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Abstract

The main aim of this work is to derive a finite beam element especially for solving of non-stationary problems

of thin viscoelastic orthotropic beams. Presented approach combines the Timoshenko beam theory with the con-

sideration of nonzero axial strain. Furthermore, the discrete Kelvin-Voight material model was employed for the

description of beam viscoelastic material behaviour. The presented finite beam element was derived by means of

the principle of virtual work. The beam deflection and the slope of the beam have been determined by the analyti-

cal and numerical (FEM) approach. These studies were made in detail on the simple supported beam subjected to

the non-stationary transverse continuous loading described by the cosine function in space and by the Heaviside

function in time domain. The study shows that beam deformations obtained by using derived finite element give

a very good agreement with the analytical results.
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1. Introduction

This work concerns the solution of the planar problem of a thin straight orthotropic viscoelas-

tic beam subjected to a non-stationary loading. The main aim of this study is to derive the

finite beam element based on the approximate Timoshenko beam theory and to compare ana-

lytical and numerical results for a particular beam problem. The purpose of this effort is to use

such element for the effective numerical solution of beam-like structures inverse problems with

minimal loss of solution accuracy. It is well known fact that inverse problems, e.g. material

parameters identification etc., are usually very time-consuming and so the demand for effective

computation is one of the most important (see e.g. [7]).

Many authors were concerned with analytical as well as finite element solutions of beam

problems. The classical Euler-Bernoulli beam theory [2,4] is restricted for thin beams and does

not include the effect of shear forces on the beam deformation. Due to this limitation, in 1921

Timoshenko developed a beam theory including the effect of the transverse shear deformation

which is assumed constant across the thickness of the beam and depends on the shear correction

factor (see e.g. [2, 4]). Further, Chandrashekhara et al. [6] employed the analytical solution for

the free vibration of laminated composite beams including the transverse (first-order) shear

deformation effects and the rotary inertia. The solution procedure is applicable to arbitrary

boundary conditions. Two higher order displacement based on shear deformation theories of

free vibration analysis of laminated composite beams is carried out for example in [8].
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Finite elements have also been developed based on the Timoshenko theory as could be found

in [3,10] or [12]. Most of these finite element models possess a two node-two degree of freedom

structure because the requirements of the variational principle for the Timoshenko’s displace-

ment field are accepted. Davis et al. showed in [3] that a Timoshenko beam element converged

to the exact solution of the elasticity equations for a simply supported beam provided that the

correct value of the shear factor is used. Thomas and Abbas [10] presented for the first time

a finite element model with nodal degrees of freedom which can satisfy all the forced and the

natural boundary conditions of a Timoshenko beam. The mass and stiffness matrices of the ele-

ment are derived from kinetic and strain energies by assigning polynomial expressions for total

deflection and bending slope. Zienkiewicz and Taylor [12] give a summary of finite element

models for the Euler-Bernoulli and the Timoshenko theory. A mathematical framework from

which general problems may be formulated and solved using variational and Galerkin methods

is presented. In addition, these authors consider problem of shape functions for situations in

which the approximating functions (displacement and slope) are necessary C0 and C1 continu-

ous. Zienkiewicz and Taylor also cover in some detail formulations for viscoelasticity, plasticity

and viscoplasticity material models.

One can find several types of already derived finite beam elements which employed a higher

order shear deformation theories. A second-order beam theory requiring two coefficients,

one for cross-sectional warping and the second for transverse direct stress, was developed by

Stephen and Levinson [9]. Heyliger and Reddy [5] used a higher order beam finite element for

bending and vibration problems. In this formulation, the theory assumes a cubic variation of

the in-plane displacement in thickness co-ordinate and a parabolic variation of the transverse

shear stress across the thickness of the beam. Further this theory satisfies the zero shear strain

conditions at the top and bottom surfaces of the beam and neglects the effect of the transverse

normal strain. Subramanian [8] furthermore carried out two-node C1 finite elements of eight

degrees of freedom per node for the vibration problems of the laminated composite beams. Ap-

plied theories not only include the effect of transverse shear strain and normal strain but also

satisfy free transverse shear strain/stress conditions on the top and bottom lateral surfaces of the

beams.

