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Abstract

The paper deals with the modelling and modal analysis of the large package of identical parallel rods linked by

transverse springs (spacer grids) placed on several level spacings. The rod discretization by finite element method

is based on Rayleigh beam theory. For the cyclic and central symmetric package of rods (such as fuel rods in

nuclear fuel assembly) the system decomposition on the identical revolved rod segments was applied. A modal

synthesis method with condensation is used for modelling of the whole system. The presented method is the first

step for modelling the nuclear fuel assembly vibration caused by excitation determined by the support plate motion

of the reactor core.
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1. Introduction

Dynamic properties of nuclear fuel assembly (FA) are usually investigated using global mod-

els, whose properties are gained experimentally, as it was shown e.g. in [3, 6] and in sev-

eral research reports elaborated mainly in OKB Gidropress Podolsk in Russia. Experimentally

gained eigenfrequencies and eigenvectors serve as initial data for parametric identification of

the American nuclear VVANTAGE6 FA [7] and Russian TVSA-T FA in nuclear power plant

(NPP) Temelı́n [1]. These models, however, do not enable investigation of dynamic deforma-

tions and load of FA components, such as the fuel rods, guide thimbles, angle pieces, spacer

grids and other.

Nuclear fuel assemblies are in term of mechanics very complicated systems of beamed

type, whose basic structure is formed from large number of parallel rods linked by transverse

spacer grids (Fig. 1). The spacer grids inside the every segment (gray) are shown by solid lines

and within the segments by dashed lines. All springs at the level of one spacer grid are the

same ones. All the rods are identical including boundary conditions. The goal of the paper

is a development of analytical method for modelling and modal analysis of large package of

parallel rods linked by spacer grids placed on several transverse planes.The variable modifying

mathematical model of this large system will be in future used for modelling the nuclear FA

vibration caused by pressure pulsations [9] and seismic excitation [1] in terms of fuel rods

deformation and abrasion of fuel element coating [4]. The developed methodology and software

can be used for vibration analysis of the different large parallel beam systems.
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Fig. 1. The rod package cross-section with six segments linked by spacer grids

2. Mathematical model of the system

2.1. Modelling of the rod

The creation of a model is divided into three steps. The first step is the modelling of one isolated

rod r in the segment s (see segment s = 1 in Fig. 2) by means of 1D beam finite elements [5]

in the coordinate system

qr,s = [. . . , ξ(s)
r,g , η

(s)
r,g , ϑ

(s)
r,g , ψ

(s)
r,g , . . .]

T , g = 1, . . . , G, (1)

where ξ
(s)
r,g , η

(s)
r,g are mutually perpendicular lateral displacements and ϑ

(s)
r,g , ψ

(s)
r,g are bending an-

gles of rod cross-section in contact nodal point g on the level of grid g (in Fig. 3 g = 1, 2, 3). The

directions of ξ
(s)
r,g displacements are radial with respect to vertical axis of the package (nuclear

fuel assembly).

The detailed model of the rod created by FEM is replaced by alternate rod devided into

G + 1 prismatic beam elements in contact nodal points with grids. Every beam element is

determined by parameters ρ (mass density), A (cross-section area), J (second moment of the

cross-section area), l (length) and E (Young’s modulus) for concrete material. Mathematical

model of the beam element of the alternate rod in coordinate system with different displacement

arrangement in comparison with (1)

q∗

r,s = [. . . , ξ(s)
r,g , ψ

(s)
r,g , η

(s)
r,g , ϑ

(s)
r,g , . . .]

T , g = 1, . . . , G, (2)

which is more suitable for the beam element modelling, has the form [5]

M ∗

e =

[

S−T
1 (I1 + I2)S

−1
1 0

0 S−T
2 (I1 + I2)S

−1
2

]

; K∗

e =

[

S−T
1 I3S

−1
1 0

0 S−T
2 I3S

−1
2

]

, (3)
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Fig. 2. Displacements of rod r of segment s = 1

in contact points with spacer grid g
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Fig. 3. The displacements of rod r in segment s at

the level of spacer grids

where

I1 = ρAl

⎡

⎢

⎢

⎢

⎣

1 l
2

l2

3
l3

4
l
2

l2

3
l3

4
l4

5
l2

3
l3

4
l4

5
l5

6
l3

4
l4

5
l5

6
l6

7

⎤

⎥

⎥

⎥

⎦

, I2 = ρJl

⎡

⎢

⎢

⎣

0 0 0 0
0 1 l l2

0 l 4l2

3
3l3

2

0 l2 3l3

2
9l4

5

⎤

⎥

⎥

⎦

,

I3 = EJl

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 4 6l
0 0 6l 12l2

⎤

⎥

⎥

⎦

, S1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

⎤

⎥

⎥

⎦

, S2 =

⎡

⎢

⎢

⎣

1 0 0 0
0 −1 0 0
1 l l2 l3

0 −1 −2l −3l2

⎤

⎥

⎥

⎦

.

