
MPIglut: Powerwall Programming Made Easier

Orion Sky Lawlor∗ Matthew Page† Jon Genetti‡

Department of Computer Science, University of Alaska Fairbanks

ABSTRACT

A powerwall is an array of separate screens that work

together to provide a single unified display. Powerwalls

are often driven by a small cluster, which requires paral-

lel software to organize and synchronize the distributed

rendering process. This paper describes MPIglut, our

powerwall-friendly implementation of the popular se-

quential GLUT OpenGL 3D programming interface.

MPIglut internally communicates using MPI to pro-

vide a single coherent display even across a distributed-

memory parallel machine. Uniquely, MPIglut is source-

code compatible with ordinary sequential GLUT code

while providing high performance.

Keywords: Powerwall, large display, GLUT, MPI,

OpenGL, API override.

1 INTRODUCTION

After decades of predictions, parallelism is finally arriv-

ing in mainstream computing. From instruction-level

parallelism in CPUs, to pixel-level parallelism in GPUs,

to today’s multiple CPU/multiple GPU machines (for

example, via multicore and SLI), parallelism at all lev-

els is ubiquitous today.

However, despite its increasing importance, writing

code for parallel machines is still difficult [Sut05]. One

approach we have pursued recently [Law06] that pre-

serves the millions of man-years invested in sequential

software is to build “parallelizing libraries,” reusable

pieces of parallel code that enable existing sequential

programs to operate correctly in parallel. Parallelizing

libraries cleanly encapsulate much of the complexity

of parallelization, leaving all application-domain com-

plexity to the existing sequential program.

In this paper we describe our open-source paralleliz-

ing graphics library called MPIglut. MPIglut is de-

signed to support the many existing sequential OpenGL

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG 2008, ISBN 1213-6964
WSCG’2008, F29, 2008

Plzen, Czech Republic.
Copyright UNION Agency – Science Press

∗e-mail:olawlor@acm.org
†e-mail:ftmap2@uaf.edu
‡e-mail:genetti@cs.uaf.edu

Same program in parallel on a powerwall with MPIglut.

Sequential OpenGL/GLUT program running on a laptop.

Figure 1: MPIglut allows sequential OpenGL GLUT

applications to run efficiently in parallel on powerwall-

style tiled display clusters with distributed memory.

3D graphics applications that use the GLUT user inter-

face. As shown in Figure 1, MPIglut allows these ap-

plications to operate correctly on a distributed-memory

parallel cluster via a simple recompile. Our current

primary use for MPIglut is for display walls, or pow-

erwalls1 [Woo94] [Sch00], where a single application

drives a tiled array of physical display devices (such as

monitors or projectors) as a large virtual display sur-

face.

1 PowerWall (note capitalization) is a trademark of Fakespace Systems.

Journal of WSCG 137 ISSN 1213-6972

1.1 Prior Work

Many libraries already exist for adapting applications to

a tiled parallel display—see Staadt et al’s 2003 survey

[Sta03]. Table 1 summarizes some of this prior work

by the parallelism used in the geometry-generating ap-

plication and the geometry-rendering display.

Molnar et al [Mol94] provided a popular three-level

taxonomy of approaches to parallel rendering: sort-

first (send data before rasterization), sort-middle (send

data during rasterization), and sort-last (send data af-

ter rasterization). Because rasterization is not the only

noteworthy event in graphics programming, we find a

slightly more fine-grained taxonomy useful:

1. send-event: The user interacts with the program via

window system events. MPIglut and VR Juggler

broadcast these events across the network, and are

hence send-event systems. One advantage of this is

events are normally far smaller than any other stage

in the system.

2. send-database: The program responds to those win-

dow system events by traversing its scene database.

Several parallel scene graph libraries, described be-

low, are able to respond to changing viewpoints by

sending the appropriate parts of the scene database

across the network to their new displays.

3. send-geometry: The program generates renderable

geometry for the scene by making calls to the graph-

ics interface library. Chromium captures OpenGL

calls at this level with its own libGL; DMX captures

the GLX protocol stream generated by the stock X

OpenGL library. The captured geometry is then po-

tentially sent across the network to a different GPU

for rendering, such as via Chromium tilesort. This

is Molnar’s “sort-first” level.

