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Abstract

In this paper a new method is proposed for the direct time integration method for structural dynamics problems.

The proposed method assumes second order variations of the acceleration at each time step. Therefore more terms

in the Taylor series expansion were used compared to other methods. Because of the increase in order of variations

of acceleration, this method has higher accuracy than classical methods. The displacement function is a polynomial

with five constants and they are calculated using: two equations for initial conditions (from the end of previous

time step), two equations for satisfying the equilibrium at both ends of the time step, and one equation for the

weighted residual integration. Proposed method has higher stability and order of accuracy than the other methods.
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1. Introduction

There are two main methods for the analysis of structural dynamics problem; modal superpo-

sition and direct time integration. While for the analysis of linear structures both methods are

applicable, for nonlinear analysis, the latter method is the only option.

In the structural dynamics problems, governing equation is a second order differential equa-

tion [4, 12]. For solving differential equations of nonlinear systems, the numerical procedure

can be used in the incremental step [4]. Among different methods, those related to Newmark’s

method are the most common methods in structural dynamics. The direct time integration of

the equations provides the response of the system as discrete intervals of time which are usu-

ally equally spaced. Determination of the response involves the computation of three structural

responses; displacement, velocity, and acceleration at each time step.

In nonlinear analysis, stiffness is calculated at the beginning of each time step and then re-

sponse is calculated at the end of this time step with assuming that stiffness is constant through

out the step. Therefore nonlinearity is considered with calculating stiffness again at the begin-

ning of next time step. Calculated responses will be considered at the end of each time step

as the initial conditions for next time step. Therefore system nonlinearity behavior is replaced

with a series of consecutive approximate linear differential equations [4, 5, 9, 12].

In the explicit methods, in each time step, equation of motion is written at the beginning

of the time step and the unknown values at the end of time step are calculated explicitly, but

in the implicit methods, unknown values at the end of time step are calculated by writing the

equation of motion at those points [1, 4–6, 8, 9, 11, 12, 14]. Because implicit methods require
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more calculation in each time step with a smaller number of time steps, in the past it has been

shown that the implicit methods are more accurate than the explicit ones [7, 14].

Because of the approximation in the formulation and calculation of these methods, it is

expected to have some error compared to exact solution that the error is usually a function of

time step length, frequency content of the load and also degree of nonlinearity.

In conditionally stable methods, the instability occurs when time step size is more than a

specific value (critical time step). While in unconditionally stable methods, instability never

happens, regardless of the time step size [8, 9, 12, 14].

Because central difference method is very simple for implementation in the nonlinear sys-

tems, among explicit time integration methods, it is one of the most widely used methods [2, 4,

9]. Other known method for analysis of nonlinear structural dynamics is a family of Newmark’s

method that these methods assume a constant or linear behavior for the variation of acceleration

at each time step [4, 8, 9, 12].

In this paper, a time integration method is proposed that is both implicit and explicit and

it assumes a second order variation of the acceleration within each time step. The proposed

method is shown to have higher accuracy compared to conventional methods.

2. Proposed Method

The differential equation describing a nonlinear system can have the general form:

ẍ+ f(ẋ, x, t) = 0. (1)

Therefore the equation of motion for a nonlinear system (with nonlinear stiffness) is:

Mẍ+ Cẋ+Kix = P, (2)

where M and C are the mass and damping matrix; Ki is the stiffness matrix in the i-th time

step; P is the vector of applied forces; x, ẋ and ẍ are the displacement, velocity and acceleration

vectors, respectively. The initial conditions are x(0) = x0, ẋ(0) = ẋ0 where x0 and ẋ0 are the

initial displacement and velocity vectors, respectively.

The acceleration in each time step is assumed to be a second order function which results

in the displacement to be a fourth order complete polynomial in each time step. Therefore the

displacement function contains five constants. Those constants are obtained from; two initial

conditions from the end of previous time step, satisfying the equation of motion at both ends of

the time step, and setting the weighted residual of the method in the step equal to zero.

If the objective is to find the displacement in the time ti, first time interval [0, t] is divided to

the i smaller sub-interval. In the beginning of the calculation, the displacement is determined in

the time step ∆t; and then in the second time step 2∆t to i∆t. In the i-th time step, displacement

function in the δ ∈ [0,∆t] interval can be shown as:

x(δ) = aiδ
4 + biδ

3 + ciδ
2 + diδ + ei, (3)

where ai to ei are the unknown coefficients that should be determined. Therefore, the velocity

function is defined as:

ẋ(δ) = 4aiδ
3 + 3biδ

2 + 2ciδ + di (4)

and the acceleration function is:

ẍ(δ) = 12aiδ
2 + 6biδ + 2ci. (5)
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That ci, di and ei are calculated using the above equations:

x(δ = 0) = xi−1 → ei = xi−1, (6)

ẋ(δ = 0) = ẋi−1 → di = ẋi−1. (7)

By placing Eqs. (6) and (7) into the equation of motion at the beginning of this time step, we

have:

M(2ci) + C(di) +Ki(ei) = Pi−1, (8)

therefore ci is:

ci = (2M)−1 · (Pi−1 − Cẋi−1 −Kixi−1). (9)

Now by satisfying equation of motion at the end of the present time step, we have:

Mẍi + Cẋi +Kixi = Pi, (10)

which results in:

M(12ai∆t2 + 6bi∆t + 2ci) + C(4ai∆t3 + 3bi∆t2 + 2ci∆t+ di) + (11)

Ki(ai∆t4 + bi∆t3 + ci∆t2 + di∆t + ei) = Pi.

The final equation is obtained from weighted residual integral. Because this method is approx-

imate, it does not satisfy the equilibrium equation of motion in domain of [0,∆t] interval. The

residual of the method in satisfying the equation of motion is defined as:

R = Mẍ + Cẋ+Kix− P. (12)

Then the residual is forced to be zero over the domain and using a unit weight function, we

obtain: ∫
∆t

0

1× R dt = 0. (13)

Finally by solving Eqs. (11) and (13), the values of ai and bi can be determined. Therefore

by calculating these five unknowns in i-th time step, displacement, velocity and acceleration

vectors at the end of the i-th time step is calculated as follow:

xi = ai∆t4 + bi∆t3 + ci∆t2 + di∆t + ei, (14)

ẋi = 4ai∆t3 + 3bi∆t2 + 2ci∆t+ di, (15)

ẍi = 12ai∆t2 + 6bi∆t + 2ci. (16)

3. Stability, order of accuracy, and overshooting effect

For evaluation of stability of the present method, single degree of freedom system is considered

and the magnification matrix is derived for calculating the eigenvalues of the matrix [3, 10, 13].

Absolute eigenvalues of the matrix must be smaller than or equal to one. For undamped systems,

in softening conditions such as Ki/K0 = 0 (stiffness at the end of time step to the stiffness at

the beginning of time step i), proposed method has not any instability, but for K i/K0 = 0.5
has a small local instability at ∆t/T0 = 0.72 − 0.76 (T0 is period at the beginning of first time

step) which it can be resolved for damping ratio as ξ = 3.4 %. For Ki/K0 = 1 has a small

local instability too at ∆t/T0 = 0.52 − 0.54 which it can be resolved for damping ratio as
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ξ = 4.6 %. The central difference and linear acceleration methods have smaller limitation of

stability compared to proposed method.

By replacing the differential equation by the difference equation, the local truncation error

is created in each time step which local truncation error is relative to the order of accuracy of

one method. The order of the accuracy of the proposed method is three which is higher than the

other methods.

The tendency to overshoot from exact solution is significantly important factor which should

be considered in an evaluation of numerical solutions. Proposed method from the displacement

responses has a tendency to overshoot linearly in the displacement term and from the velocity

responses, has a tendency to overshoot quadratically in the displacement term and linearly in

velocity term.

4. Examples

In order to see the results of the proposed method and to see its advantages over the other

existing methods, two examples are considered which the results obtained from the proposed

method are compared with the central difference and linear acceleration (Newmark’s) methods.

Example 1 [12]: Consider a single degree of freedom with the frame as shown in Fig. 1.

This system has an elastoplastic behavior as shown in Fig. 2.

Exciting force is applied on the spring damping system as shown in Fig. 3.

Fig. 1. Frame of structure Fig. 2. Force-displacement relationship

Fig. 3. Exciting force
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Fig. 4. Displacement responses versus time diagram for example 1

In Figs. 1, 2, and 3 the results of displacement, velocity, and acceleration of this system due

to the applied loading P (t) are shown for time step duration 0.1 sec. The results compare from

central difference method, linear acceleration method, and the proposed methods.

The results obviously show that proposed method has a better responses in comparison with

the other methods.

Example 2 [3]: Consider a two story shear building with initial conditions as; x0 = ẋ =
[0, 0]T in which has flexurally rigid floor beams and slabs. Nonlinear story stiffness for each

story is defined as k = k0[1 + λ(∆x)2], where ∆x and k0 are story drift and initial stiffness,

respectively. Bottom and top stories have k0 = 107 N/m and λ = −100, and k0 = 104 N/m

and λ = −0.001, respectively. Lumped masses are considered to be 1 000 kg and this system

has been excited by a ground acceleration of 50 · sin(ω · t), ω = 1 rad/sec, at the base of

building. Natural frequencies of system are found to be 3.16 and 100.05 rad/sec, respectively.

Displacement responses obtained from linear acceleration method (Newmark’s method) by a

time step duration of 0.001 sec resulted in exact solution. Figs. 7 and 8 show the comparison

of displacement responses with ∆t = 0.02 sec to exact solution for bottom and top stories,

respectively.

According to the Fig. 7, central difference and linear acceleration methods have small jumps

from the exact solution but the proposed method is on the exact solution line. On the other hand,

according to the Fig. 8, all methods have similar response respect to the exact solution.

In this example, we presented only displacement responses, whereas the velocity and accel-

eration responses calculated using the proposed method are also more accurate than the other

methods.
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Fig. 5. Velocity responses versus time diagram for example 1

Fig. 6. Acceleration responses versus time diagram for example 1
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Fig. 7. Displacement responses versus time diagram for first story for example 2

Fig. 8. Displacement responses versus time diagram for second story for example 2
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5. Conclusion

A new method of time integration technique for problems in nonlinear structural dynamics was

illustrated. To show the accuracy and response of the method, two examples were presented. A

quadratic polynomial as a function of time was used in order to approximate the variation of ac-

celeration in each time step. The displacement function had five constants that were calculated

using: two initial conditions, from the end of previous time step, two equations from satisfying

the equilibrium at both ends of the time step, and one equation for the weighted residual inte-

gration where the weight function is assumed to be unit function. The proposed method had

a small local instability which it can be resolved by increasing the damping ratio that however

had higher stability than the other methods. Also order of accuracy of the method was three.
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