For model transposition into general coordinates qr,s defined in (1) mass and stiffness matrices

must be transformed in the form

Xe = P T X∗

e P , X = M , K, (4)

where permutation matrix is

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

By FE summation we get the mass and stiffness matrices of the alternative rod (subscript R) in

the block diagonal form

XR = [x
(R)
ij ] =

G+1
∑

e=1

diag [0, Xe, 0], X = M , K, x = m, k, (5)
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with block matrices Xe determined in (4). Matrices in (5) must be arranged in accordance

with boundary conditions. The modal behaviour of the conservative mathematical model of the

alternate rod is determined by the matrix equation of motion

MRq̈r,s + KRqr,s = 0. (6)

Eigenfrequencies Ων and eigenvectors vν of one isolated alternate rod depend on global mate-

rial parameters ρ, E and local geometrical parameters Ae, Je (e = 1, . . . , G + 1) of the beam

elements. The aim of tuning of the mathematical model (6) is to change the values of the

above-mentioned parameters to new values to achieve required modal values. Global material

and local geometrical parameters, that will be changed, constitute a vector of tuning parame-

ters p = [pj]. The selected tuned modal values — eigenfrequencies and eigenvectors coordi-

nates — form the vector of tuning l = [. . . , Ων , . . . , vν , . . .]
T and the desired vector of tuning

l∗ = [. . . , Ω∗

ν , . . . , v
∗

ν , . . .]
T , where Ω∗

ν and v∗

ν are eigenfrequencies and eigenvectors calculated

from the detailed finite element model or experimentally obtained. The tuning problem of the

alternate rod model can be formulated as an optimization problem with the objective function

ψ(p) =
∑

i

gi

[

1 −
li(p)

l∗i

]

, (7)

where gi is a weighted coefficient corresponding to i-th coordinate of vectors l(p) and l∗. The

tuning parameters are constrained by lower and upper limits

pL ≤ p ≤ pU . (8)

2.2. Modelling of the rod segment

The second step is the modelling of the rod segment s (see segment s = 1 in Fig. 1) in which the

rods are linked by transverse springs with small prestressing placed on several level spacings

g = 1, . . . , G. The stiffnesses kg of the springs in one lateral horizontal plane are identical. The

generalized coordinates of the segment s are

qs = [qT
1,s, q

T
2,s, . . . , q

T
r,s, . . . , q

T
R,s]

T , (9)

where R is number of the rods in the segment. The deformation d
(s)
q,g of the spring kg between

two rods u and v of the segment s (see Fig. 4), modelling the coupling q by means of spacer

grid g, is

d(s)
q,g = ξ(s)

v,g cos γq + η(s)
v,g sin γq + ξ(s)

u,g cos βq − η(s)
u,g sin βq . (10)

The stiffness matrix Kqg corresponding to this coupling results from identity

∂E
(s)
q,g

∂qs

= Kqgqs , (11)

where E
(s)
q,g = 1

2
kg(d

(s)
q,g)2 is potential (deformation) energy of latter coupling. This matrix has

the form

Kqg = kg

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

...
...

· · · Aq · · · Bq · · ·
...

...

· · · BT
q · · · Cq · · ·

...
...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, g = 1, . . . , G , q = 1, . . . , Q , (12)
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Fig. 4. The spring between two rods replacing the stiffness of the spacer grid g

where

Aq =

[

cos2 βq − sin βq cos βq

− sin βq cos βq sin2 βq

]

, Bq =

[

cos βq cos γq sin γq cos βq

− sin βq cos γq − sin βq sin γq

]

,

Cq =

[

cos2 γq sin γq cos γq

sin γq cos γq sin2 γq

]

(13)

and angles βq, γq (see Fig. 4) are determined by polar coordinates ru, αu and rv, αv of the linked

rods [2]. The blocks Aq, Bq, Cq in (12) are localized at positions corresponding to coordinates

ξ
(s)
v,g, η

(s)
v,g and ξ

(s)
u,g, η

(s)
u,g in the vector of generalized coordinates qs in (9). The conservative math-

ematical model of the arbitrary rod segment s is

Msq̈s + (Ks +

Q
∑

q=1

G
∑

g=1

Kqg)qs = 0 , s = 1, . . . , S , (14)

where Q is the number of the transverse springs inside one segment. The mass Ms and stiffness

