
Real-time Plane-Sweep with local strategy

Vincent Nozick Sylvain Michelin Didier Arquès

SISAR team,

Marne-la-Vallée University, ISIS Laboratory,

6 cours du Danube, France, 77 700 Serris

{vnozick,michelin,arques}@univ-mlv.fr

ABSTRACT

Recent research in computer vision has made significant progress in the reconstruction of depth information

from two-dimensional images. A new challenge is to extend these techniques to video images. Given a small set

of calibrated video cameras, our goal is to render on-line dynamic scenes in real-time from new viewpoints. This

paper presents an image-based rendering system using photogrametric constraints without any knowledge of the

geometry of the scene. Our approach follows a plane-sweep algorithm extended by a local dynamic scoring that

handles occlusions. In addition, we present an optimization of our method for stereoscopic rendering which

computes the second image at low cost. Our method achieves real-time framerate on consumer graphic hardware

thanks to fragment shaders.

Keywords

Image-based rendering, plane-sweep, fragment shaders.

1. INTRODUCTION
Given a set of images from different viewpoints of a

scene, we set out to create new views of this scene

from new viewpoints. This reconstruction problem is

treated from several approaches. Some methods

focus on the geometry of the scene while others use

photogrametric properties. These methods can also

differ on the number of input images, on the visual

quality of the views created and on computation

time. Most of the past work in this field concerns

static scenes and tries to improve reconstruction

accuracy, but past years, dynamic scene

reconstruction has become a more important research

area.

Ç

Figure 1 : A real-time reconstruction example

from four cameras

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

In this paper, we present an overview of image-based

real-time rendering for static and dynamic scenes.

We detail one of these known as the plane-sweep

algorithm, and present an adaptation of this method

that handles occlusion. Our method achieves real-

time framerate on consumer graphic hardware using

fragment shaders. We also introduce an computation

optimization of our method for stereoscopic

rendering.

2. RELATED WORK
This section surveys previous work on real-time

image-based rendering (IBR) techniques and real-

time reconstruction for static and dynamic scenes.

Real-time rendering
Some image-based methods like the Plenoptic

modeling [MB95], the Lumigraph [GGSC96] and the

Light Field rendering [LH96] provide real-time

photorealistic rendering using a large set of input 2D

image samples. Nevertheless these methods require

considerable off-line processing before visualization

so the handling of dynamic scenes becomes very

difficult. Schirmacher et al. [SLS01] extend a

Lumigraph structure with per-pixel depth

information using a depth-from-stereo algorithm and

reach interactive-time at the cost of visual quality.

Depth-from-stereo algorithms [SS02] like SRI SVS

[BBH03] provide real-time depth-maps computation

from two input video streams without any special

purpose hardware. However they do not provide a

real-time rendering method synchronized with the

real-time depth-map.

Other reconstruction methods such as texture-

mapped rendering [PKV00] provide fluid navigation

in the reconstructed scene but they require lengthy

computation time before visualization.

Dynamic scene rendering
These last methods compute new views of a scene in

real-time but most of them begin with a significant

preprocessing which prevents them from computing

dynamic scenes. In recent years, alternatives to this

preprocessing problem and new solutions have been

ardently investigated.

A first solution to this problem is to make a

preprocessing on a set of videos rather than on a set

of images. This allows navigation in dynamic scenes

in real-time but these methods can only render

playback video. Kanade et al. choose this approach

with their Virtualized RealityTM System [KRN97]

and achieve real-time rendering with a collection of

51 cameras mounted on a geodesic dome of 5 meters

diameter. Zitnick et al. proposed a color-

segmentation based stereo algorithm [ZBUWS04]

providing high visual quality image in real-time from

a set of 8 or more cameras but again, this method

involves preprocessing.

Some other real-time techniques handle on-line video

flows. Matusik et al. provide an efficient real-time

rendering method with their image-based visual hulls

[MBRGM00] using a set of four cameras. This

method shades visual hulls from silhouette image

data but therefore can not handle concave objects.