4. send-groups: During rasterization setup, many ren-

derers decompose primitives into groups of pixels

such as scanlines. This “Scan Line Interleave” ap-

proach was used with multiple 3dfx graphics cards,

and is Molnar’s “sort-middle” level.

5. send-pixels: After rasterization, rendered pixels must

be delivered to the appropriate display and possi-

bly composited together. The common approach

is to divide the display surface into tiles and (pos-

sibly dynamically) assign a renderer to each tile.

ATI’s CrossFire, and IBM’s scalable graphics en-

gine [Pra05] network-attached-framebuffer work at

this level to composite rendered pixels. Chromium’s

readback component also provides support for this,

Molnar’s “sort-last” compositing.

The Chromium [Hum02] system, formerly WireGL

[Hum00], captures all OpenGL rendering calls sent

to its special OpenGL library. The captured OpenGL

calls can then be sent across the network to other pro-

cessors for rendering in a flexible way, so Chromium

can either distribute the calls coming from a single se-

quential application, or route the calls from pieces of

a parallel application to the appropriate parallel or se-

rial display. Because it uses binary call interception,

Chromium is compatible with most OpenGL binaries.

But because Chromium must intercept and forward all

OpenGL calls, it cannot help but heavily intrude upon

the rendering process. This makes the library difficult

to extend to follow the evolving OpenGL standard, and

also has performance implications. Finally, Chromium

does not provide much assistance with application-level

parallelization, although it does come with a GLUT-like

library called CRUT, and provides unrendered geome-

try and rendered pixel communication.

Distributed Multihead X (DMX) [Mar] is an X Win-

dow System server that splits up incoming graphical

user interface requests and forwards them to a list of

“backend” X servers. DMX is often used on power-

walls to allow ordinary unmodified sequential X appli-

cations to run on the parallel tiled display. DMX also

includes GLX Proxy, an implementation of X’s native

OpenGL network transmission protocol (GLX) which

broadcasts each GLX request to all machines for ren-

dering. Exactly like Chromium, GLX Proxy thus in-

trudes on every rendering operation, which can be slow

and makes it difficult to keep up to date as OpenGL

changes. DMX’s GLX Proxy is purely broadcast-based,

and does not do any of the intelligent geometry routing

performed by Chromium’s tilesort.

Like MPIglut, VR Juggler [Bie01] only handles event

reception and OpenGL setup, leaving OpenGL render-

ing largely to the user. VR Juggler works in CAVE sys-

tems, supporting 3D head trackers and displays at arbi-

trary 3D orientations. A similar library specifically for

SGI Performer hardware was pfCAVE [Pap97].

A number of libraries exist which provide a paral-

lel scene graph interface. OpenSG [Rei02] (which is

not related to OpenSceneGraph) provides a replicated

scene graph that can be modified and rendered by mul-

tiple threads or the distributed machines of a cluster. To

cite a few, Syzygy [Sch03], Aura [vdS02], OpenRM

Scene Graph [Bet03], and Coin3D [Sys] are among

the many feature-rich parallel scene graph libraries,

which often target tiled displays. But the main barrier

to adoption of all these libraries is that they are not,

and cannot be, anything like classical immediate-mode

OpenGL. This means existing 3D programs must be

almost totally rewritten to take advantage of their fea-

tures. MPIglut by contrast aims for source code com-

patibility. In the scene graphs’ defense, MPIglut im-

plicitly assumes the original program is capable of ren-

dering any portion of the scene at any time, so even un-

der MPIglut a parallel view-culling scene graph is still

quite useful for large models.

Journal of WSCG 138 ISSN 1213-6972

Single Display Multiple Displays

Serial Application Serial toolkits like Windows, X, GLUT, etc DMX [Mar]

Parallel Application ParaView, Tachyon MPI Raytracer [Sto98], etc MPIglut, VR Juggler [Bie01], Aura [vdS02]

Table 1: Classification of prior work by primary use. Chromium [Hum02] can be used for all four cases.

2 IMPLEMENTATION OF MPIGLUT

MPIglut implements a parallel version of the OpenGL

Utilities Toolkit (GLUT) standard [Kil96]. GLUT is

normally a sequential windowing and GUI event han-

dling interface called by sequential programs. MPIglut

parallelizes GLUT programs by running a separate copy

of the user’s sequential code on each of a set of MPIglut

rendering processes called “backends”. Each backend

is responsible for rendering a small part of the overall

display, although MPIglut provides the user’s sequen-

tial code the appearance that it is rendering to the entire

display.