This paper relates to the work [11] in which the analytical solution of static and free vibration

problem of a uniform and linear elastic beam has been derived. In addition, results obtained

in [1], where authors presented analytical and numerical solution of non-stationary vibrations

of a thin viscoelastic beam, were utilized. In both mentioned works, beams were supposed as

orthotropic and thin and their formulations were based on the Timoshenko beam theory.

2. Problem formulation

We generally consider a straight beam of length 2l consisting of n layers which are perfectly

bonded. Let us number these layers from the lower to the upper face as shown in Fig. 1. The

overall thickness of the laminated beam is h. Homogenous, orthotropic and linear viscoelastic

(Kelvin-Voight model) material properties of layers are supposed. Each layer k is referred to

by the x3 coordinates of its lower face hk−1 and upper face hk. The angle θk is the orientation

of the kth layer (in directions L, T, T ′) with respect to the x1-axis. The cross-section area of

beams can have various geometries (with the width b) but must be uniform along the x1-axis and

symmetric to the x3-axis. Furthermore, the general combination of lateral and axial loading may

be applied but only bending and stretching in the x1 − x3 plane of symmetry can exist. This

is the reason why only displacements u1(x1, x3, t) and u3(x1, t) in the x1 and x3 directions,
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Fig. 1. A thin laminated beam with a symmetric cross-section

respectively, may be nonzero if the assumption is accepted that Poisson’s effects may cause

deformations only in the x1 − x3 plane.

The displacement fields for the first-order shear deformation theory are taken as

u1(x1, x3, t) = u(x1, t) + x3 ψ(x1, t) and u3(x1, t) = w(x1, t) , (1)

where u(x1, t) is the displacement due to extension, w(x1, t) is the displacement due to bending

and ψ(x1, t) represents rotation of the transverse normal referred to the plane x3 = 0. Besides,

u(x1, t) can be expressed in the form

u(x1, t) = uc(x1, t) − zcψ(x1, t) (2)

with the help of displacement uc(x1, t) in centroidal axis direction when the distance of this axis

and x1-axis is

zc =
B11

A11

, (3)

where B11 and A11 are stiffness parameters well-known in the laminate theory (see e.g. [11]).

The nonzero strain-displacement relationships for presented theory are then given as

ε11(x1, x3, t) =
∂u1

∂x1

=
∂u

∂x1

+x3

∂ψ

∂x1

, 2 ε31(x1, t) =
∂u3

∂x1

+
∂u1

∂x3

=
∂w

∂x1

+ψ = γ(x1, t) . (4)

To make following relations more transparent, the notation for strain and stress tensor compo-

nents are reduced to ε11 = ε1, 2 ε31 = ε5, σ11 = σ1 and σ31 = σ5. The stress-strain relationships

for the kth layer is then, with respect of (4), taken as

σk
i = Qk

ii εi + Q̃k
ii ε̇i for i = 1, 5 , (5)

where

Qk
11

=
E1

1 − µ12µ21

, Qk
55

= G31 , Q̃k
11

=
λ1

1 − ν12ν21

and Q̃k
55

= η31 (6)

are the reduced material constants. It is obvious that the Young’s modulus E1 is equal to the

longitudinal modulus EL and the transverse modulus ET for θk = 0 and θk = 90, respectively.

It is similarly valid for the coefficient of normal viscosity λ1. The other material constants

(i.e. the Poisson’s ratios µ12, µ21 and ν12, ν21 of elastic and viscous elements in material model,

respectively, shear modulus G31 and the coefficient of shear viscosity η31) in coordinate system

x1, x2, x3 are the same as in the coordinate system L, T, T ′ for both angles θk.

91
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3. Finite element formulation

In this paper, the shape functions are formulated using weak form for linear elastic rods,

see [12]. When the longitudinal and centroidal axes are identical, the displacement field can

be restricted to bending and axial strains, eqs. (1) and (2). Then the solution of rod problem in-

volves finding one-dimensional interpolations to approximate each of these functions appearing

in the weak form.

Zienkiewicz and Taylor bring in [12] that the weight function for the axial deformation

and the static problem must satisfy the exact solution of the adjoint homogeneous ordinary

differential equation of the second order. Therefore the linear polynomial

uc(x1, t) = [1, x1][a0(t), a1(t)]
T = φ1(x1)c1(t) (7)

is selected to describe the centroidal deformation. If a static behaviour of the Euler-Bernoulli

beam is considered, the exact interpolation for the transverse displacement can be also found.

