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ABSTRACT 

Recent research in computer vision has made significant progress in the reconstruction of depth information 

from two-dimensional images. A new challenge is to extend these techniques to video images. Given a small set 

of calibrated video cameras, our goal is to render on-line dynamic scenes in real-time from new viewpoints. This 

paper presents an image-based rendering system using photogrametric constraints without any knowledge of the 

geometry of the scene. Our approach follows a plane-sweep algorithm extended by a local dynamic scoring that 

handles occlusions. In addition, we present an optimization of our method for stereoscopic rendering which 

computes the second image at low cost. Our method achieves real-time framerate on consumer graphic hardware 

thanks to fragment shaders. 

Keywords 

Image-based rendering, plane-sweep, fragment shaders. 

 

1. INTRODUCTION 
Given a set of images from different viewpoints of a 

scene, we set out to create new views of this scene 

from new viewpoints. This reconstruction problem is 

treated from several approaches. Some methods 

focus on the geometry of the scene while others use 

photogrametric properties. These methods can also 

differ on the number of input images, on the visual 

quality of the views created and on computation 

time. Most of the past work in this field concerns 

static scenes and tries to improve reconstruction 

accuracy, but past years, dynamic scene 

reconstruction has become a more important research 

area. 
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Figure 1 : A real-time reconstruction example 

from four cameras 
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In this paper, we present an overview of image-based 

real-time rendering for static and dynamic scenes. 

We detail one of these known as the plane-sweep 

algorithm, and present an adaptation of this method 

that handles occlusion. Our method achieves real-

time framerate on consumer graphic hardware using 

fragment shaders. We also introduce an computation 

optimization of our method for stereoscopic 

rendering. 

2. RELATED WORK 
This section surveys previous work on real-time 

image-based rendering (IBR) techniques and real-

time reconstruction for static and dynamic scenes. 

Real-time rendering 
Some image-based methods like the Plenoptic 

modeling [MB95], the Lumigraph [GGSC96] and the 

Light Field rendering [LH96] provide real-time 

photorealistic rendering using a large set of input 2D 

image samples. Nevertheless these methods require 

considerable off-line processing before visualization 

so the handling of dynamic scenes becomes very 

difficult. Schirmacher et al. [SLS01] extend a 

Lumigraph structure with per-pixel depth 

information using a depth-from-stereo algorithm and 

reach interactive-time at the cost of visual quality. 

Depth-from-stereo algorithms [SS02] like SRI SVS 

[BBH03] provide real-time depth-maps computation 

from two input video streams without any special 

purpose hardware. However they do not provide a 

real-time rendering method synchronized with the 

real-time depth-map. 

Other reconstruction methods such as texture-

mapped rendering [PKV00] provide fluid navigation 

in the reconstructed scene but they require lengthy 

computation time before visualization. 

Dynamic scene rendering 
These last methods compute new views of a scene in 

real-time but most of them begin with a significant 

preprocessing which prevents them from computing 

dynamic scenes. In recent years, alternatives to this 

preprocessing problem and new solutions have been 

ardently investigated. 

A first solution to this problem is to make a 

preprocessing on a set of videos rather than on a set 

of images. This allows navigation in dynamic scenes 

in real-time but these methods can only render 

playback video. Kanade et al. choose this approach 

with their Virtualized RealityTM System [KRN97] 

and achieve real-time rendering with a collection of 

51 cameras mounted on a geodesic dome of 5 meters 

diameter. Zitnick et al. proposed a color-

segmentation based stereo algorithm [ZBUWS04] 

providing high visual quality image in real-time from 

a set of 8 or more cameras but again, this method 

involves preprocessing. 

Some other real-time techniques handle on-line video 

flows. Matusik et al. provide an efficient real-time 

rendering method with their image-based visual hulls 

[MBRGM00] using a set of four cameras. This 

method shades visual hulls from silhouette image 

data but therefore can not handle concave objects. 

Finally, some methods like [IHA02] are based on 

color matching between different views, according to 

the epipolar constraint. Collins [C96] introduces the 

plane-sweep algorithm and provides basic 

reconstruction from binary images. Yang et al. 