MPIglut is built on top of a sequential GLUT im-

plementation, which handles user input at the front

end and the render system interfacing at the back end.

We currently use a patched version of freeglut[Ols07]

2.4.0, since MPIglut requires one small modification

to the underlying GLUT in order to work well with

DMX (MPIglut forces its backend windows to be X

children of the DMX backend window, which prevents

window-stacking order and event routing problems).

Also, MPIglut intercepts a few GLUT and OpenGL

calls for special handling:

• MPIglut’s glutInit on a backend calls MPI_Init, sets

up MPIglut’s internal state, and calls the underly-

ing glutInit. On the frontend, glutInit spawns the

appropriate number of backends (using mpirun) and

forwards user events to those backends.

• MPIglut’s glutCreateWindow (and other window ma-

nipulation calls, such as glutReshapeWindow) for-

wards the request to the frontend, which adjusts its

window and correspondingly reorganizes the back-

ends.

• MPIglut’s glutMouseFunc (and all other user event

handling functions) calls the user’s callbacks based

only on events broadcast from the frontend.

• MPIglut’s glutGetModifiers returns the frontend’s

keyboard state as of the last event broadcast.

• MPIglut’s glViewport command internally asks for

an OpenGL viewport covering only our backend’s

screen region. This avoids the OpenGL implementa-

tion’s GL_MAX_VIEWPORT_DIMS limit, which

is often as low as 4096 pixels—less than half the

display width of our 8400x4200 pixel powerwall!

• MPIglut’s glLoadIdentity (and the other matrix load

functions) pre-loads this backend’s subwindow ma-

trix, as described in Section 2.3.

• MPIglut’s glutSwapBuffers synchronizes all displays

(using a glFinish and MPI_Barrier). This avoids

tearing and lag effects as slower or more heavily-

loaded backends fall behind faster ones.

MPIglut’s call interception scheme currently uses the

preprocessor. For example, inside our MPIglut public

header file, we intercept glLoadIdentity calls with the

simple C/C++ preprocessor macro “#define glLoadI-

dentity mpiglLoadIdentity”. For full binary compatibil-

ity, it would be straightforward to implement a shared-

library technique such as LD_PRELOAD or even con-

struct an entirely new replacement library, similar to

Chromium [Hum02]. But for mere source-code com-

patibility the preprocessor is very small and simple.

2.1 Parallel Programming with MPI

Underneath, MPIglut uses the parallel Message Pass-

ing Interface (MPI) standard [MPI94] to synchronize

and communicate GUI events between the backend pro-

cesses. We currently use MPICH 1.2.7 [Gro96] as our

MPI implementation, although any implementation of

MPI should work. MPIglut programs are not required

to make any MPI calls themselves, but are free to call

MPI functions if needed, for example to accomplish

some application-specific communication not provided

by MPIglut.

Several of the best aspects of MPIglut are taken di-

rectly from MPI. Unlike with threaded multiprogram-

ming, MPI and MPIglut run a completely separate copy

of the main() program in each of the parallel back-

end processes. This avoids many of the race con-

ditions common with threaded parallel programming,

avoids slow and error-prone locking, and allows the en-

tirely safe use of global or static variables by MPI and

MPIglut programs.

One obvious major drawback of non-shared memory

parallel programming is the potential for duplication

of large shared data structures. However, if the larger

shared structures are memory-mapped in from files, the

OS kernel will safely point all local processes’ pageta-

bles at one copy of this common data, and so multiple

processes can be made memory-use-competitive with

multithreaded programming even on shared-memory

hardware.

Journal of WSCG 139 ISSN 1213-6972

Mouse

MPIglut Frontend

MPIglut0 MPIglut1 ...

...App1App0

DMX Server

(MPIglut)

Mouse

X Server

Application

GLUT

(GLUT)

Figure 2: Sequential GLUT normally receives events

from the X server and forwards them to the applica-

tion’s event handler callbacks. MPIglut receives events

at the frontend and broadcasts them out to all the back-

ends. Broadcast events are then delivered to the appli-

cation’s event handler callbacks collectively.