Finally, some methods like [IHA02] are based on

color matching between different views, according to

the epipolar constraint. Collins [C96] introduces the

plane-sweep algorithm and provides basic

reconstruction from binary images. Yang et al.

[YWB02] extend this method to color-images and

present a real-time implementation using graphic

hardware. Woetzel et al. [WJKR04] adapt this

method for real-time depth-mapping and introduce a

first approach to handling occlusions. Geys et al.

[GKV04] use a plane sweep algorithm to generate a

crude depth map cleaned up using a graph-cut

algorithm.

Our algorithm belongs to the latter family. We will

first expose the basic plane-sweep algorithm and

[YWB02, WJKR04, GKV04] contribution. Then we

will detail our method.

Figure 2 : Plane-sweep algorithm with two

input cameras cam1 and cam2. M is a point

of an object lying on one of the planes Dm

in front of the virtual camera camx. The

input cameras will project M's color on the

same pixel of Dm.

Journal of WSCG 122 ISBN 1213-6972 ISBN 80-86943-09-7

3. PLANE-SWEEP ALGORITHM
The initial plane-sweep algorithm was introduced in

1996 by Collins [C96]. He first applied an edge

detector filter on the input images and provided a

geometric reconstruction of the scene from these

binary images. The following overview is an

adaptation of this method to color-images.

Overview
Given a small set of calibrated images from video

cameras, we wish to generate a new view of the

scene from a new viewpoint. Considering a scene

where objects are exclusively diffuse, we first place

the virtual camera and divide space in parallel planes

Di in front of the camera as shown in Figure 2. We

project the input images onto each plane Di in a back

to front order. Let's consider a visible object of the

scene lying on one of these planes at a point M. The

input cameras will project on M the same color

(i.e. the object color). Therefore, points on the planes

Di where projected colors match together potentially

correspond to an object of the scene.

Let I1 ... In denote a set of n calibrated images. Ix is

the new image to be computed and camx is its virtual

pinhole projective camera. We define a near plane

and a far plane parallel to camx image plane such that

all the objects of the scenes lie between near and far.

For each pixel of each plane Di, a score and a color

are computed according to the matching of the

colors. The plane-sweep algorithm can be explained

as follows :

• initialize Ix’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di
as textures

→ project Di multi-textured on Ix

→ for each pixel p of Ix

- compute a score and a color according to
the coherence of the colors from each
camera's contribution

- if the score is better than the previous ones
then update the score and the color of p

• draw Ix

Figure 3 shows samples of multitextured planes Di.

When a plane pass through an object of the scene,

this object becomes sharp on the multitextured

image. This is the case for the wood head on the top

right image.

What this method does in effect is comparing

epipolar lines between the input images from each

pixel of Ix. This method also provides depth-maps by

drawing Di's depth rather than a color.

 ª 6

6 ª

Figure 3 : Pictures associated to four planes Di

using four input images

Like several IBR techniques, this basic algorithm

does not handle occlusion since the score is only

computed according to the coherence of a small set

of colors. We present in section 4 a modification of

this algorithm that handles occlusion.

Classical score computation
Yang et al. [YWB02] propose an implementation of

the plane-sweep algorithm using register combiners.

For the scoring stage, they choose a reference camera

cambase that is closest to camx and compare the

contribution of each input image with the reference

image. Each pixel score is computed by adding the

Sum of Squared Difference (SSD) from each input

images. The SSD (1) compares the luminance of a

pixel Yi of an input image Ik with the corresponding

luminance Ybase from the reference camera.

()(,)
2

i base i base

i

SSD Y Y Y -Y=∑ (1)

For more robustness, they use mipmapping to

combine the pixels' score with a score computed

from the same images with a lower level of detail.

According to the small number of instructions, this

method provides good speed results, however the

input cameras have to be close to each other and the

navigation of the virtual camera should lie between

the viewpoints of the input cameras, otherwise the

reference camera may not be representative of camx.

Lastly, there may appear discontinuities in the

computed images when the virtual camera moves and

changes its reference camera. They propose a register

combiners implementation and reach real-time

rendering for dynamic scenes using five input

cameras.