[YWB02] extend this method to color-images and 

present a real-time implementation using graphic 

hardware. Woetzel et al. [WJKR04] adapt this 

method for real-time depth-mapping and introduce a 

first approach to handling occlusions. Geys et al. 

[GKV04] use a plane sweep algorithm to generate a 

crude depth map cleaned up using a graph-cut 

algorithm. 

Our algorithm belongs to the latter family. We will 

first expose the basic plane-sweep algorithm and 

[YWB02, WJKR04, GKV04] contribution. Then we 

will detail our method. 

 

 

Figure 2 : Plane-sweep algorithm with two 

input cameras cam1 and cam2. M is a point 

of an object lying on one of the planes Dm 

in front of the virtual camera camx. The 

input cameras will project M's color on the 

same pixel of Dm. 
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3. PLANE-SWEEP ALGORITHM 
The initial plane-sweep algorithm was introduced in 

1996 by Collins [C96]. He first applied an edge 

detector filter on the input images and provided a 

geometric reconstruction of the scene from these 

binary images. The following overview is an 

adaptation of this method to color-images. 

Overview 
Given a small set of calibrated images from video 

cameras, we wish to generate a new view of the 

scene from a new viewpoint. Considering a scene 

where objects are exclusively diffuse, we first place 

the virtual camera and divide space in parallel planes 

Di in front of the camera as shown in Figure 2. We 

project the input images onto each plane Di in a back 

to front order. Let's consider a visible object of the 

scene lying on one of these planes at a point M. The 

input cameras will project on M the same color 

(i.e. the object color). Therefore, points on the planes 

Di where projected colors match together potentially 

correspond to an object of the scene. 

Let I1 ... In denote a set of n calibrated images. Ix is 

the new image to be computed and camx is its virtual 

pinhole projective camera. We define a near plane 

and a far plane parallel to camx image plane such that 

all the objects of the scenes lie between near and far. 

For each pixel of each plane Di, a score and a color 

are computed according to the matching of the 

colors. The plane-sweep algorithm can be explained 

as follows :  

• initialize Ix’s score 

• for each plane Di from far to near 

→ project all the input images I1...In on Di  
as textures 

→ project Di multi-textured on Ix 

→ for each pixel p of Ix  

- compute a score and a color according to 
the coherence of the colors from each 
camera's contribution 

- if the score is better than the previous ones 
then update the score and the color of p 

• draw Ix 

 

Figure 3 shows samples of multitextured planes Di. 

When a plane pass through an object of the scene, 

this object becomes sharp on the multitextured 

image. This is the case for the wood head on the top 

right image.  

What this method does in effect is comparing 

epipolar lines between the input images from each 

pixel of Ix. This method also provides depth-maps by 

drawing Di's depth rather than a color. 

 ª 6

6 ª  

Figure 3 : Pictures associated to four planes Di 

using four input images 

Like several IBR techniques, this basic algorithm 

does not handle occlusion since the score is only 

computed according to the coherence of a small set 

of colors. We present in section 4 a modification of 

this algorithm that handles occlusion. 

Classical score computation 
Yang et al. [YWB02] propose an implementation of 

the plane-sweep algorithm using register combiners. 

For the scoring stage, they choose a reference camera 

cambase that is closest to camx and compare the 

contribution of each input image with the reference 

image. Each pixel score is computed by adding the 

Sum of Squared Difference (SSD) from each input 

images. The SSD (1) compares the luminance of a 

pixel Yi of an input image Ik with the corresponding 

luminance Ybase from the reference camera. 

( )( , )
2

i base i base

i

SSD Y Y Y -Y=∑   (1) 

For more robustness, they use mipmapping to 

combine the pixels' score with a score computed 

from the same images with a lower level of detail. 

According to the small number of instructions, this 

method provides good speed results, however the 

input cameras have to be close to each other and the 

navigation of the virtual camera should lie between 

the viewpoints of the input cameras, otherwise the 

reference camera may not be representative of camx. 