In order to obtain exact interelement nodal solution for ordinary differential equation, the inter-

polation function for the weight function must satisfy the exact solution of the adjoint homo-

geneous differential equation of the fourth order as mentioned in [12]. It is the reason why a

polynomial of cubic order for Euler-Bernoulli beam shape function is to use, i.e.

w(x1, t) =
[
1, x1, x

2

1
, x3

1

][
a2(t), a3(t), a4(t), a5(t)

]T
= φ2(x1)c2(t) . (8)

It could be also found in [12] that the proposed transverse and centroidal axis displacement

approximations may be used in transient analysis as well, however then the solution is no longer

be exact at the interelement nodes. Therefore vectors c1(t) and c2(t) in (7) and (8) are generally

assumed time-dependent.

Implementation of the transverse shear strain contribution to the rotation angle about the

coordinate axis x2, i.e. the application of the Timoshenko theory, was made by the next way.

We consider equations of motion

B11u
′′(x1) + D11ψ

′′(x1) − αA55γ(x1) = 0 , (9)

see [11], where inertial forces were neglected and distributed forces per length on the beam faces

are omitted. It means in consequence that the transverse force and transverse shear strain are

constant along the element length. Inserting displacement approximations mentioned above into

modified balance equations, we are able to determine the rotation angle including the transverse

shear strain

ψ(x1, t) = γ −
∂w

∂x1

= [φ5 − φ2

′(x1)] c2(t) = φ3(x1)c2(t) (10)

with

φ5 = [0, 0, 0,−6 DT/(αA11A55)] and DT = A11D11 − B2

11
. (11)

The parameter α is the shear correction factor and may be calculated as shown in [11]. The

stiffness constants are defined as follows

(A11, B11, D11) =
n∑

k=1

Qk
11

∫ hk

hk−1

b(x3)(1, x3, x
2

3
) dx3 , A55 =

n∑

k=1

Qk
55

∫ hk

hk−1

b(x3) dx3 . (12)

Now we consider the division of the beam domain V into a set of disjoint subdomains V e

such that the sum over the element domains V e is equal to V . Similarly the boundary is divided
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into subdomains. Because the finite beam element is developed by means of the principle of

virtual work (see e.g. [12]), we obtain after some simplifications the relation

∑

e

{
∑

j=1,5

∫

V e

δεj σj dV +
∑

i=1,3

[∫

V e

δui (ρ üi − Xi) dV −

∫

Ae
p

δui pi dA

]}
= 0 , (13)

where Ae
p is a boundary segment on which tractions pi are specified and where Xi are body

force components. It follows from (13) that the definition of the local axis xe within the domain

V e of each element is useful. Consequently, generalized deformations in element nodes may be

given as

q1(t) = [u(0, t), u(le, t)]
T

and q2(t) = [w(0, t), w(le, t), ψ(0, t), ψ(le, t)]
T, (14)

while the finite element is considered of length le. Using the approximate functions (7), (8) and

(10) which are expressed in local coordinates leads to the system of equations

[
q1(t)
q2(t)

]
=

[
S11 −zcS12

0 S22

][
c1(t)
c2(t)

]
, S11 =

[
φ1(0)
φ1(le)

]
, S12 =

[
φ3(0)
φ3(le)

]
, S22 =

⎡
⎢⎢⎣

φ2(0)
φ2(le)
φ3(0)
φ3(le)

⎤
⎥⎥⎦. (15)

Solving the equation (15), we get time-dependent functions

c1(t) = S−1

11
q1(t) + zcS

−1

11
S12S

−1

22
q2(t) and c2(t) = S−1

22
q2(t) . (16)

Substituting this result into (7), (8) and (10), the finite element approximation for displacements

could be rewritten as follows

u(xe, t) = φ1(xe)S
−1

11
q1(t) + φ4(xe)S

−1

22
q2(t) ,

w(xe, t) = φ2(xe)S
−1

22
q2(t) ,

ψ(xe, t) = φ3(xe)S
−1

22
q2(t) (17)

with

φ4(xe) = zc

[
φ1(xe)S

−1

11
S12 − φ3(xe)

]
. (18)