Ks matrices of the all identical parallel uncoupled identified rods in the segment are block

diagonal

Xs = diag [XR, . . . , XR] , X = M , K . (15)

2.3. Modelling of the rod segment package

The third and final step is the rod segment package model assembly (below system), that con-

tains the number of S identical revolved rod segments linked by transverse springs between

outer rods (in Fig. 1 marked with dashed line). The mass and stiffness matrices of the segments

(see Eq. (14)) modelled in radial and circumferential displacements of rod nodal points are

identical. Therefore the conservative model of the system in the configuration space

q = [qT
1 , . . . , qT

s , . . . , qT
S ]T (16)

can be written as

Mq̈ + (K + KC)q = 0 , (17)
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where mass M and stiffness K matrices of the mutually isolated segment package are block

diagonal matrices

M = diag [MS, . . . , MS] , K = diag [K∗

S, . . . , K∗

S] , (18)

where

K∗

S = KS +

Q
∑

q=1

G
∑

g=1

Kqg .

The number of the block matrices MS and K∗

S in global matrices M , K corresponds to number

of segments. The structure of the coupling matrix KC between segments is analogical to the

coupling matrix between rods inside the segment.

2.4. Condensed model of the system

The global model (17) has too large DOF number n = 4RGS for calculation of the dynamic

response excited by different sources of excitation. Therefore we compile the condensed model

of the large package of rods using the modal synthesis method [5]. After the modal analysis of

one isolated rod segment with nS = 4RG number of DOF we choose a set of its mS master

eigenvectors normed by M-norm which will be arranged in modal submatrix mVS ∈ RnS ,mS

corresponding to spectral submatrix m
ΛS ∈ RmS ,mS . A set of other eigenmodes of each seg-

ment will be neglected. We introduce the transformation of rod segment generalized coordinates

qs =m VSxs , s = 1, . . . , S . (19)

The condensed mathematical model of the system has the form [5]

ẍ + (m
Λ +mV T · KC ·mV )x = 0 , (20)

where x = [xT
1 , . . . , xT

s , . . . , xT
S ]T and

m
Λ = diag [mΛs] ∈ Rm,m , mV = diag [mVs] ∈ Rn,m , s = 1, . . . , S

are block diagonal matrices, whereas m
Λs =m

ΛS , mVs =m VS are spectral and modal subma-

trices of the isolated rod segment (14). Eigenfrequencies Ων and eigenvectors

xν = [xT
1,ν , . . . , x

T
s,ν, . . . , x

T
S,ν]

T , ν = 1, . . . , m

of the system are obtained from the modal analysis of the condensed model (20). Subvectors

xs,ν, corresponding to rod segment s (s = 1, . . . , S), can be transformed according to (19) from

the space of master modal coordinates of the condensed model (20) to the original configuration

space of the generalized coordinates of rod segments by

qν =m V xν or q(s)
ν =m VSxs,ν , s = 1, . . . , S . (21)

The eigenvalues calculated using the condensed model (20) are tested with respect to noncon-

densed model (17) for different number mS of applied rod segment master eigenvectors on the

basis of the cumulative relative error of the eigenfrequencies and the normalized cross orthog-

onality matrix [8].
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3. Example

Let us consider the central symmetric package of rods with six rod segments (Fig. 5) linked

by three identical spacer grids uniformly located between fixed ends of rods (le = 1 m, e =
1, . . . , 4, see Fig. 3). Each segment has ten lines of rods and consists of R = 55 identical rods

with fully restrained ends in the form of steel tube (ρ = 7800 kgm−3, E = 2 · 1011 Pa) with

outer radius 4.55 mm and inner radius 4.25 mm. The rod spacing is 13 mm. Eigenfrequencies

f [Hz] of one isolated rod (without grid springs) are presented in Table 1. The eigenfrequencies

of the isolated axially symmetric rod are double-frequencies.
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Fig. 5. The cross-section of the system with six rod segments and ten rods inline in one segment

