
Making Grass and Fur Move

Sven Banisch and Charles A. Wüthrich
CoGVis/MMC – Faculty of Media

Bauhaus-University Weimar

D-99421 Weimar (GERMANY)

E-Mail: [sven.banisch|caw]@medien.uni-weimar.de

ABSTRACT
This paper introduces physical laws into the real–time animation of fur and grass. The main idea to achieve this,

is to combine shell-based rendering with a mass-spring system. In a preprocessing step, a volume array is filled

with the structure of fur and grass by a method based on exponential functions. The volumetric data is used to

generate a series of two dimensional, semitransparent textures that encode the presence of hair or of the blades.

In order to render the fur volume in real–time, these shell textures are applied to a series of layers extruded above

the initial surface. Moving fur can be achieved by horizontally displacing these shell layers at runtime through

a mass–spring mesh. Four different mass–spring topologies – different arrangements of masses and springs over

the grass–covered surface – are introduced and used for animation. Two of them allow the shell layers to separate

laterally, so that the ”parting” of grass can be simulated. Performance observations prove mass-spring systems to

be well-suited for the real–time simulation of fur and grass dynamics.

Keywords
Computer Graphics, Real–Time Animation, Physically–Based Simulation, Mass–Spring Systems

1 INTRODUCTION
Fur and grass are natural materials the real–time ren-

dering of which has attracted many computer graphics

researchers in the past years. High performance tech-

niques for their fast rendering have been developed. A

realistic animation, however, also requires an appro-

priate simulation of the dynamic behavior of the mate-

rial. There are rare attempts focussing on this problem

(e.g., [23, 14, 7]), but they do not yet use an adequate

physical description, and therefore, do not yet provide

a satisfactory solution. The motivation of this paper

is to develop such a physically–based approach by in-

troducing Newtons laws of motion into the real–time

animation of fur and grass.

The most common method to render fur– and grass–

covered surfaces in real–time is to represent the vol-

umetric structure as a series of layers which are ex-

truded above the initial surface and textured with

semi–transparent hair textures. This method (called

shell–based rendering) was introduced by Lengyel in

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006

Plzen, Czech Republic.

Copyright UNION Agency–Science Press

2000 [17] and was subsequently improved during the

following years [16, 10, 7, 26]. A dynamical simula-

tion of the surface structure can be achieved if the shell

layers are horizontally displaced under the influence of

external forces [16].

The main issue of this paper is to analyze if, and in

what way, mass–spring systems can be used to deter-

mine the shell layer displacement, hence, if such sys-

tems can form a suitable physical model for the real–

time simulation of fur and grass dynamics.

A mass–spring system is a set of mass points which

are linked by springs. They are usually arranged in a

fixed topology. Mass–spring systems are mainly used

for the real–time simulation of deformable objects, in

particular, they are often involved into the simulation

of cloth–like objects [3, 21, 8, 13, 29]. To research

the applicability of mass–spring systems in the anima-

tion of fur and grass a topology of masses and springs

(called mass–spring topology) is generated over the

fur–covered surface represented by Lengyel’s method.

The shell method and the mass–spring system are

combined to simulate movement.

The remainder of this paper is organized as follows:

Section 2 presents a selection of previous related work.

Section 3 describes basic algorithms involved into the

dynamic grass simulation, and Section 4 then shows

how these algorithms have been combined. The sim-

ulation results achieved by this combination are pre-

sented in Section 5. Finally, Section 6 sums up this

work and points out issues for future development.

Journal of WSCG 25 ISBN 1213-6972 ISBN 80-86943-09-7

2 PREVIOUS WORK

Our approach combines two techniques which are

well–developed and have been frequently used in the

last years: the shell method as a real–time rendering

technique for furry surfaces, and the mass–spring sys-

tem used for the real–time simulation of deformations.

In the following, very briefly, both techniques are sep-

arately considered.

Fur and Grass in Computer Graphics

For more than 20 years the image synthesis of grass

has been an attractive topic of computer graphics. An

early proposal by Reeves and Blau was based on parti-

cle systems. Particles were used to create the structure

of grass as well as to render it [24]. Following the idea

of representing hair as a set of particle traces, Kajiya

and Kay introduced the texel – a three dimensional ar-

ray that stores the hair data – and arranged these texels

over an initial surface which is then rendered via ray

tracing [12]. With both proposals high–quality image

of grass and fur could be achieved at rendering times

far beyond real–time.