Lastly, there may appear discontinuities in the 

computed images when the virtual camera moves and 

changes its reference camera. They propose a register 

combiners implementation and reach real-time 

rendering for dynamic scenes using five input 

cameras. 

Woetzel et al. [WJKR04] propose a plane-sweep 

system that provides real-time depth-maps. Contrary 

to Yang et al. [YWB02], they do not choose a 

reference camera but they still compare the input 

images by pairs. They compute the SSD of each pair 

of input images and sort out the contribution of the 
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two worse scores. It is a first step to handling 

occlusions but this method applies the same 

treatment to each pixel without selecting those which 

are concerned by occlusion and those which are not. 

They propose a real-time depth-map method but do 

not propose any rendering algorithm. This makes the 

comparison between our algorithms difficult. 

The same problem of scoring and choosing colors 

among a set of colors from epipolar lines has been 

treated by Fitzigibbon et al. [FWZ03]. They use 

priors under a large set of input images to choose the 

color (and hence the depth) that corresponds best to 

most of the input images. This method is well 

adapted to a large set of input images and provides 

good results. However it requires too much 

computation time for real-time rendering. 

Finally, Geys et al. [GKV04] propose a two steps 

method using two input cameras. First, a plane sweep 

(GPU) computes a depth map using a Sum of 

Absolute Differences (SAD) from the two input 

images. Then, an energy minimisation method (CPU) 

cleans up the depth map. The energy function 

considers temporal and spatial continuity, the 

previous SAD and an occlusion term derived from a 

background-foreground repartition of the scene 

elements. The energy function minimisation is solved 

by a graph cut method and provides a consequent 

improvement of the initial depth map. View 

dependent texture mapping of the two input images 

is performed to create the new view. However, this 

method requires a background-foreground scene 

decomposition with a static background. [GV05] 

introduces an adaptation of this method for three or 

more cameras. 

4. OUR METHOD 
We propose a new implementation which makes it 

possible to take into account all input images 

together where other methods compute images pair 

by pair. We introduce new methods using local 

strategy to compute scores allowing independent 

treatment of each pixel of Ix in order to handle 

occlusions. We also propose a new algorithm 

providing a stereoscopic pair of images with the 

second view at low cost. 

New scores computation 
The score computation is a crucial step in the plane-

sweep algorithm. Both visual results and speedy 

computation depend on it. We propose a new method 

to compute a score according to all the input image 

colors instead of computing by pairs. For this 

purpose, we use multi-texturing functions to access 

each input camera color contribution. 

For each pixel of Ix, we propose a finite number of 

positions X in the scene (one per plane D). A score is 

computed for each position and this score depends on 

the color Ci of the projections of X in each input 

image. We propose three methods to compute scores. 

A first possibility is to set the score as the variance of 

each color Ci and the final color as the average of the 

Ci. This method is easily implemented and provides 

good visual results especially if the input cameras are 

close together. However this method does not handle 

occlusions. Indeed, a point viewed by all the input 

cameras except one will have its score and its color 

distorted since this camera may increase the variance 

and spoil the average. Nevertheless, this method 

implicitly treat occlusions when the virtual camera is 

near from an input camera which projects for each 

planes Di approximatively the same image. 

We also propose an iterative algorithm to reject 

outlier colors using a sigma clipping technique. This 

method first computes the variance v of the color set 

S={Ci}i=1...n, computes a score from v and finds the 

color Cf ∈ S the furthest from the average. If this 

color is further than a defined distance d, then it is 

removed from S. This step is repeated until stability 

or until S contains only 2 elements. The returned 

score is the variance found in the last step. The 

choice of the constant d depends on the input 

cameras layout and on the scene complexity. This 

algorithm can be summarized as follows : 

• bool stable = false 

• S = {Ci}i=1…n 

• a = average(S) 

• v = variance(S, a) 

• score = scoreFunction(v, Card(S)) 

• do 

→ find the farest color Cf ∈ S from a 
→ if distance(Cf, a) ≥ d then 

- S = S - Cf 

- a = average(S) 

- v = variance(S, a) 

- score = scoreFunction(v, Card(S)) 
else stable = true 

while Card(S) ≥ 2 and stable = false 

 

The scoreFunction weighs the variances according to 

Card(S) such that with equal variance, the set of 

colors with the maximum cardinal is favoured. A 

good score corresponds to a small variance. 

