used such as a sphere tree [Bra02a]. This 

would result in tighter sphere placement and denser 

partial displacement maps at the expense of texture 

storage.  

Furthermore, it is possible to map the displacement 

field indexing procedure to a shader program and 

stack the displacement maps into one 3D texture. 

Then the distance determination can be executed in 

the GPU with the added advantage of a trilinear 

interpolation of the distance for an arbitrary ray from 

 Lemon Tree  Bunny  Igea  Multiple Objects  

Model 

 

Triangles  26,300 39,000 67,200 142,300 

Rays cast 836,352 836,352 836,352 26,444,800 

Ray casting 

time 
196.20 s 331.10 s 616.35 s 4,286.8 s 

Pre-processing 

(4226 / 32x32) 
99.54 s 54.79 s 243.76 s 334.6 s 

AO calculation 0.240 s 0.228 s 0.204 s 4.692 s 

Figure 8: The displacement field algorithm applied to several different types of models and their 

respective timings (using mach. type 1). In the above images we used 256 sample rays with a concentric 

map sampling distribution. The ambient occlusion computation is done using the 4226 / 32x32 maps.  

 

Figure 7: Using the 1 bit per direction 

optimization method with 4226 occlusion maps 

(positional samples) of size 64x64 and 

Concentric map sampling of 256 rays we get 

results which are comparable with the 

corresponding image from Figure 6 but slightly 

brighter (giving an rms error of 4.4030).  
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distances measured at the discrete sample points 

(third 3D texture coordinate) and discrete directions 

(s, t plane texels).  
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