Woetzel et al. [WJKR04] propose a plane-sweep

system that provides real-time depth-maps. Contrary

to Yang et al. [YWB02], they do not choose a

reference camera but they still compare the input

images by pairs. They compute the SSD of each pair

of input images and sort out the contribution of the

Journal of WSCG 123 ISBN 1213-6972 ISBN 80-86943-09-7

two worse scores. It is a first step to handling

occlusions but this method applies the same

treatment to each pixel without selecting those which

are concerned by occlusion and those which are not.

They propose a real-time depth-map method but do

not propose any rendering algorithm. This makes the

comparison between our algorithms difficult.

The same problem of scoring and choosing colors

among a set of colors from epipolar lines has been

treated by Fitzigibbon et al. [FWZ03]. They use

priors under a large set of input images to choose the

color (and hence the depth) that corresponds best to

most of the input images. This method is well

adapted to a large set of input images and provides

good results. However it requires too much

computation time for real-time rendering.

Finally, Geys et al. [GKV04] propose a two steps

method using two input cameras. First, a plane sweep

(GPU) computes a depth map using a Sum of

Absolute Differences (SAD) from the two input

images. Then, an energy minimisation method (CPU)

cleans up the depth map. The energy function

considers temporal and spatial continuity, the

previous SAD and an occlusion term derived from a

background-foreground repartition of the scene

elements. The energy function minimisation is solved

by a graph cut method and provides a consequent

improvement of the initial depth map. View

dependent texture mapping of the two input images

is performed to create the new view. However, this

method requires a background-foreground scene

decomposition with a static background. [GV05]

introduces an adaptation of this method for three or

more cameras.

4. OUR METHOD
We propose a new implementation which makes it

possible to take into account all input images

together where other methods compute images pair

by pair. We introduce new methods using local

strategy to compute scores allowing independent

treatment of each pixel of Ix in order to handle

occlusions. We also propose a new algorithm

providing a stereoscopic pair of images with the

second view at low cost.

New scores computation
The score computation is a crucial step in the plane-

sweep algorithm. Both visual results and speedy

computation depend on it. We propose a new method

to compute a score according to all the input image

colors instead of computing by pairs. For this

purpose, we use multi-texturing functions to access

each input camera color contribution.

For each pixel of Ix, we propose a finite number of

positions X in the scene (one per plane D). A score is

computed for each position and this score depends on

the color Ci of the projections of X in each input

image. We propose three methods to compute scores.

A first possibility is to set the score as the variance of

each color Ci and the final color as the average of the

Ci. This method is easily implemented and provides

good visual results especially if the input cameras are

close together. However this method does not handle

occlusions. Indeed, a point viewed by all the input

cameras except one will have its score and its color

distorted since this camera may increase the variance

and spoil the average. Nevertheless, this method

implicitly treat occlusions when the virtual camera is

near from an input camera which projects for each

planes Di approximatively the same image.

We also propose an iterative algorithm to reject

outlier colors using a sigma clipping technique. This

method first computes the variance v of the color set

S={Ci}i=1...n, computes a score from v and finds the

color Cf ∈ S the furthest from the average. If this

color is further than a defined distance d, then it is

removed from S. This step is repeated until stability

or until S contains only 2 elements. The returned

score is the variance found in the last step. The

choice of the constant d depends on the input

cameras layout and on the scene complexity. This

algorithm can be summarized as follows :

• bool stable = false

• S = {Ci}i=1…n

• a = average(S)

• v = variance(S, a)

• score = scoreFunction(v, Card(S))

• do

→ find the farest color Cf ∈ S from a
→ if distance(Cf, a) ≥ d then

- S = S - Cf

- a = average(S)

- v = variance(S, a)

- score = scoreFunction(v, Card(S))
else stable = true

while Card(S) ≥ 2 and stable = false

The scoreFunction weighs the variances according to

Card(S) such that with equal variance, the set of

colors with the maximum cardinal is favoured. A

good score corresponds to a small variance.

Finally, we propose a third method to compute the

colors' scores. This method also begins by a variance

and an average computation in the color set

Journal of WSCG 124 ISBN 1213-6972 ISBN 80-86943-09-7

S={Ci}i=1...n. Then we find the color Cf ∈ S that is the

furthest from the average. A new variance and a new

score are computed without this color. If this score is

better than the previous one, Cf is removed from S.

This step is repeated until a good score is found or

until S contains only 2 elements. The score is set as

the variance weighed by the cardinal of S. This

algorithm can be summarized as follows :

• bool stable = false

• S = {Ci}i=1…n

• a = average(S)

• v = variance(S, a)

• score = scoreFunction(v, Card(S))

• do

→ find the farest color Cf ∈ S from a
→ a

* = average(S - Cf)
→ v

* = variance(S - Cf, a
*)

→ score
* = scoreFunction(v*, Card(S)-1)

→ if score
* ≤ score then

- a = a*

- v = v*

- score = score
*

- S = S - Cf
else stable = true

while Card(S) ≥ 2 and stable = false

These three methods are easily implemented using

fragment shaders. As shown in Figure 4, the two

iterative methods provide better visual results,

especially when the input camera are placed in a 1D

arc configuration which increase the occlusions

effects.

(a) (b) (c)

Figure 4: image (a) is computed using the

variance and the average, (b) using the

sigma clipping technique and (c) using the

second iterative method.

Neighborhood with mipmapping
For more robustness during the scoring stage, we

take into account the neighborhood color

contribution of each pixel. Mipmapping provides

access to the same image but with a lower level of

details (lod) and hence provides the average color of

the neighborhood of the current pixel. For each pixel

(a) (b) (c)

Figure 5: Images computed with different

mipmap levels : (a) no additional mipmap

level, (b) 1 mipmap level and (c) 2 mipmap

levels.

score, we combine the score computed using

different lods. Yang et al. [YWB02] propose a

summation over a box-filtered lod pyramid but only

one additional mipmap level works well with our

method and more mipmap levels do not improve the

visual results. This is illustrated in Figure 5.

Stereoscopic rendering
Virtual reality applications often requires

stereoscopic display to increase immersion and most

of these applications have to render the scene twice.

But a lot of information such as diffuse lighting for

example can be shared for both views. Concerning

IBR techniques, depth-mapping is often view-

dependant and hence the two new views must be

computed separately. The plane-sweep algorithm

computes local score associated to scene points. This

information can be shared for several virtual

cameras. We extend our method with a low cost

algorithm providing the second view.

Figure 6 : Each plane Di is common to

the two views, but their projection differs

Stereoscopic rendering must satisfy several

conditions concerning virtual camera parameters

Journal of WSCG 125 ISBN 1213-6972 ISBN 80-86943-09-7

[SC97]. In particular, both cameras must have their

principal ray parallel to avoid vertical parallax in the

stereoscopic image. Let camL and camR be a pair of

virtual cameras satisfying this constraint and D1...m a

set of planes parallel to these cameras' image plane.

As shown in Figure 6, the score and the color

computation of a plane Di is common for both camL

and camR. Only the projection of Di on the two

cameras will differ. The score computation is a

central task in the plane-sweep algorithm, so sharing

this stage among the two views provides a

consequent gain in computation time. Thus, our

plane-sweep method must be modified as follows :

• initialize IL and IR’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di

→ render Di on two textures texScore and
texColor : for each pixel of Itmp

- compute a score and a color according to
the coherence of the colors from each
camera's contribution

→ copy texScore and texColor on Di

→ project Di multi-textured on IL and IR

→ for each pixel of IL and IR

- if the score is better than the previous one

then update the score and the color

• draw IL and IR

For each planes Di, this method first computes scores

and colors and stores them in two textures. In a

second pass, these two textures are copied on Di and

projected on the two virtual cameras. The first pass

requires off-screen rendering performed by Frame

Buffer Objects (FBO) and Multiple Render Target

(MRT). This step can also be achieved using

p-buffers with a small frame rate penalty.

Thus, this method can easily be implemented such

that all the image data stay in the graphic card and

hence avoid expensive data transfers between the

graphic card and the main memory.

Figure 7: Real-time stereoscopic pair

(cross vision)

Figure 7 shows a stereoscopic pair rendered in real-

time. Note that the fusion of the two images

decreases the imperfection impact of the images.

As illustrated in Table 1, stereoscopic rendering

achieves a 15% frame rate decrease instead of the

50% expected by rendering twice the scene.

Implementation
Input cameras are calibrated using the gold standard

algorithm [HZ04]. We implemented our method on

OpenGL 2.0 and we use OpenGL Shading Language

for the scoring stage.

For more accuracy, the texture coordinates are

computed using projected textures directly from the

camera projection matrices. We use multitexturing in

order to get access to each texture during the scoring

stage. Each score is computed with fragment

shaders using mipmapping. They are stored in

the gl_FragDepth and the colors in the

gl_FragColor. Hence we let OpenGL select best

scores with the z-test and update the color in the

frame buffer.

To compute a depth-map rather than a new

 view, we just set the gl_FragColor to the

gl_FragCoord.z value.

Most of the work is done by the graphic card and the

CPU is free for others tasks.

5. RESULTS
We tested our methods on an Athlon AMD 1GHz

with a Nvidia GeForce 6800GT. We used four tri-

CCD Sony DCR-PC1000E cameras for the input

images acquisition. The white balance is essential

in a plane-sweep algorithm. Indeed, we must

homogenize the camera color range such that any

point in the scene is seen with the same color from

each camera. For our tests, we used the manual white

balance provided by the tri-CCD cameras but for

more accuracy, we planed to use a color calibration

method as proposed by Magnor [M05].

Table 1 shows the framerate we obtain with 4 input

cameras.

Number

of plans D

Simple

variance

Method

1 and 2

Stereo-

scopic

10 140 85 91 110

30 43 28 30 38

50 30 17 18 25

100 15 9 9 13

Table 1. Frame rate in frame per second for a

320x240 image from 4 input cameras.

Journal of WSCG 126 ISBN 1213-6972 ISBN 80-86943-09-7

(a) (b)

(c) (d)

Figure 8: Number of planes used for each

scene : (a) 5 planes, (b) 10 planes, (c) 30

planes and (d) 50 planes

The computation time depends on the number of

planes we choose to discretize the scene. Our tests

indicate that after 50 planes, the quality difference

becomes neglible (Figure 8).

We are presently working on examples of on-line

dynamic scenes.

6. CONCLUSION
This paper presents a plane-sweep method that

allows real-time rendering of on-line dynamic

scenes. Except for near and far planes, it does not

require any prior knowledge of the scene. This

method can be implemented on every consumer

graphic harware that supports fragment shaders and

therefore frees CPU for other tasks. Furthermore, our

scoring method enhances robustness and implies

fewer constraints on the position of the virtual

camera, i.e. it does not need to lie between the input

camera's area.

We propose to extend our research in optimisation of

Di planes repartition in order to reduce its amount

without depreciating the visual result. We also intend

to achieve a better stereo viewing result by producing

pairs of virtual cameras with non symetric projection

pyramid in order to save space on the edges of the

stereo images [GPS94].

7. REFERENCES
[BBH03] Myron Z. Brown, Darius Burschka, and

Gregory D. Hager. Advances in Computational

Stereo, IEEE Transactions on Pattern Analysis

and Machine Intelligence, pages 993-1008, 2003.

[C96] Robert T. Collins, A Space-Sweep Approach to

True Multi-Image Matching, in proc. Computer

Vision and Pattern Recognition Conf., pages358-

363, 1996.

[FWZ03] Andrew Fitzgibbon, Yonatan Wexler and

Andrew Zisserman, Image-based rendering using

image-based priors, 9th IEEE International

Conference on Computer Vision (ICCV 2003),

pages 1176-1183, 2003.

[GGSC96] J. Gortler, R. Grzeszczuk, R. Szeliski and

M. F. Cohen, The lumigraph, SIGGRAPH, pages

43-54, 1996.

[GKV04] Indra Geys, T. P. Koninckx and L.

Van Gool, Fast Interpolated Cameras by

combining a GPU based Plane Sweep with a

Max-Flow Regularisation Algorithm, in proc. of

second international symposium on 3D Data

Processing, Visualization & Transmission -

3DPVT'04, pages 534-541, 2004.

[GPS94] V.S. Grinberg, G. Podnar and M. Siegel,

Geometry of Binocular Imaging, Stereoscopic

Displays and Virtual Reality Systems, Vol. 2177,

pages 56-65, 1994.

[GV05] Indra Geys and L.Van Gool, Extended view

interpolation by parallel use of the GPU and the

CPU, in proc. of IS&T SPIE, 17th annual

symposium on electronic imaging - videometrics

VIII, vol. 5665, pages 96-107, 2005.

[HZ04] Richard Hartley and Andrew Zisserman,

Multiple View Geometry in Computer Vision,

second edition, Cambridge University Press,

ISBN: 052154051, 2004.

[IHA02] M. Irani, T. Hassner and P. Anandan.

“What does the scene look like from a scene

point?”, Proc. ECCV, pages 883-897, 2002.

[KRN97] Takeo Kanade, Peter Rander and P. J.

Narayanan, Virtualized Reality: Constructing

Virtual Worlds from Real Scenes, IEEE

MultiMedia, volume 4, pages 34-47, 1997.

[LH96] Marc Levoy and Pat Hanrahan, Light Field

Rendering, SIGGRAPH, pages 31-42, 1996.

[M05] Marcus A. Magnor, Video-Based Rendering,

Editor : A K Peters Ltd, ISBN : 1568812442,

2005.

Journal of WSCG 127 ISBN 1213-6972 ISBN 80-86943-09-7

[MB95] Leonard McMillan and Gary Bishop,

Plenoptic Modeling: An Image-Based Rendering

System, SIGGRAPH, pages 39-46, 1995.

[MBRGM00] Wojciech Matusik, Chris Buehler,

Ramesh Raskar, Steven J. Gortler and Leonard

McMillan, Image-Based Visual Hulls, in proc

ACM SIGGRAPH, pages 369-374, 2000.

[PKV00] M. Pollefeys, R. Koch, M. Vergauwen and

L. Van Gool, Automated reconstruction of 3D

scenes from sequences of images, ISPRS Journal

Of Photogrammetry And Remote Sensing (55)4,

pages 251-267, 2000.

[SC97] StereoGraphics Corporation, Developer's

Handbook : background on creating images for

CrystalEyes and SimulEyes, StereoGraphics

Corporation, 1997.

[SLS01] Hartmut Schirmacher, Ming Li and Hans-

Peter Seidel, On-the-fly Processing of

Generalized Lumigraphs, Proc.

EUROGRAPHICS 2001, Eurographics

Association, pages 165-173, 2001.

[SS02] Daniel Scharstein and Richard Szeliski,A

Taxonomy and Evaluation of Dense Two-Frame

Stereo Correspondence Algorithms, IJCV, 47,

pages 7-42, 2002.

[WJKR04] Woetzel, Jan, Koch and Reinhard, Multi-

camera real-time depth estimation with

discontinuity handling on PC graphics hardware,

in proc. of 17th International Conference on

Pattern Recognition (ICPR 2004), pages 741-744,

2004.

[YWB02] Ruigang Yang, Greg Welch and Gary

Bishop, Real-Time Consensus-Based Scene

Reconstruction using Commodity Graphics

Hardware, in proc. of Pacific Graphics, pages

225-234, 2002.

[ZBUWS04] C. Lawrence Zitnick, Sing Bing Kang,

Matthew Uyttendaele, Simon Winder and

Richard Szeliski, High-quality video view

interpolation using a layered representation, in

proc. ACM SIGGRAPH, pages 600-608, august

2004.

Journal of WSCG 128 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