To derive mass, stiffness and damping matrices of the finite element using the principle of

virtual work, eqs. (4), (5) and (17) are substituted into (13). If the matrix Ikl
ij is defined as

Ikl
ij =

∫ le

0

∂ iφT
k

∂xi
e

∂ jφl

∂xj
e

dxe , (19)

we can write

∑

i=1,3

∫

V e

ρ δui üi dV =
[
δqT

1
(t), δqT

2
(t)

][Me11 Me12

MT
e12 Me22

][
q̈1(t)
q̈2(t)

]
= δqT

e (t) Me q̈e(t) , (20)

∑

j=1,5

∫

V e

δεj σj dV =
[
δqT

1
(t), δqT

2
(t)

]{[
Ke11 Ke12

KT
e12 Ke22

][
q1(t)
q2(t)

]
+

[
Be11 Be12

BT
e12 Be22

][
q̇1(t)
q̇2(t)

]}
=

δqT
e (t) {Ke qe(t) + Be q̇e(t)} , (21)
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where

Me11 = S−T
11

ρ11I
11

00
S−1

11
,

Me12 = S−T
11

[
ρ11I

14

00
+ R11I

13

00

]
S−1

22
,

Me22 = S−T
22

[
ρ11

(
I22

00
+ I44

00

)
+ R11

(
I34

00
+ I43

00

)
+ I11I

33

00

]
S−1

22
, (22)

Ke11 = S−T
11

A11I
11

11
S−1

11
,

Ke12 = S−T
11

[
A11I

14

11
+ B11I

13

11

]
S−1

22
,

Ke22 = S−T
22

[
A11I

44

11
+ αA55I

55

00
+ B11

(
I34

11
+ I43

11

)
+ D11I

33

11

]
S−1

22
, (23)

Be11 = S−T
11

Ã11I
11

11
S−1

11
,

Be12 = S−T
11

[
Ã11I

14

11
+ B̃11I

13

11

]
S−1

22
,

Be22 = S−T
22

[
Ã11I

44

11
+ αÃ55I

55

00
+ B̃11

(
I34

11
+ I43

11

)
+ D̃11I

33

11

]
S−1

22
. (24)

In these relations, we can find other parameters except A11, B11, D11 and A55 defined by (12).

Then, the mass moment of inertia terms are given as

(ρ11, R11, I11) =

n∑

k=1

ρk

∫ hk

hk−1

b(x3)(1, x3, x
2

3
) dx3 , (25)

where ρk is the mass density of the kth material layer, and parameters of damping are taken as

(Ã11, B̃11, D̃11) =
n∑

k=1

Q̃k
11

∫ hk

hk−1

b(x3)(1, x3, x
2

3
) dx3 , Ã55 =

n∑

k=1

Q̃k
55

∫ hk

hk−1

b(x3) dx3 . (26)

As obvious from (13), each finite element is generally subjected to body forces and tractions.

These loadings may be time dependent and therefore can be rewritten in the form

∑

i=1,3

(∫

V e

δui Xi dV +

∫

Ae
p

δui pi dA

)
= δqT

e (t)fe(t) , (27)

where fe(t) is the vector of element external loading.

Expressing the vector qe using the corresponding localization matrix Je for each element

by the relation

qe(t) = Je q(t) (28)

and substituting (20), (21) and (27) into (13), the solution of a problem by a finite element

method leads to differential equations of the form

Mq̈(t) + Bq̇(t) + Kq(t) = f (t) for δqT (t) �= 0 , (29)

where

M =
∑

e

JT
e MeJe , B =

∑

e

JT
e BeJe , K =

∑

e

JT
e KeJe (30)

are mass, damping and stiffness matrices, respectively, and

f (t) =
∑

e

JT
e fe(t) (31)

is time dependent vector of external loading. The vector q(t) represents generalized displace-

ments in nodes that can be obtained by solving the system (29) with the help of some numerical

integration method.
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4. Analytical solution used for finite element verification

As mentioned above, the verification of derived finite element was performed using the analyt-

ical solution of a particular beam problem. The analytical solution of non-stationary vibration

of a simply supported thin viscoelastic beam presented in [1] was used for this purpose. The

geometry of this problem is depicted in Fig. 2. A thin beam of length 2l and with rectangular

cross-section b × h is on its upper surface excited by a non-uniform tranverse external loading

that is nonzero only on the region of length 2d. The spatio-temporal function describing this

loading was assumed in the form

q(x1, t) = σa b cos
π(x1 − l)

2d
H(t) for x1 ∈ 〈l − d, l + d〉, (32)

where σa represents the excitation amplitude and H(t) denotes the Heaviside function in time.