In 1998, Meyer and Neyret [20] introduced interac-

tive three dimensional textures using a method called

slicing. This technique could be adapted to the more

specific case of fur in 2000 by Lengyel [17]. His work

proposed shell-based rendering for the animation of

fur and grass in real–time. The shell method repre-

sents a furry surface as a series of concentrically or-

dered shell layers. The structure of fur and grass is

encoded into the alpha channel of the shell textures,

which are then applied one by one to their respective

shell layers. Since 2000, there have been various au-

thors (e.g., [16, 10, 7, 26]) addressing a more realistic

real–time animation of fur and grass, basically, by im-

proving the visual quality and the flexibility of shell-

based rendering.

To the authors knowledge, there are only two at-

tempts to a dynamic simulation of fur and grass dis-

played by a series of shell layers. The first one is a

method developed for ATIs RADEON 8000 graphic

card series which uses the programmable graphics

hardware for the rendering as well as for the dynamical

simulation [14]. The fur–covered object is rendered in

two stages: one to compute the shell layer displace-

ment, and a second one to draw the fur. The second

idea, proposed in 2003 [7] and extended in 2004 [26],

introduces so called ”wind vectors” which, stored at

each vertex of the object, determine the shell layer dis-

placement. Global forces resulting from wind, gravity,

motion and momentum are considered for the calcula-

tion the individual ”wind vectors”. Both attempts do

not use the Newtonian laws of motion, and a ”damping

force” is added by ”merging” the forces of two consec-

utive frames.

Mass–Spring Systems

Mass-spring systems are quite frequently used models

to approximate the physical behavior of deformable

objects (e.g., [22, 3, 8, 5, 15, 13, 21, 11]). They are

easy to understand and to implement, highly paral-

lelizable [29], and can achieve real–time rates. The

nonrigid object is modeled as a set of mass points and

springs in a fixed topology. The forces in between

two masses are linearly approximated with Hooke’s

law and neglected for points that are not connected by

a spring. These assumptions diminish the number of

computations, so that mass-spring systems can simu-

late complex deformable objects at interactive rates.

Nevertheless, mass-spring systems do involve the

solution of a system of ordinary differential equations

(ODEs), because they base on Newtons fundamental

law ~F = m~a. In order to solve the equations of motion

and to simulate such a system over time, a discretiza-

tion in time has to be applied. A discrete time step

is introduced and used for the numerical time integra-

tion of the equations ”governing” the motion. Numer-

ical time integration methods include explicit meth-

ods, such as the Runge Kutta method, and implicit

predictor-corrector schemes.

The range of problems mass–spring systems have

been used to solve is rather wide: from the simu-

lation of cloth–like objects in virtual environments

(e.g., [21, 8, 13, 29]), where detailed overviews are

available [3, 18], over the simulation of rigid bod-

ies attached to elastic ones [11], to the simulation of

hair(e.g., [25, 1, 28, 27]), where the recent techno-

logical advances are summarized in [19]. Within this

work, ways of adjusting masses and springs to shell–

based rendering have been developed, so that the range

of application of mass–spring systems is widened.

3 BASIC ALGORITHMS

This section briefly discusses the three basic compo-

nents involved into the grass animation: shell–based

rendering, shell texture generation and mass–spring

systems.

Shell–Based Rendering

The implementation of the shell method was based on

Lengyel’s initial proposal [17] as well as on the en-

hancements proposed in [16]. A number of shell lay-

ers (ranging from 12 to 128 in this work) is extruded

above the initial surface (”skin”) of the object. This

extrusion is determined by the surface normal vectors,

specifying the direction, and the inter–shell distance,

giving the distance between two consecutive layers.

Figure 1 illustrates the arrangement of the shell lay-

ers. To make the shell layers represent fur or grass,

the corresponding semitransparent shell textures are

applied to them. Figure 1b illustrates how this works.

Journal of WSCG 26 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

Figure 1: Shell layers are extruded above the initial

surface (a), and shell textures are applied to them (b).

The shell textures only encode the structure of grass.

Visual attributes, such as color and shadow, have to be

added to obtain appealing renderings. In this work,

per pixel lighting on programmable graphics hardware

has been used to gain a higher flexibility in combining

colors and evaluating different lighting models. The

color is determined by the color of the initial surface,

either by a ”skin” texture or by per vertex colors. The

shadow which individual blades throw onto each other

(self–shadowing) is approximated by darkening the

shell layers the closer they are to the initial surface1.

Finally, a diffuse shading model, based on Lambert’s

cosine law, is applied to the furry surface. Figure 2 il-

lustrates how adequate renderings of the furry dog are

achieved by adding color, self–shadow and shading to

the structure represented by concentric shell layers.

Shell Texture Generation

The generation of shell textures is of vital importance

to the visual result of the shell method. The textures

should encode the structure of fur and grass in a real-

istic fashion. The structure of fur and grass is rather

simple: a large number of distinct individual elements

is stochastically distributed over a surface. Most fre-

quently, particle systems have been used to generate

these individual elements (e.g., [24, 12, 17, 16, 10]).

There is, however, another generating method,

which uses exponential functions to define the shape

of the individual blade [4]. A large number of these

curves is distributed within a volume data set which is

then used to generate the shell textures by horizontally

slicing it. To make the structure inhomogeneous,

so to say more realistic, the stochastic parameters

length, direction of inclination and bending are

introduced and applied to each individual. This simple

method proved to be well–suited for the generation of

grass–like structures.

Following an idea thought by Kajiya and Kay in

1989 [12], we additionally generate an ”undercoat” – a

dense coat of short hair – in order to model an accurate

structure of fur as well.

1The most distinctive characteristic of shadow within grass and

fur is that it increases the further one approaches the ground. The

method proposed in [2] is based on this characteristic.

Mass–Spring System

A mass-spring system is a fixed topology of mass

points which are connected by springs. The anima-

tion of a system of n mass points requires the solution

of the system of n second order ODEs

Mp̈ = F (t, p, ṗ). (1)

The n× n dimensional matrix M stores the masses of

all mass points on its diagonal, the n dimensional vec-

tor p = (p1, p2, . . . , pi, . . . , pn)T represents the posi-

tions of all points, and F is a function which describes

the forces on the system at the time t. This system of

n second order ODEs can be reduced to the system of

2n ODEs of first order

d

dt

(

p

ṗ

)

=
d

dt

(

p

v

)

=

(

v

M−1F (t, p, v)

)

(2)

by substituting v = ṗ, where v is a n dimensional

vector containing the velocities of all mass points.

There are several different methods to numerically

solve such a system of ODEs. Explicit methods are

very fast at the expense of accuracy and possible insta-

bilities. Implicit methods are considered more stable,

but are computationally more expensive. Since it was

not clear how fast the mass–spring system has to be for

the physical simulation of fur and grass, and how sta-

ble it behaves, both an explicit and an implicit mass–

spring solver have been implemented. A detailed de-

scription of both solvers will not be presented within

this paper. We refer the reader to standard literature on

ODE solvers (e.g., [6, 3, 9]).

4 COMBINING THE METHODS
Grass represented by a series of shell layers moves if

the shell layers are horizontally displaced [16]. All the

previously proposed methods for moving grass anima-

tion use this characteristic [14, 7, 26]. The methods

differ in the way the shell layer displacement is deter-

mined, hence in the physical laws modeling the grass

movement.

In this work, mass–spring systems form this phys-

ical model. In order to combine such a system with

Lengyel’s rendering method, masses and springs are

generated over the surface and attached to the shell

layers. Different arrangements of masses and springs

are called mass–spring topologies, and will be de-

scribed first. After that, the method by which the

movement of mass points is transformed into shell

layer movement will be described.

Mass–Spring Topologies

The first and most simple mass–spring topology is

called spring–stick topology. At each vertex of the ini-

tial surface two mass points are generated – the first

one attached to the initial surface by setting its mass

Journal of WSCG 27 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b) (c) (d)

Figure 2: Creating the image of fur by adding color (b), self–shadowing (c) and a diffuse shading (d) to the fur

structure (a).

sufficiently large, and the second one connected to the

uppermost shell layer. Both points are connected by

a single spring. In Figure 3, the results of the spring–

stick topology generated over an entire surface are il-

lustrated.

(a) (b)

Figure 3: Spring–sticks applied to a single triangle (a)

and to a sphere (b).

The second topology is called prism topology since

the masses and the springs form a prism on each sur-

face triangle. Mass points are generated in the same

way as it was done for the spring–stick topology. Also

corresponding to the spring–sticks, the mass points are

vertically linked by a spring. Additionally, we connect

the mass points on the uppermost shell layer by gener-

ating springs along the edges of the uppermost layer.

The resulting prisms are shown in Figure 4.

An interesting effect in grass animation is the simu-

lation of parting. Parting means that fur and grass can

be split, and that clusters of hair can move indepen-

dently from other ones. This effect can be simulated

if shell layers separate laterally2. The parting of fur

and grass has been integrated into this work by imple-

menting two additional topologies – separable spring–

sticks and separable prisms.

Both separable mass–spring topologies are build by

treating the triangles separately for the generation of

mass points and springs. The triangles of the initial

surface are handled one by one to attach a mass point

2In [16], Lengyel et al. already saw this possibility.

(a) (b)

Figure 4: Prisms applied to a single triangle (a) and to

a sphere (b).

to each of its vertices. Then, mass points are assigned

to the vertices of the corresponding uppermost shell

layer triangle. The way springs are generated depends

on the respective mass-spring topology. In fact, we

treat every triangle as being a distinct surface, as a re-

sult that the number of mass points and springs needed

for an entire surface is increased using these topolo-

gies. The separable topologies, however, allow the

simulation of parting since neighboring shell layer tri-

angles are not connected. This is shown in Figure 5b.

(a) (b)

Figure 5: Neighboring shell layer triangles are con-

nected (a). The shell layers separate laterally (b).

Of course, there are further possibilities of arrang-

ing masses and springs over a surface. More springs

could be added to connect masses of the initial sur-

face and masses of the uppermost shell layer. Also,

mass points could be attached to a larger number

of layers. This paper, however, only considers the

Journal of WSCG 28 ISBN 1213-6972 ISBN 80-86943-09-7

four mass–spring topologies spring–sticks, separable

spring–sticks, prisms and separable prisms which have

been introduced above.

The mass-spring topologies are generated in a pre-

processing step. During the real time simulation, ex-

ternal forces are calculated and applied to the respec-

tive mass points. Then, the mass points positions are

updated by the mass-spring solver. In the current state

of the application, the external forces are with respect

to gravity, wind and motion of the object. Addition-

ally, it is possible to locally apply forces by user input.

Shell Layer Displacement

Masses are attached to the initial surface and to the up-

permost shell layer only. For this reason, a method to

determine the shell layer displacement of layers which

are not connected to a mass point is necessary. Such a

method should approximate the natural bending of the

blades. Bakay [7] proposes a technique which is based

on trigonometric functions. However, this method

is computationally expensive, and a new method has

been developed.

During runtime, for every vertex, we first compute

the scale vector

~si,j =
pj − pi

|pj − pi|
, (3)

which is defined by the positions of its two mass points

pi, pj . Since fur is usually rendered at large scales, it

will often be sufficient to linearly displace the shell

layers along this vector as shown in Figure 6a.

(a) (b)

Figure 6: Linear displacement (a) and the approxima-

tion of the natural bending (b).

In order to obtain an approximation matching better

natural bending, the shell layer displacement is com-

posed of a horizontal part ~h(li) and a vertical one

along the vertex normal vector ~n. The quantity of

vertical displacement is determined by the fixed inter-

shell distance. The horizontal displacement is defined

by

~h(li) =

(

i

nlayers

)k

(~s − ~n), (4)

which increases with the height of the layer li. Fig-

ure 6b shows how the shell layers separate from the

straight line defined by the vertical springs. Note that

the mass points, initially created on the uppermost

layer, separate from it. This is because of the vertical

displacement determined by the fixed value.

With combining the mass-spring system and the

shell method as described, there is one general diffi-

culty: once an external force has been applied to a

mass point, it is free to move and does not return to

its initial position. Moreover, it is possible that mass

points move to the other side of the initial surface (in-

side the object). Figure 7 illustrates that fur flips to

the wrong side of the surface if the mass points move

accordingly.