Finally, we propose a third method to compute the 

colors' scores. This method also begins by a variance 

and an average computation in the color set 
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S={Ci}i=1...n. Then we find the color Cf ∈ S that is the 

furthest from the average. A new variance and a new 

score are computed without this color. If this score is 

better than the previous one, Cf is removed from S. 

This step is repeated until a good score is found or 

until S contains only 2 elements. The score is set as 

the variance weighed by the cardinal of S. This 

algorithm can be summarized as follows : 

• bool stable = false 

• S = {Ci}i=1…n 

• a = average(S) 

• v = variance(S, a) 

• score = scoreFunction(v, Card(S)) 

• do 

→ find the farest color Cf ∈ S from a 
→ a

* = average(S - Cf) 
→ v

* = variance(S - Cf, a
*) 

→ score
* = scoreFunction(v*, Card(S)-1) 

→ if score
* ≤ score then 

- a = a* 

- v = v* 

- score = score
* 

- S = S - Cf 
else stable = true 

while Card(S) ≥ 2 and stable = false 

 

These three methods are easily implemented using 

fragment shaders. As shown in Figure 4, the two 

iterative methods provide better visual results, 

especially when the input camera are placed in a 1D 

arc configuration which increase the occlusions 

effects. 

  

(a) (b) (c) 

Figure 4: image (a) is computed using the 

variance and the average, (b) using the 

sigma clipping technique and (c) using the 

second iterative method. 

Neighborhood with mipmapping 
For more robustness during the scoring stage, we 

take into account the neighborhood color 

contribution of each pixel. Mipmapping provides 

access to the same image but with a lower level of 

details (lod) and hence provides the average color of 

the neighborhood of the current pixel. For each pixel 
 

 

(a) (b) (c) 

Figure 5: Images computed with different 

mipmap levels : (a) no additional mipmap 

level, (b) 1 mipmap level and (c) 2 mipmap 

levels. 

score, we combine the score computed using 

different lods. Yang et al. [YWB02] propose a 

summation over a box-filtered lod pyramid but only 

one additional mipmap level works well with our 

method and more mipmap levels do not improve the 

visual results. This is illustrated in Figure 5. 

Stereoscopic rendering 
Virtual reality applications often requires 

stereoscopic display to increase immersion and most 

of these applications have to render the scene twice. 

But a lot of information such as diffuse lighting for 

example can be shared for both views. Concerning 

IBR techniques, depth-mapping is often view-

dependant and hence the two new views must be 

computed separately. The plane-sweep algorithm 

computes local score associated to scene points. This 

information can be shared for several virtual 

cameras. We extend our method with a low cost 

algorithm providing the second view. 

 

Figure 6 : Each plane Di is common to 

the two views, but their projection differs 

Stereoscopic rendering must satisfy several 

conditions concerning virtual camera parameters 
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[SC97]. In particular, both cameras must have their 

principal ray parallel to avoid vertical parallax in the 

stereoscopic image. Let camL and camR be a pair of 

virtual cameras satisfying this constraint and D1...m a 

set of planes parallel to these cameras' image plane. 