2.2 Event Delivery

As shown in Figure 2, MPIglut receives user input

events such as keystrokes and mouse motion using a

single placeholder “frontend” process. This frontend

process then sends the incoming events over a TCP

socket to one backend process, where the events are

broadcast via MPI to all the backends.

The semantics of some calls in MPI and MPIglut

are “collective”, meaning they must always happen in

the same order on every backend process. In MPIglut,

event reception and delivery is collective, so every back-

end is guaranteed to receive the same user input events

in the exact same order. Collective calls usually al-

low the programmer of an MPIglut (or MPI) process

to safely ignore the confusing unsynchronized execu-

tion common to parallel programming, and think of the

processes as executing together in lock-step.

Applications must ensure they retain this collective

property when they make GLUT windowing and over-

all rendering control calls such as glutSwapBuffers.

Deterministic applications automatically remain collec-

tive. Applications that determine window state based

on a nondeterministic function of their (identical) input

data, (identical) command-line arguments, and (identi-

cal) user events would require additional synchroniza-

tion to work properly under MPIglut. For example, ad-

ditional code would be needed to synchronize applica-

tions based on a non-shared clock, or that already ren-

der data from the network. However, no OpenGL ren-

dering commands (such as glDrawLists) are collective

or intercepted by MPIglut, so all are safe to call in any

order and all run at full speed.

2.3 MPIglut Coordinate Systems

MPIglut currently fetches both input events and screen

geometry from the frontend’s DMX window, although

it would be trivial to have MPIglut fetch this informa-

tion from some other program or a configuration file.

Most events in MPIglut are delivered collectively to

the user code in global coordinates, the coordinates

of the DMX display running across the collective vir-

tual display screen. Because global coordinates are the

same everywhere, user code never needs to translate co-

ordinates due to MPIglut.

Window Coordinates

Global Coordinates

Local

Sublocal Subwindow

Figure 3: Coordinate systems used inside MPIglut.

But as shown in Figure 3, internal to MPIglut there

are no fewer than five separate coordinate systems that

must stay properly interrelated.

• Global coordinates are coordinates on the entire col-

lective virtual screen. Global coordinates (0,0) are

the top-left corner of the whole powerwall. These

coordinates are used by DMX and the user code to

specify window positions.

• Local coordinates are the coordinates of the local

machine’s directly-attached screen. Local coordi-

nates (0,0) are the top-left corner of this MPI pro-

cess’s attached physical display. These are used in-

ternal to MPIglut backends to position windows on

the local screen.

• Sublocal coordinates mark our backend process’s

portion of its own directly-attached screen. Sublocal

coordinates (0,0) are the start of the portion of screen

space this process is responsible for drawing. They

are different from local coordinates because we may

wish to have more processes than screens, for exam-

ple on a multi-core machine.

• (Global) Window coordinates are measured on the

frontend’s virtual window. Window coordinates (0,0)

are the top-left corner of the collective frontend win-

dow. All mouse events are reported by DMX and to

the user code in these global window coordinates.

OpenGL viewports are requested by the user code

in window coordinates.

• Subwindow coordinates are the part of the window

our local backend is responsible for drawing. Sub-

window coordinates (0,0) are the topleft corner of

where we actually must draw. OpenGL rendering

actually happens in subwindow coordinates.

Journal of WSCG 140 ISSN 1213-6972

In the simplest case of one process drawing to a sin-

gle fullscreen window, all five coordinate systems are

identical! In any powerwall, global and local coordi-

nates are different, but local and sublocal coordinates

may still be identical. Sublocal coordinates are also

useful for separating the images being delivered to two

separate displays from a dual-output graphics card with

a single contiguous framebuffer.

During rendering, the main task of MPIglut is sim-

ply to convert the global window coordinates used by

the sequential user code (which knows nothing of the

separate powerwall screens) into subwindow coordi-

nates as used by the local graphics card to drive a

portion of the display. For rendering, this coordinate

shift should happen after the perspective divide, but

before vertex clipping. In OpenGL, we simply need

to fill the GL_PROJECTION matrix with the window-

coordinates-to-subwindow-coordinates matrix—called

the “subwindow matrix”—before any other matrix op-

erations.