(a) (b)

Figure 7: Grass flips to the wrong side of the surface.

In order to solve this problem, we use the normal

vector ~n and the vector ~s to compute forces by which

the mass points on the uppermost layer are forced to

return to their initial position. The force ~F applied to

the respective mass point is calculated by

~F = (~n − ~s)(1 − (~n · ~s))w, (5)

where the term (~n−~s) determines the direction of the

force. The term (1 − (~n · ~s)) is zero in rest state, and

increases with the angle formed by ~n and ~s. Addi-

tionally, an adjustable weight w determines the magni-

tude of the force. With this procedure, the mass–spring

topologies always return to their initial state, since the

mass points on the uppermost layer are permanently

forced to return to their initial position. Grass does

therefore not flip to the wrong side of the surface.

5 RESULTS

Performance Analysis

The moving grass animation presented in this paper

was developed and tested on a medium level plat-

form (P4 with 1,7 GHz and 512 MB RAM, Nvidia

GeForce 5700 FX with 256 MB). Benchmarks have

been done for the three different models shown in

Figure 8. Four topologies (spring-sticks, separable

spring-sticks, prisms and separable prisms) are com-

pared with each other regarding to the update times.

The analysis also takes into account how much of the

total time is needed to render the models. Moreover,

the two types of mass–spring solver the explicit and

the implicit variant are considered.

The first model is an elephant, consisting of 623 ver-

tices and 1148 faces. It is rendered with 16 shell lay-

ers, a screen size of 640 × 480 and a screen coverage

Journal of WSCG 29 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b) (c)

Figure 8: An elephant (a), a dog (b) and a square of grass (c) are used for the benchmarks.

(influencing the rendering speed since per pixel light-

ing is used) as shown in Figure 8a. The resolution of

the shell textures, which is an interesting performance

feature if many shell layers are used, is 128 × 128.

The size of the physical system depends on the

mass–spring topology. 1247 mass points and 623

springs (one spring for each vertex) are generated if

spring–sticks are used. In the largest case, using sep-

arable prisms, 6888 mass point and 6888 springs are

generated and have to be updated during every frame.

Figure 9: Update times of the elephant model.

The update times of the elephant model, shown in

Figure 9, prove that the method is fast enough for real–

time use. Spring–sticks and prisms work at update

rates of 22 to 27 frames per second. Even when us-

ing the potentially slower implicit solution method, no

significant slowdown can be noticed. Also, the separa-

ble topologies simulated using the explicit solver run

at update rates which are still interactive. On this ac-

count, the proposed technique is faster than the method

proposed in [26], even though the underlying physical

laws are of higher complexity.

The dog model consists of 1872 vertices and 3220

faces, and is rendered using 12 shell layers. The size of

the screen is 1024 × 768 and the resolution of the shell

textures 128 × 128. The screen coverage is shown in

Figure 8b. The benchmarking results of the second

model are shown below.

The performance evaluation of the dog shows that

the rendering process alone is near the limits of inter-

Figure 10: Update times of the dog model.

active application (≈ 17 FPS). Using the spring-sticks

for the dynamical simulation does not noticeably slow

down the system, and the interactive moving fur sim-

ulation of a model of more than 3000 faces and 1800

vertices is feasible, provided that the number of shell

layers is reduced to 12.

The last model considered here is a grass model

consisting of 13 vertices and 16 faces. It is rendered

with 64 shell layers, a texture resolution of 64 × 64

and a screen size of 640 × 480. The amount the object

covers of the screen is shown in Figure 8c. It is a cru-

cial performance feature for this example since many

shell layers are used to represent the grass.

Figure 11: Update times of the grass model.

We can see only slight differences in the perfor-

mance results. Nearly all the time needed to process

the animation is required by the rendering, not by the

physical system. Even the more complex mass-spring

Journal of WSCG 30 ISBN 1213-6972 ISBN 80-86943-09-7

topologies, simulated by the computationally more ex-

pensive implicit mass-spring solver, can be used for

the physical simulation of long grass without causing

the system to slow down.

The performance analysis shows that the real bot-

tleneck of the system is the shell method, and not

the physical simulation. This is obvious for the grass

example, since the size of the mass-spring system is

very small. But also for the moving fur simulation of

the dog and the elephant, using non-separable topolo-

gies, the computational power needed for rendering

the shell layers takes the greater part of the total per-

formance.

Animation Quality

The usage of a mass-spring system in grass simulation

allows a wide range of different effects. Such a sys-

tem can react to arbitrarily applied forces, and realistic

animation effects can be achieved if the forces that act

on the system approximate the forces acting in the real

world. Mass-spring systems, moreover, provide the

possibility to control the dynamical behavior of fur by

adapting the physical values which determine how the

system behaves.

Figure 12: A close view on the parting of grass.

Unfortunately, it is rather difficult to present anima-

tion results in writing. Therefore, this paper is ac-

companied by a video, which shows furry objects in

captured animation. Furthermore, in order to provide

a rough idea of the quality of animation, Figure 13

shows a sequence of grass waving in the wind. Fig-

ure 12 presents a close view on the parting of grass,

and gives an idea how this feature can enhance the re-

alism of a grass animation.

6 CONCLUSIONS

A new method for the simulation of grass dynamics

has been developed by combining the shell method

and mass–spring systems, so that the range of appli-

cation of mass–spring systems has been widened. Per-

formance observations have proven the methods appli-

cability of being used in a real–time context.

To conclude: mass–spring systems are well–suited

to simulate dynamical effects of grass and fur.

Figure 13: A sequence of grass waving in the wind.

Nevertheless there are several issues that could be

addressed by future work.

First and foremost, it will be fruitful put some effort

in optimizing the implementation, and ways to fully

exploit all capabilities of new graphic cards hardware

should be discussed. We believe that this can speed up

the application greatly.

An important question to be answered concerns the

dynamical effects resulting from motion of the object.

There will be no need to calculate any external force,

if motional changes of the object are directly trans-

formed into motional changes of the mass points on

the skin. Masses on the uppermost shell would react

automatically. It is possible that there will be effects

on stability of the mass-spring system. However, this

way of handling motional changes of the object has to

be implemented in future, since a lot of improvement

to the moving fur animation is to be expected.

With the development of new graphics hardware op-

timized for ray tracing, it might also be possible in fu-

ture, that fur and grass can be interactively rendered

by three dimensional textures, and that the texel ap-

proach [12] will be taken back in consideration. Vi-

sual quality of fur and grass would be improved by

great amounts. The proposed method can be adopted

to simulate the physical behavior of structures repre-

sented by three dimensional textures.

Last but not least, it might be interesting to research

more mass–spring topologies.

All in all, the presented technique yields good re-

sults and will be used for the simulation of fur and

grass in future real–time productions, such as com-

puter games or virtual puppetry.

Journal of WSCG 31 ISBN 1213-6972 ISBN 80-86943-09-7

7 ACKNOWLEDGMENTS

The authors wish to thank all participants of the project

”puppets & hands”. In particular, we thank Tobias

Hofmann, Benjamin Schmidt, Uwe Hahne and Bern-

hard Bittdorf for their support.

References
[1] K. Anjyo, Y. Usami, and T. Kurihara. A simple

method for extracting the natural beauty of hair. In

Proceedings of SIGGRAPH ’92, pages 111–120, 1992.

[2] D. C. Banks. Illumination in diverse codimensions. In

SIGGRAPH ’94, pages 327–334, 1994.

[3] D. Baraff and A. Witkin. Large steps in cloth

simulation. In SIGGRAPH ’98: Proceedings of the

25th annual conference on Computer graphics and

interactive techniques, pages 43–54. ACM Press,

1998.

[4] H. B. Bidasaria. A new method for modeling of

hair-grass type textures. In CSC ’95: Proceedings of

the 1995 ACM 23rd annual conference on Computer

science, pages 109–113. ACM Press, 1995.

[5] D. Bourguignon and M.-P. Cani. Controlling

anisotropy in mass-spring systems. In Proceedings of

the 11th Eurographics Workshop on Computer

Animation and Simulation 2000, Springer Computer

Science, pages 113–123. Springer-Verlag, August

2000.

[6] I. Bronstein, K. Semendjajew, G. Musiol, and

H. Mühlig. Taschenbuch der Mathematik. Verlag

Harri Deutsch, Frankfurt am Main, Thun, third

edition, 1997.

[7] M. Brook Maurice Bakay. Animating and lighting

grass in real-time. Master’s thesis, The University Of

British Columbia, 2003.

[8] M. Desbrun, P. Schröder, and A. Barr. Interactive

animation of structured deformable objects. In

Graphics Interface, pages 1–8, June 1999.

[9] M. Hauth. Visual Simulation of Deformable Models.

PhD thesis, Eberhard–Karls–Universität Tübingen,

2004.

[10] J. Isidoro and J. L. Mitchell. User customizable

real–time fur, 2002. SIGGRAPH 2002 Technical

Sketch, pp.273.

[11] J. Jansson and J. Vergeest. Combining deformable and

rigid body mechanics simulation. The Visual

Computer, pages 280–289, February 2003.

[12] J. T. Kajiya and T. L. Kay. Rendering fur with three

dimensional textures. In SIGGRAPH ’89:

Proceedings of the 16th annual conference on

Computer graphics and interactive techniques, pages

271–280. ACM Press, 1989.

[13] Y.-M. Kang and H.-G. Cho. Complex deformable

objects in virtual reality. In VRST ’02: Proceedings of

the ACM symposium on Virtual reality software and

technology, pages 49–56. ACM Press, 2002.

[14] T. Kano. Dynamic fur demo. ATI Developer: Source

Code http://www.ati.com/developer/indexsc.html.

[15] U. G. Kühnapfel, H. K. Çakmak, and H. Maaß.

Endoscopic surgery training using virtual reality and

deformable tissue simulation. Computers & Graphics,

24(5):671–682, 2000.

[16] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe.

Real-time fur over arbitrary surfaces. In SI3D ’01:

Proceedings of the 2001 symposium on Interactive 3D

graphics, pages 227–232. ACM Press, 2001.

[17] J. E. Lengyel. Real-time hair. In Proceedings of the

Eurographics Workshop on Rendering Techniques

2000, pages 243–256. Springer-Verlag, 2000.

[18] N. Magnenat-Thalmann, F. Cordier, M. Keckeisen,

S. Kimmerle, R. Klein, and J. Meseth. Simulation of

Clothes for Real-time Applications. In Proceedings of

Eurographics 2004, Tutorial 1, 2004.

[19] N. Magnenat-Thalmann, S. Hadap, and P. Kalra. State

of art in hair simulation. International Workshop on

Human Modeling and Animation, Seoul, Korea, pages

3–9, 2002.

[20] A. Meyer and F. Neyret. Interactive volumetric

textures. In Eurographics Rendering Workshop 1998,

pages 157–168. Eurographics, Springer Wein, July

1998.

[21] M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr.

Interactive animation of cloth-like objects in virtual

reality. Journal of Vizualisation and Computer

Animation, 2000.

[22] G. S. P. Miller. The motion dynamics of snakes and

worms. In SIGGRAPH ’88: Proceedings of the 15th

annual conference on Computer graphics and

interactive techniques, pages 169–173. ACM Press,

1988.

[23] F. Perbet and M.-P. Cani. Animating prairies in

real-time. In ACM Interactive 3D Graphics, USA,

Mar 2001.

[24] W. T. Reeves and R. Blau. Approximate and

probabilistic algorithms for shading and rendering

structured particle systems. SIGGRAPH ’85 Comput.

Graph., 19(3):313–322, 1985.

[25] R. E. Rosenblum, W. E. Carlson, and E. Tripp, III.

Simulating the structure and dynamics of human hair:

modelling, rendering and animation. 2(4):141–148,

Oct.–Dec. 1991.

[26] G. Sheppard. Real–time rendering of fur. Bachelor

thesis, The University of Sheffield, 2004.

[27] K. Ward and M. C. Lin. Adaptive grouping and

subdivision for simulating hair dynamics. In Pacific

Conference on Computer Graphics and Applications,

pages 234–243, 2003.

[28] X. D. Yang, Z. Xu, J. Yang, and T. Wang. The cluster

hair model. Graphical Models, 62(2):85–103, 2000.

[29] F. Zara, F. Faure, and J.-M. Vincent. Physical cloth

simulation on a pc cluster. In Parallel Graphics and

Visualisation 2002, 2002.

Journal of WSCG 32 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