Table 1. Rod eigenfrequencies

ν 1.2 3.4 5.6 7.8 9.10 11.12

fR
ν 3.513 9.76 19,361 36.627 60.546 97.436

Let use consider the isolated first rod segment with spacer grids characterized by two dif-

ferent transverse springs kg = 100 and kg = 200 N/m for g = 1, 2, 3 between adjacent

rods. Eigenfrequencies of these rod segments are bounded bellow by triple of eigenfrequen-

cies fS
1 = fS

2 = fS
3 equal to the lowest rod eigenfrequency pair fR

1 = fR
2 = 3.513 Hz. Highest

rod segment triple eigenfrequencies fS
658 = fS

659 = fS
660 = 97.84 Hz for kg = 100 N/m and

fS
658 = fS

659 = fS
660 = 98.27 Hz for kg = 200 N/m only little exceed the highest rod eigenfre-

quency pair fR
11 = fR

12 = 97.436 Hz. The spacer grids influence the spectrum of eigenfrequen-

cies between values presented in Table 1. The number of segment eigenfrequencies between

lower values in Table 1 is smaller for stiffer grids and for softer grids vice versa. As an illus-
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Fig. 6. The first mode shape of the spacer grids of the isolated rod segment

tration, the mode shapes of the rod segment with springs kg = 200 N/m corresponding to the

lowest eigenfrequency fS
1 = 3.513 Hz at the level of grids is shown in Fig. 6.

It follows from the figures that the spacer grids are not deformed and only transfer to new

positions in consequence of different rod deformations. Analogous to the mode shapes corre-

sponding to the first triple of eigenfrequencies, spacer grids are not deformed on mode shapes

corresponding to other triples of rod segment eigenfrequencies presented in Table 1. All other

eigenfrequencies and mode shapes of the rod segment from set of nS = 4RG = 4 · 55 · 3 = 660
eigenvalues depend on spacer grid stiffnesses kg.

The complex package of rods under consideration (see Fig. 5) has n = S · nS = 3960 DOF.

The spectrum of eigenfrequencies for kg = 200 N/m is distributed between values f1 = f2 =
f3 = 3.513 Hz and f3958 = f3959 = f3960 = 98.334 Hz. The lowest triple of eigenfrequencies

is the same as with one segment and the highest triple of eigenfrequencies is slightly different.

The spectrum is very crowded, especially for higher frequencies.

As an illustration, the mode shapes of the system at the level of the second (central) spacer

grid corresponding to lowest three identical eigenfrequencies are shown in Fig. 7, 8, 9. The

spacer grids are not deformed and appropriate eigenfrequencies do not depend on spacer grid

stiffnesses kg. Analogous to the isolated rod segment the mode shapes corresponding to other

triples of eigenfrequencies (values are in Table 1) are characterized by transfer of undeformed

spacer grids.

The condensed mathematical model (20) was applied to the calculation of eigenfrequencies

fν(mS) for different number of rod segment master eigenvectors mS included in modal sub-

matrix mVS. An accuracy of condensed model was tested in terms of relative errors of lowest

eigenfrequencies defined in the form

εν =
|fν(mS) − fν |

fν

,
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Fig. 7. The first mode shape of the second (central) spacer grid of the complex package of rods
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Fig. 8. The second mode shape of the second (central) spacer grid of the complex package of rods
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Fig. 9. The third mode shape of the second (central) spacer grid of the complex package of rods

Fig. 10. The relative errors of lowest eigenfrequencies of the complex package of rods condensed model

for different number of rod segment master eigenvectors mS

120



V. Zeman et al. / Applied and Computational Mechanics 5 (2011) 111–122

where fν are eigenfrequencies of the full (noncondensed) model with 3960 DOF. The rela-

tive errors of 50 lowest eigenfrequencies of the condensed model for different number mS =
50, 100, 200 is shown in Fig. 10. The frequency lower eigenmodes corresponding to condensed

model with ms = 200 segment master eigenvectors practically have no deviations from eigen-

modes of the condensed model. It stands to reason that condensed model with number of DOF

m = SmS = 6 · 200 = 1 200 is suitable for next phases of package rods dynamic analy-

sis.

4. Conclusion

The described method enables to investigate effectively the flexural vibration of the large pack-

age of parallel rods linked by spacer grids. The special coordinate system of radial and orthog-

onal rod displacements makes possible to separate the complex package of rods into several

identical revolved rod segments characterized by identical mass and stiffness matrices. This

approach to modelling makes possible to significantly stream-line the computing program as-

semblage, modal analysis in Matlab code and to save the computer memory.

This new approach, based on the system decomposition into more rod segments and modal

synthesis method with reduction of DOF number, was applied to the test package of rods which

is structurally conformable to nuclear fuel assembly. In future this methodology will be used

for modelling the nuclear fuel assembly vibration caused by kinematic excitation determined

by the support plate motion of the reactor core.
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Ae 18018T, Škoda, Nuclear Machinery, Pilsen, Co. Ltd., 1995.
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