Because the MPIglut implementation of glLoadIden-

tity premultiplies the subwindow matrix into the pro-

jection matrix,2 then any code that reads back this ma-

trix (for example, via a glGetFloatv call) will instead

receive the projection-to-subwindow matrix. This is a

feature, not a bug! It means applications that construct

clipping planes from the projection matrix will actually

automatically cull away geometry they are not responsi-

ble for drawing locally. In other words, under MPIglut

often well-written sequential OpenGL programs will

not replicate every drawing call across the entire pow-

erwall, but instead only load and draw the geometry

visible on their own local piece of the overall display.

The soar application we used for benchmarking gener-

ates only the geometry needed on each backend in this

intelligent fashion, and a web search for "glGetFloatv

culling" finds hundreds of similar applications.

3 PERFORMANCE RESULTS

We benchmarked MPIglut’s performance against both

Chromium3 and DMX4 on our 20-screen powerwall,

shown in Figure 4, which consists of ten nodes5 con-

nected with switched gigabit ethernet. The aggregate

resolution of the 5x4 array of 20 screens is 8400x4200

pixels, not counting the 150-pixel gap between screens,

which once accounted for increase the overall display

dimensions to 9000x4650 pixels.

2 The premultiplication of course only happens in GL_PROJECTION

mode.
3 Chromium 1.8, using DMX tilesort client and crserver render SPUs.
4 Xorg DMX 7.1.1 version of DMX, running with glxProxy.
5 Software: 32-bit Linux 2.6.15, nVidia 87.62 drivers, gcc 4.04, and

MPICH 1.2.7. Hardware: dual-core Intel Core2 Duo 6300 CPU, 2GB

RAM, and one nVidia QuadroFX 3450 or 1450 PCI Express graphics

card connected to two 1680x1050 DVI LCD monitors.

Figure 4: The UAF CS Bioinformatics powerwall, run-

ning the soar terrain renderer used for benchmarking.

mandelbasic

tex, tex_obj vtx, vtx_obj

Figure 5: Output of six of our seven benchmark pro-

grams (the bottom row images represent two bench-

marks each). The soar benchmark is shown in Figure 4.

To show different performance aspects, we present

results from seven small GLUT programs as shown in

Figures 4 and 5, and described in detail below. Each

of these programs began as an ordinary serial GLUT

program, but ran without problems in parallel using

MPIglut. Figure 6 and Table 2 show framerates for each

program.

Parallel programmers will notice that powerwall ren-

dering is naturally a "scaled problem"—because we

add screens, CPUs, and GPUs at the same rate, with

zero communication or synchronization cost our fram-

erate would remain constant regardless of the machine’s

Journal of WSCG 141 ISSN 1213-6972

 1

 10

 100

 1000

 1 10

D
e

liv
e

re
d

 P
e

rf
o

rm
a

n
c
e

 (
fp

s
)

Number of Screens and CPUs (MPIglut)

basic
tex_obj
vtx_obj

tex
vtx

soar
mandel

 1

 10

 100

 1000

 1 10

D
e

liv
e

re
d

 P
e

rf
o

rm
a

n
c
e

 (
fp

s
)

Number of Screens and CPUs (Chromium)

basic
tex_obj
vtx_obj

tex
vtx

soar

 1

 10

 100

 1000

 1 10

D
e

liv
e

re
d

 P
e

rf
o

rm
a

n
c
e

 (
fp

s
)

Number of Screens and CPUs (DMX)

basic
tex_obj

tex
vtx

soar

Figure 6: Framerate as a function of machine size for all

our benchmarks, running under MPIglut, Chromium,

and DMX. Machine sizes: 1, 2, 4, 6, 8, 10, 12, 16,

and 20 screens and CPUs. Framerates below 10fps are

unusable (log-log scale).

size (or "scale"). Hence a communication solution that

"scales" will have near-constant framerates as a func-

tion of machine size. Communication costs show up as

a fall-off in framerate as the machine scales up.

• basic draws one fullscreen quad of a fixed color per

frame. This was intended as a baseline to test frame

synchronization cost. Both MPIglut and Chromium

sustain hundreds of frames per second out to the full

20 CPUs, but DMX scales poorly even for this sim-

ple program, ending up just below 40fps.