Fig. 2. Geometry of a simple supported beam with applied loading

Using the Timoshenko beam theory and solving the resulting system of two partial integro-

differential motion equations by the method of integral transforms, the beam deflection function

w(x1, t) and the beam slope function ψ(x1, t) can be expressed as infinite sums in the form [1]

w(x1, t) =

∞∑

n=1

C(n) sin (ωnx1)L
−1

{
H4(n, p)

pH6(n, p)

}
,

ψ(x1, t) =
∞∑

n=1

C(n) cos (ωnx1)L
−1

{
H2(n, p)

pH6(n, p)

}
, (33)

where the operator L−1 denotes the inverse Laplace transform and the real function C(n) related

to the applied loading is defined as

C(n) = 4 σa d b
cos

(
π n d
2 l

)
sin

(
π n
2

)

π l
[
1 −

(
n d
l

)2
] . (34)

The complex functions Hi(n, p) (i = 2, 4, 6) in (33) are introduced by relations

H2(n, p) = 12 αωn G∗(p) , H4(n, p) = h2
(
ρ p2 + ωn

2 E∗(p)
)

+ 12 α G∗(p) ,

H6(n, p) = b h

[(
ρ p2 + α ωn

2 G∗(p)
)
H4(n, p) −

1

12
H2(n, p)2

]
, (35)

where ωn = nπ
2 l

. Viscoelastic material properties of the beam are described by the complex

moduli E∗(p) a G∗(p) which, in the case of generalized standard viscoelastic solid model with

N parallel Maxwell elements, can be expressed as

E∗(p) =

N∑

k=0

E1k
−

N∑

k=1

E 2

1k

λ1k
p + E1k

, G∗(p) =

N∑

k=0

G31k
−

N∑

k=1

G 2

31k

η31k
p + G31k

. (36)

The analytical solution for the Kelvin-Voight material model can be then simply obtained by

the assumption N = 1 and E11
→ ∞.
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5. Numerical results and discussion

In this section, the comparison of analytical and numerical results obtained by different integra-

tion methods and using two beam theories is given. Moreover, the verification of the analytical

approach is performed with the help of FE solution using the software MSC.Marc. All com-

putations were made for the problem depicted in Fig. 2 for the time interval t ∈ 〈0, 200〉µs

under the assumption σa = 1 MPa and 2 d = 4 mm. Furthermore, the geometric dimensions

were taken as l = 50 mm, h = 10 mm and b = 5 mm. The value of the shear correction factor

corresponds to arbitrary rectangular cross-section, i.e. α = 0.833.

The parameters describing material behaviour of the beam studied were assumed as follows:

ρ = 2.1 · 103 kg m−3, E1 = 39 GPa, G31 = 3.8 GPa, λ1 = 35 kPa s. Elastic and viscous

Poisson’s ratios were the same and equal to 0.28. It should be emphasized that the used material

parameters do not correspond to a real material because it is nearly impossible to find values

of all needed parameters for orthotropic material in literature. That is why some properties

of unidirectional composite material E-glass/epoxy were used for the estimation of required

parameters.

Points with coordinate x1 ∈ {52, 60, 70}mm, where the deflection and the slope of the beam

were calculated, have been selected as points of interest. This choice allowed us to compare

analytical and numerical solutions both in the vicinity of applied loading (the first point was

identical to the boundary of loaded domain) and far from it. The computation of all presented

problems have been done on a PC Pentium 4 with CPU 2.99 GHz and with RAM 3 GB.

5.1. Results given by MSC.Marc software

The numerical solution obtained using FE software MSC.Marc served for the verification of

the analytical solution quality whereas the problem was solved as the problem of plane stress.