As shown in Figure 6, the score and the color 

computation of a plane Di is common for both camL 

and camR. Only the projection of Di on the two 

cameras will differ. The score computation is a 

central task in the plane-sweep algorithm, so sharing 

this stage among the two views provides a 

consequent gain in computation time. Thus, our 

plane-sweep method must be modified as follows : 

• initialize IL and IR’s score 

• for each plane Di from far to near  

→ project all the input images I1...In on Di 

→ render Di on two textures texScore and 
texColor : for each pixel of Itmp 

- compute a score and a color according to 
the coherence of the colors from each 
camera's contribution 

→ copy texScore and texColor on Di 

→ project Di multi-textured on IL and IR 

→ for each pixel of IL and IR 

- if the score is better than the previous one 

then update the score and the color 

• draw IL and IR 

 

For each planes Di, this method first computes scores 

and colors and stores them in two textures. In a 

second pass, these two textures are copied on Di and 

projected on the two virtual cameras. The first pass 

requires off-screen rendering performed by Frame 

Buffer Objects (FBO) and Multiple Render Target 

(MRT). This step can also be achieved using  

p-buffers with a small frame rate penalty. 

Thus, this method can easily be implemented such 

that all the image data stay in the graphic card and 

hence avoid expensive data transfers between the 

graphic card and the main memory. 

 

Figure 7: Real-time stereoscopic pair  

(cross vision) 

Figure 7 shows a stereoscopic pair rendered in real-

time. Note that the fusion of the two images 

decreases the imperfection impact of the images. 

As illustrated in Table 1, stereoscopic rendering 

achieves a 15% frame rate decrease instead of the 

50% expected by rendering twice the scene. 

Implementation 
Input cameras are calibrated using the gold standard 

algorithm [HZ04]. We implemented our method on 

OpenGL 2.0 and we use OpenGL Shading Language 

for the scoring stage. 

For more accuracy, the texture coordinates are 

computed using projected textures directly from the 

camera projection matrices. We use multitexturing in 

order to get access to each texture during the scoring 

stage. Each score is computed with fragment  

shaders using mipmapping. They are stored in  

the gl_FragDepth and the colors in the 

gl_FragColor. Hence we let OpenGL select best 

scores with the z-test and update the color in the 

frame buffer. 

To compute a depth-map rather than a new 

 view, we just set the gl_FragColor to the 

gl_FragCoord.z value. 

Most of the work is done by the graphic card and the 

CPU is free for others tasks. 

5. RESULTS 
We tested our methods on an Athlon AMD 1GHz 

with a Nvidia GeForce 6800GT. We used four tri-

CCD Sony DCR-PC1000E cameras for the input 

images acquisition. The white balance is essential  

in a plane-sweep algorithm. Indeed, we must 

homogenize the camera color range such that any 

point in the scene is seen with the same color from 

each camera. For our tests, we used the manual white 

balance provided by the tri-CCD cameras but for 

more accuracy, we planed to use a color calibration 

method as proposed by Magnor [M05]. 

Table 1 shows the framerate we obtain with 4 input 

cameras. 

Number 

of plans D 

Simple 

variance 

Method 

1 and 2 

Stereo-

scopic 

10 140 85 91 110 

30 43 28 30 38 

50 30 17 18 25 

100 15 9 9 13 

Table 1. Frame rate in frame per second for a 

320x240 image from 4 input cameras. 
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(a) (b) 

 

(c) (d) 

Figure 8: Number of planes used for each 

scene : (a) 5 planes, (b) 10 planes, (c) 30 

planes and (d) 50 planes 

The computation time depends on the number of 

planes we choose to discretize the scene. Our tests 

indicate that after 50 planes, the quality difference 

becomes neglible (Figure 8). 

We are presently working on examples of on-line 

dynamic scenes. 

6. CONCLUSION 
This paper presents a plane-sweep method that 

allows real-time rendering of on-line dynamic 

scenes. Except for near and far planes, it does not 

require any prior knowledge of the scene. This 

method can be implemented on every consumer 

graphic harware that supports fragment shaders and 

therefore frees CPU for other tasks. Furthermore, our 

scoring method enhances robustness and implies 

fewer constraints on the position of the virtual 

camera, i.e. it does not need to lie between the input 

camera's area. 

We propose to extend our research in optimisation of 

Di planes repartition in order to reduce its amount 

without depreciating the visual result. We also intend 

to achieve a better stereo viewing result by producing 

pairs of virtual cameras with non symetric projection 

pyramid in order to save space on the edges of the 

stereo images [GPS94]. 
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