MPIglut Chromium DMX

basic 282.5 232.6 40.1

tex_obj 279.3 217.9 39.4

vtx_obj 36.1 35.0 fail

tex 80.3 2.6 2.8

vtx 57.5 0.7 0.4

soar 27.1 1.4 1.4

mandel 19.9 fail fail

Table 2: Framerates (frames/second) of our seven

benchmark GLUT programs running under MPIglut,

Chromium, and DMX on 20 screens and CPUs.

• tex_obj draws one fullscreen quad using a 1024x1024

texture loaded from an OpenGL texture object. All

three systems were able to locally cache the texture,

so the performance of this test was similar to the ba-

sic test.

• vtx_obj draws a 2-million triangle mesh from an

OpenGL vertex buffer object (loaded with a us-

age of GL_STATIC_DRAW_ARB). Again, MPIglut

and Chromium were able to locally cache the mesh

object, and hence maintained good performance.

DMX does not support the 2003 ARB_vertex_buffer

_object OpenGL extension, and so could not execute

this program.

• tex draws one fullscreen textured quad exactly like

tex_obj, but reloads the 1024x1024 texture’s data

from the CPU every frame using glTexSubImage2D.

This is intended to mirror a high-definition movie

player using software decoding, or other live exter-

nal data display. MPIglut uses the parallel CPUs

to load all the textures in parallel, and hence scales

perfectly. Chromium and DMX must broadcast the

updated texture over the network every frame, and

scale terribly as expected.

• vtx draws a 320-thousand triangle mesh using an

OpenGL vertex array rendered with glDrawElements.

Unlike vtx_obj, vertex arrays cannot be stored in

the GPU, and must be copied from the CPU every

frame. As with tex, under MPIglut each node uses

its local copy of the data and hence the vertex up-

load scales well, while Chromium and DMX must

send all the vertex data via the network every frame

and hence do not scale.

• soar is Peter Lindstrom et al’s SOAR v1.11 ter-

rain renderer [Lin02] using a flight path through

the 4096x4096 Puget Sound terrain model, which

is read from a .geo file on disk. This renderer is

CPU-intensive and generally geometry-rate limited,

generating and drawing approximately 50,000 poly-

gons per screen per frame. Under MPIglut SOAR

scaled fairly well, running at over 27fps even on the

Journal of WSCG 142 ISSN 1213-6972

entire machine. But because both Chromium and

DMX use a single sequential program to generate all

geometry on node 0, they both quickly became net-

work bound, and gave terrible performance on the

full machine–under 1.5fps!

• mandel interactively renders the famous Mandel-

brot set fractal using an OpenGL GLSL fragment

program, using the recently added hardware pixel

shader loop and branch support. Because rendering

pixels in different regions of the Mandelbrot set re-

quires dramatically differing numbers of iterations,

this program’s parallel speed under MPIglut varies

substantially due to load imbalance between the dif-

ferent backends, but is still acceptable. Chromium

and DMX do not yet support programmable shaders,

and hence neither one could execute this program.

In general we have found that MPIglut scales well for

the applications and machines we have tested, provid-

ing usable framerates even for difficult applications on

the full machine. Similarly, Chromium scales well for

some applications, specifically those where the geome-

try and texture data is either simple or locally cached.

But Chromium and DMX both become network-limited

for other applications, since they must often send geom-

etry and texture data across the network. We observed

Chromium and DMX both saturate gigabit ethernet, of-

ten sending over 100 MB/s of geometry and texture data

over the network from node 0, sometimes even in a ma-

chine configuration with only two nodes!

We measured per-frame network overhead with the

trivial basic benchmark. On 20 screens, MPIglut ran

this program at approximately 300fps (3.28ms/frame),

and each machine sent a few kilobytes of data across

the network per frame (0.79MB/s maximum total net-

work usage). 82% of each frame time was spent waiting

for the GPU to render pixels; 8% (about 300 microsec-

onds per frame) was spent in the MPIglut MPI_Barrier

software framesync; and another 8% in MPIglut’s event

broadcast and delivery. The remaining time, less than

2%, was spent by the CPU actually issuing OpenGL

commands. MPIglut’s total overhead on 20 screens

is thus about half a millisecond per frame, which at a

more reasonable framerate amortizes out to a few per-

cent communication overhead (for example, at 30fps,

MPIglut takes about 1.5% of the runtime). Chromium

had similarly low per-frame overhead, although we oc-

casionally got anomalously high performance in the

>200fps region, which may be caused by dropped frames.