Because the condition of symmetry were accepted, only the half of the beam geometry was mod-

eled. The beam mesh consisted of 12500 regular four-node isoparametric elements with linear

approximations. The basic element size 0.2 × 0.2 mm was chosen according to the work [1]

and only the elements near the area of excitation were once refined to the half of their original

size to reach better representation of applied loading. In addition to the zero axial displacement

defined on the axis of symmetry, the boundary condition representing the beam support was

prescribed in the first node at the bottom beam edge. Material properties of the beam were

represented by the discrete viscoelastic model which is implemented in the used software.

The integration in time domain was performed by the Newmark method with a constant

acceleration and with integration step 4 · 10−8 s. This value was determined with respect to

the maximum stable integration step of the explicit scheme of central differences [1]. This fact

together with maximum time of interest led to very time-consuming computation which took

about 4.7 hours.

As it is shown in Fig. 3, the comparison of the history plots of deflection w in points of in-

terest between analytical (A.S. lines) and numerical (FEM lines) approach has been done. FEM

results were investigated on the upper beam edge. It is obvious from Fig. 3(a) that both solution

correspond each other quite well in all points studied. Moreover, the detailed view in Fig. 3(b)

shows that some oscillations of the numerical solution occur. These phenomena are particularly

clear for x1 = 52 mm. The reason of these oscillations lies in the two-dimensionality of the

FE numerical model. The obtained results show that the presented analytical solution may be

employed for studying quality of derived finite element.
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Fig. 3. History plot of beam deflection in points of interest (a) and detailed view (b). Analytical approach

versus results given using software MSC.Marc

5.2. Results given by FE solution based on Euler-Bernoulli theory

In this part, numerical results computed using the finite elements developed based on the Euler-

Bernoulli theory were compared with the analytical solution. For this purpose the FE model

A built with 50 elements and FE model B built with 500 elements were presented. In both

cases, finite elements were taken with the constant length along longitudinal beam axis. Euler-

Bernoulli beam elements needed in these analyses can be simply obtained by omitting the vector

φ5 in (11). Therefore, the derived element in this part was utilized with some simplifications.

Only essential boundary conditions, i.e. zero displacements at the end nodes of mesh according

to Fig. 2, were applied in cases A and B.

Central difference method with integration step 1.25 · 10−7 s (problem A) and Newmark

method with a constant acceleration and with integration step 1 · 10−7 s (problem B) were

used for numerical integration of the system (29). Time steps were chosen with respect to the

elements length and to the phase velocity of longitudinal wave in a thin rod. That is why the

computation times of A and B problems were 0.8 s and 56 s, respectively, when the whole time

interval t ∈ 〈0, 200〉 µs were taken into account.

It is observed from Fig. 4 given for the beam deflection (a) and the slope of beam (b) that

correspondence between analytical and numerical results is rather bad. We can find cumulative

difference in the beam deflection at all points of interest with increasing time. The curves

describing the beam slope have even different form. Consequently, FE model contained 500
elements and solved with the help of central difference method was made but results were

similar to them in the case B.

5.3. Results given by FE solution based on Timoshenko theory

In what follows, numerical tests using the Timoshenko beam theory are performed to confirm

the quality of the finite element derived. Therefore, deformations of simply supported beam for

variants 1 to 5 shown in Table 1 were studied. As can be seen for individual models in this table,

meshes of solved problems consisted of 50 or 500 elements of equal lengths. Further, boundary

conditions and numerical integration methods were used, as well as in cases of finite element

models based on the Euler-Bernoulli theory.

It is clear from Table 1 that beam deformations obtained by FEM (in time t = 200 µs) are

slightly different from their exact values (errors are less than 0.2 %). Similarly, good agreements
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M. Zajı́ček et al. / Applied and Computational Mechanics 5 (2011) 89–100

0 0.5 1 1.5 2

x 10
−4

0

0.5

1

1.5

2

2.5

3

x 10
−5

t [s]

w
 [

m
]

 

 

A.S. (x
1
 = 52mm)

A.S. (x
1
 = 60mm)

A.S. (x
1
 = 70mm)

Case A (x
1
 = 52mm)

Case B (x
1
 = 52mm)

Case A (x
1
 = 60mm)

Case B (x
1
 = 60mm)

Case A (x
1
 = 70mm)

Case B (x
1
 = 70mm)

0 0.5 1 1.5 2

x 10
−4

−6

−5

−4

−3

−2

−1

0
x 10

−4

t [s]

ψ
 [
ra

d
]

 

 

A.S. (x
1
 = 52mm)

A.S. (x
1
 = 60mm)

A.S. (x
1
 = 70mm)

Case A (x
1
 = 52mm)

Case B (x
1
 = 52mm)

Case A (x
1
 = 60mm)

Case B (x
1
 = 60mm)

Case A (x
1
 = 70mm)

Case B (x
1
 = 70mm)

(a) (b)

Fig. 4. History plot of beam deflection (a) and slope of beam (b) in points of interest. Analytical approach

versus FE solution based on Euler-Bernoulli theory

Table 1. Comparison of numerical and analytical results in time 200µs

CPU Error [%] (T = 200µs)

Model Method Elem. Integration time w ψ

m step [s] [s] x1 [mm]

52 60 70 52 60 70

1 Cent. diff. 500 2.50e−8 216 0.013 0.013 0.005 0.050 0.019 0.011

2 Newmark 500 1.00e−7 54 0.001 0.001 −0.008 0.040 0.008 −0.001

3 Cent. diff. 50 2.50e−7 0.58 0.194 0.185 0.167 0.110 0.079 0.069

4 Newmark 50 1.00e−6 0.23 0.074 0.063 0.043 0.005 −0.031 −0.047

5 Newmark 50 2.50e−7 0.61 0.074 0.063 0.042 0.010 −0.026 −0.045

in absolute values of deformations are found in all points of investigated time interval. In order

to make the mutual comparison of results accuracy over all cases (m = 1, . . . , 5), following

parameters have been defined:

w∗(x1, t, T )
∣∣m
r

=
wm(x1, t) − wA.S.(x1, t)

wr(x1, T ) − wA.S.(x1, T )
,

ψ∗(x1, t, T )
∣∣m
r

=
ψm(x1, t) − ψA.S.(x1, t)

ψr(x1, T ) − ψA.S.(x1, T )
, (37)

where wm(x1, t) and wA.S.(x1, t) is beam deflection calculated from mth problem and analyt-

ical solution, respectively. In the analogous way, the notation of beam slope ψm(x1, t) and

ψA.S.(x1, t) is employed. It is shown in Table 1 that the minimum difference were found for

model m = 2. Consequently, the parameter r = 2 were taken for the calculation of w∗|mr and

ψ∗|mr in (37). Fig. 5 shows history plots of these parameters in selected points of interest within

the time interval 〈0, T 〉 where T = 200 µs. It is obvious from this figure that both solutions with

a fine-mesh discretization (m = 1, 2) give very good results over the whole time interval but the

best results are explicitly found for m = 2. Furthermore, comparing results of all studied vari-

ants (mainly the deflections in Fig. 5(a) and Fig. 5(b)) it can be said that the better accuracy with
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Fig. 5. History plot of parameters w∗|mr and ψ|mr for r = 2 and T = 200µs in some points of interest.

FE solution based on Timoshenko theory

respect to results of the model 2 can be achieved by the use of the Newmark integration method.

The history plots for point of interest x1 = 60 mm were analysed as well but changing curves

characters were similar to the case x1 = 70 mm. Therefore these curves are not presented in

this work.

6. Conclusion

The finite beam element for solving orthotropic viscoelastic problems was derived based on the

Timoshenko theory using the principle of virtual work. The discrete Kelvin-Voight model was

used for the description of its material behaviour. The validation of this element was made with

the help of analytical solution and of the FE system MSC.Marc on the problem of simply sup-

ported beam subjected to a transverse non-stationary loading. Concretely, the time distribution

of the beam deflection and the slope of the beam were compared in time interval 0 to 200 µs and

in three specific points (x1 ∈ {52, 60, 70}mm), one of which was situated in the vicinity of the

loading applied. The beam deformations were calculated using the derived element, whereas

the Euler-Bernoulli theory and the Timoshenko theory were taken into account. The meshes of

99
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numerical models consisted of 50 or 500 elements and the Newmark method or the method of

central differences were used for the integration in time domain. Based on the computations

performed, one can say that the developed finite element gives very accurate results and its

usage is connected with significantly lower CPU-time than in the case of analytical approach.

With respect to this fact, this element seems to be suitable for the effective solution of inverse

problems.
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