DMX on 20 screens appears to become network latency

limited to 40fps (25ms/frame), despite the low network

data rate (under 250KB/s) and CPU and GPU utiliza-

tion (both under 8% utilized).

We have not evaluated the performance of MPIglut

compared to the many quality parallel scene-graph li-

braries such as VR Juggler [Bie01], though assuming

those libraries also use only a small fraction of their

time communicating then we expect our overall perfor-

mance would be comparable. But the reason we have

not done this comparison is telling–porting a GLUT ap-

plication to a non-GLUT library would mean rewriting

all the event handling and rendering setup code, which

for many real applications is rather painful.

4 CONCLUSIONS & FUTURE WORK

We have presented MPIglut, a minimally invasive li-

brary to help sequential GLUT programs run on par-

allel powerwalls. We have surveyed the architecture

of MPIglut, and compared its performance to similar

existing libraries. The implementation of MPIglut is

small, consisting of one C/C++ header and one two

thousand line C implementation file, small enough to

be statically linked. MPIglut is still being developed,

and we plan to try several promising improvements.

Although currently designed for powerwalls, MPIglut

could be used with a single display to more easily take

advantage of multi-CPU or multi-GPU parallelism. A

single display could be divided into dozens of small

strips or tiles, with each region of the screen rendered

by a separate local MPIglut MPI process.

When developing complicated applications, MPIglut

would be a natural place to add load balancing sup-

port, to ensure that each node shares in both applica-

tion and rendering work. Within each shared-memory

screen, static load balance could easily be improved by

“overdecomposition”: creating many more MPI ranks

than physical CPUs, and allowing the OS to schedule

the tiles as needed. With standard MPI it is difficult to

implement more dynamic forms of load balancing, but

a migratable MPI like AMPI [Hua03] could help.

MPIglut could be extended to perform edge blending

and color balance correction inside glutSwapBuffers at

the end of each frame, which MPIglut already inter-

cepts to provide frame synchronization. One could even

resample the finished framebuffer to compensate for ge-

ometric nonlinearities in the screen, such as a curved

display wall. MPIglut could also be made to work on

entirely non-planar displays such as projector domes,

although this would likely not be compatible with nor-

mal OpenGL projection matrices which assume a flat

2D display.

At the moment, MPIglut does not intercept frame-

buffer readback routines such as glReadPixels or glCopy-

TexSubImage2D, so these currently read back only lo-

cal pixels. For some uses of these functions, such as

rendering small or screen-local environment or reflec-

tion maps, this provides correct answers. But for other

uses of these routines, such as taking screenshots or

picking, this gives an incomplete set of pixels. The best

solution would probably be to provide optional collec-

tive versions of these routines, like mpiglReadPixels.

Journal of WSCG 143 ISSN 1213-6972

This support would enable GPGPU applications to be

used more easily under MPIglut.

Finally, the idea behind MPIglut is by no means lim-

ited to either MPI or GLUT. The source-compatible

divide-up-the-screen parallelizing library approach could

equally easily be applied to arbitrary graphics toolkits

including Microsoft’s DirectX or portable GUI libraries

such as GTK or Qt, as well as arbitrary communication

schemes including threads and bare sockets. We feel

parallelizing libraries offer a simple path towards high

performance with the increasingly prevalent multi-core

and multi-GPU machines.

Readers may download [MPI07] and try MPIglut!

REFERENCES

[Bet03] E. Wes Bethel, Greg Humphreys, Brian Paul, and

J. Dean Brederson. Sort-first, distributed memory

parallel visualization and rendering. In

Proceedings of IEEE Symposium on Parallel and

Large Data Visualization and Graphics, 2003.

[Bie01] Allen Bierbaum, Christopher Just, Patrick

Hartling, K. Meinert, A. Baker, and Carolina

Cruz-Neira. VR Juggler: A virtual platform for

virtual reality application development. In IEEE

Virtual Reality, pages 89–96, 2001.

[Gro96] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.

Mpich: A high-performance, portable

implementation of the mpi message passing

interface standard. Parallel Computing,

22(6):789–828, September 1996.

[Hua03] Chao Huang, Orion Lawlor, and L. V. Kalé.

Adaptive MPI. In Proceedings of the 16th

International Workshop on Languages and

Compilers for Parallel Computing (LCPC 03),

pages 306–322, College Station, Texas, October

2003.

[Hum00] Greg Humphreys, Ian Buck, Matthew Eldridge,

and Pat Hanrahan. Distributed rendering for

scalable displays. In IEEE Supercomputing, pages

60–60, 2000.

[Hum02] G. Humphreys, M. Houston, Y. Ng, R. Frank,

S. Ahern, P. Kirchner, and J. Klosowski.

Chromium: A stream processing framework for

interactive graphics on clusters. In SIGGRAPH

Proceedings, pages 693–702, 2002.

[Kil96] Mark J. Kilgard. The opengl utility toolkit (glut)

programming interface: Api version 3, 1996.

http://www.opengl.org/documentation/specs/glut/.

[Law06] Orion Sky Lawlor, Sayantan Chakravorty, Terry L.

Wilmarth, Nilesh Choudhury, Isaac Dooley,

Gengbin Zheng, and Laxmikant V. Kale. ParFUM:

A parallel framework for unstructured meshes for

scalable dynamic physics applications.

Engineering With Computers, 22(3):215–235,

2006.

[Lin02] Peter Lindstrom and Valerio Pascucci. Terrain

simplification simplified. IEEE Viz. and Graphics,

8(3):239–254, 2002.

[Mar] Kevin E. Martin, David H. Dawes, and Rickard E.

Faith. Distributed Multihead X (DMX).

http://dmx.sourceforge.net/.

[Mol94] Steve Molnar, Michael Cox, David Ellsworth, and

Henry Fuchs. A sorting classification of parallel

rendering. In IEEE Computer Graphics and

Applications, volume 14-4, pages 23–32, July

1994.

[MPI94] Message Passing Interface Forum. MPI: A

Message-Passing Interface Standard, May 1994.

[MPI07] MPIglut authors. MPIglut Project Page, 2007.

http://www.cs.uaf.edu/sw/mpiglut/.

[Ols07] Pawel W. Olszta, Andreas Umbach, and Steve

Baker. freeglut, 2007.

http://freeglut.sourceforge.net/.

[Pap97] Dave Pape. pfCAVE CAVE/Performer Library

(CAVELib 2.6), 1997.

http://www.evl.uic.edu/pape/CAVE/prog/.

[Pra05] Prabhat and Samuel G. Fulcomer. Experiences in

driving a cave with IBM Scalable Graphics

Engine-3 (SGE-3) prototypes. In VRST ’05:

Proceedings of the ACM symposium on Virtual

reality software and technology, pages 231–234,

New York, NY, USA, 2005. ACM Press.

[Rei02] D. Reiners, G. Voss, and J. Behr. OpenSG: Basic

concepts. In First OpenSG Symposium, 2002.

[Sch00] Daniel R. Schikore, Richard A. Fischer, Randall

Frank, Ross Gaunt, John Hobson, and Brad

Whitlock. High-resolution multiprojector display

walls. IEEE Comput. Graph. Appl., 20(4):38–44,

2000.

[Sch03] B. Schaeffer and C. Goudeseune. Syzygy: Native

PC Cluster VR. In IEEE Virtual Reality, 2003.

[Sta03] O. Staadt, J. Walker, C. Nuber, and B. Hamann. A

survey and performance analysis of software

platforms for interactive cluster-based multi-screen

rendering. In Proceedings of the Workshop on

Virtual Environments, 2003.

[Sto98] John Stone. An efficient library for parallel ray

tracing and animation. Master’s thesis, Dept. of

Computer Science, University of Missouri Rolla,

1998. http://jedi.ks.uiuc.edu/˜johns/.

[Sut05] H. Sutter and J. Larus. Software and the

concurrency revolution. ACM Queue, 3(7):54–62,

2005.

[Sys] Systems In Motion. Coin3d library.

http://www.coin3d.org/.

[vdS02] T. van der Schaaf, L. Renambot, D. Germans,

H. Spoelder, and H. Bal. Retained mode parallel

rendering for scalable tiled displays. In Immersive

Projection Technologies Symposium, 2002.

[Woo94] Paul Woodward and U. Minnesota PowerWall

Team. Powerwall, 1994.

http://www.lcse.umn.edu/research/powerwall/.

Journal of WSCG 144 ISSN 1213-6972

	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf

