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Abstract

The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is

the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero

on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the non-

stationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by

the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation

of motion equations final form, the method of integral transforms in combination with the Fourier method is used

for finding the problem solution. The solving process results in the derivation of integral transforms of radial and

circumferential displacement components. Finally, the type of derived functions singularities and possible methods

for their inverse Laplace transform are mentioned.
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1. Introduction

The analysis of thin circular solids vibrations is an important subject for many engineering

applications, e.g. radial impact on wheels, transverse loading of disc brakes, dynamic loadings

of disc drives, radial or transverse excitation of circular saw blades, impacts of meteorites on

spinning satellites, impacts of soft bodies on rotating engine discs and blades etc. One can find

lots of works dealing mainly with the transverse vibrations of circular or annular plates and with

the in-plane vibrations of stationary or rotating discs.

The work [7] lies within the first mentioned group. The author concerns the analytical solu-

tion of static and dynamic problem of a transverse excited circular elastic plate. The Mindlin’s

plate theory is used and unlike the most of other works, the asymmetric problem is solved. The

paper [8] from the same author treats the wave propagation in a thin elastic or viscoelastic layer

induced by a transverse non-stationary loading. In this work, the author uses four different nu-

merical or analytical models to describe the wave phenomena in a thin gelatin plate produced

by prescribed pressure or velocity on its boundary. All four approaches are compared and their

limitations are discussed. Another work concerning an impact problem of circular plates is [9].

The collective of authors treats the axisymmetric problem of transverse impact on an isotropic

rotating disc analytically. Comparing results obtained for different angular velocities and for

different materials, the role of centrifugal stresses in absorbing impact energy is discussed. Be-

sides mentioned works, there exist lots of papers treating the stability problems of stationary or

∗Corresponding author. Tel.: +420 377 632 335, e-mail: vadamek@kme.zcu.cz.

5
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rotating discs. A large number of appropriate references can be found e.g. in [12], where the

authors investigated the instability of travelling waves in the transverse vibration of a stationary

disc induced by a rotating friction system.

The presented paper falls within the second set of problems, i.e. in-plane loaded stationary

or rotating discs. This set of problems is not so numerous as the previous one, but number of

works can be found here as well. From the older works, we can mention for example papers

[3, 14] and [11], concerning in-plane stationary vibrations of elastic discs and annular rings pro-

duced by different types of dynamic loading. Another work dealing with the analytical solution

of similar problem is [6]. Chen and Jhu applied Fourier-Bessel series in obtaining plane stress

and displacement distributions in a rotating annular elastic disc under stationary edge load and

studied these distributions approaching the critical value of angular velocity. Koh et al. in [10]

solve the problem of rotating disc subjected to stationary load and the problem of stationary disc

subjected to rotating load numerically. They present the new numerical method called Moving

Element Method (MEM) and compare numerical results with the analytical solution in terms

of complex Fourier-Hankel series. The advantages of the proposed numerical method over the

finite element method are discussed.

Other works dealing with the stationary and mainly non-stationary problems of in-plane

loaded thin elastic discs from the analytical point of view have origin in the Institute of Ther-

momechanics of the Czech Academy of Sciences. In [4] the authors briefly treat the one-

dimensional (1D) problem of torsional impact on a thin elastic disc and the problem of radial

impact on this disc in 1D and 2D. The last mentioned problem of plane stress is solved in [5] in

detail and the functions describing the distributions of displacement components are derived.

In this paper, we utilize the experiences acquired by the solving of other non-stationary

problems, namely the axisymmetric problem of thin viscoelastic plate vibrations induced by

transverse loading [1] and the problem of thin viscoelastic Timoshenko beam vibrations [2], to

make the generalization of the previously mentioned work [5] in the sense of material behaviour

of the disc studied. Concretely, the material properties will be supposed viscoelastic and the

standard linear viscoelastic model will be used for their description. The main purpose of this

effort is to obtain new analytical results which can be then utilized for testing and verification

of existing and new numerical methods. Contrary to the last mentioned work we will consider

zero initial velocity of the disc because non-zero disc velocity does not influence the state of

stress in the disc and cause predictable response in disc displacement.

In the first following part of this work, the mathematical model of the problem solved will

be derived. Then the method used for solving the final system of motion equations will be

described and the Laplace transforms of required displacement components will be presented.

Finally, the type of singularities and the possibilities of the inverse Laplace transform will be

briefly discussed.

2. The problem description and initial assumptions

The disc, in which the non-stationary state of stress is investigated, has constant unit thickness

and finite radius r1. This solid is subjected to the pressure radial loading that has constant

amplitude σ0 nonzero only on the part of disc rim specified by the angle α0 (see Fig. 1). The

amplitude σ0 changes according to the Heaviside function in time, so it causes non-stationary

wave phenomena in the disc studied. Based on previous assumptions, the external excitation

can be expressed by the function
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Fig. 1. The geometry of solved problem Fig. 2. The scheme of the Zener material model

σr(r, ϕ, t)|r=r1
=

{

σ0H(t) for ϕ ∈ 〈−α0, α0〉,
0 otherwise,

(1)

where r and ϕ denote polar coordinates in which the problem will be solved. Their orientation

is obvious from Fig. 1.

The disc material will be supposed homogeneous and isotropic with viscoelastic behaviour.

The dissipative material character will be represented by the discrete model of the standard

linear viscoelastic solid. Namely, the Zener model, i.e. the Maxwell element with elastic spring

in parallel, will be used (see Fig. 2).

With respect to the problem description, the state of plane stress occurs in the disc. This state

is described by the nonzero radial σr (r, ϕ, t), circumferential σϕ (r, ϕ, t) and shear τrϕ (r, ϕ, t)
stress components which all depend on r, ϕ and t. Additionally, the corresponding strain com-

ponents εr (r, ϕ, t), εϕ (r, ϕ, t) and γrϕ (r, ϕ, t) and the displacement components ur (r, ϕ, t)
and uϕ (r, ϕ, t) make the definition of the state in arbitrary point of the disc complete.1 The

fourth nonzero strain component that represents strain in the direction perpendicular to the disc

plane can be expressed using components εr and εϕ.

3. The derivation of mathematical model

3.1. Governing equations

Differential equations of equilibrium for a disc element can be easily derived from the system of

motion equations (momentum conservation) for an three-dimensional continuum element [15].

Introducing corresponding inertial forces acting on a disc element and taking into account that

there exist only three nonzero stress components and two nonzero displacement components,

three motion equations reduce to two non-trivial equations in polar coordinates having the form

ρ
∂2ur

∂t2
=

∂σr

∂r
+

1

r

∂τrϕ

∂ϕ
+

1

r
σr −

1

r
σϕ , ρ

∂2uϕ

∂t2
=

∂τrϕ

∂r
+

1

r

∂σϕ

∂ϕ
+

2

r
τrϕ , (2)

where ρ denotes mass density.

1The functions notations without independent variables will be used in the following to make equations and

relations more transparent, if possible with respect to mathematical explicitness.
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Secondly, strain-displacement equations need to be specified to derive mathematical model

of the problem solved. These relations can be formulated using strain-displacement equations

for small displacements in cylindrical coordinates. With respect to the fact that all strain and

displacement components of the disc are the functions of variables r, ϕ and t, the required

relations between strain and displacement components can be written as

εr =
∂ur

∂r
, εϕ =

1

r
ur +

1

r

∂uϕ

∂ϕ
, γrϕ =

1

r

∂ur

∂ϕ
+

∂uϕ

∂r
−

1

r
uϕ . (3)

As mentioned above, the Zener model was chosen for the representation of viscoelastic disc

properties. Owing to the linearity of the problem, constitutive equations can be derived using

the principle of stress or strain superposition in the case of elements in parallel or in series,

respectively. The corresponding relations can be found e.g. in [13] and for the state of plane

stress and for zero initial stress and strain conditions there hold

σr =
E1 (εr + µ1εϕ)

1 − µ1
2

+
E2 (εr + µ2εϕ)

1 − µ2
2

−
E2

2

λ (1 − µ2
2)

t
∫

0

(εr + µ2εϕ) e−
E2(t−τ)

λ dτ ,

σϕ =
E1 (εϕ + µ1εr)

1 − µ1
2

+
E2 (εϕ + µ2εr)

1 − µ2
2

−
E2

2

λ (1 − µ2
2)

t
∫

0

(εϕ + µ2εr) e−
E2(t−τ)

λ dτ ,

τrϕ = (G1 + G2) γrϕ −
G2

2

η

t
∫

0

γrϕ e−
G2(t−τ)

η dτ . (4)

Material constants Ei, Gi and µi are Young modulus, shear modulus and Poisson ratio of the

alone standing spring (i = 1) or of the spring in the Maxwell element (i = 2), respectively

(see Fig. 2). Symbols λ and η denote coefficients of normal and shear viscosities. Relations (4)

were derived under the assumption of viscous and elastic Poisson ratios equality in the Maxwell

model, i.e ν = µ2.

3.2. The resulting form of motion equations

Based on governing equations mentioned previously, we derive the resulting form of motion

equations in this paragraph. For this purpose, we introduce constants c2i and c3i for i = 1, 2,

which are analogous to the phase velocity of rotational (shear) waves in general continuum and

to the phase velocity of dilatational waves in two-dimensional continuum, by relations

c2i =

√

Gi

ρ
, c3i =

√

Ei

ρ (1 − µ2
i )

(5)

and further we define coefficients α and β as the reciprocal values of relaxation times, i.e.

α =
E2

λ
, β =

G2

η
. (6)

Introducing strain-displacement equations (3) and constitutive relations (4) into motion

equations (2) using (5) and (6) and after some rearrangements, we obtain the final system of
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equations describing non-stationary wave phenomena in the studied viscoelastic disc:

∂2ur

∂t2
= −2β c2

22

1

r

t
∫

0

(

∂2uϕ

∂r∂ϕ
−

∂ωz

∂ϕ

)

e−β (t−τ)dτ +
(

c2
31 + c2

32

) ∂∆d

∂r
−

−2
(

c2
21 + c2

22

) 1

r

∂ωz

∂ϕ
+ α

t
∫

0

(

2c2
22

1

r

∂2uϕ

∂r∂ϕ
− c2

32

∂∆d

∂r

)

e−α(t−τ)dτ ,

∂2uϕ

∂t2
= −2β c2

22

t
∫

0

(

1

r

∂2ur

∂r∂ϕ
+

∂ωz

∂r

)

e−β (t−τ)dτ +
(

c2
31 + c2

32

) 1

r

∂∆d

∂ϕ
+

+2
(

c2
21 + c2

22

) ∂ωz

∂r
+ α

1

r

t
∫

0

(

2c2
22

∂2ur

∂r∂ϕ
− c2

32

∂∆d

∂ϕ

)

e−α(t−τ)dτ , (7)

where ∆d and ωz denote volume dilatation for the state of plane strain and the rotation com-

ponent corresponding to the element rotation around the axis perpendicular to the disc plane,

respectively. These quantities are defined as

∆d =
∂ur

∂r
+

1

r

(

ur +
∂uϕ

∂ϕ

)

, ωz =
1

2

[

∂uϕ

∂r
+

1

r

(

uϕ −
∂ur

∂ϕ

)]

. (8)

Equations (7) represent the system of two partial-integro-differential equations of the second

order for the unknown functions ur (r, ϕ, t) and uϕ (r, ϕ, t). If we compare this system with

appropriate equations for the same problem of an elastic disc [5], i.e.

∂2ur

∂t2
= c3

2 ∂∆d

∂r
−

2c2
2

r

∂ωz

∂ϕ
,

∂2uϕ

∂t2
=

c3
2

r

∂∆d

∂ϕ
+ 2c2

2 ∂ωz

∂r
, (9)

terms, which are the consequence of dissipative disc properties, can be easily identified. Ne-

glecting these terms, the analogy of (7) and (9) is clear.

The formulation of appropriate initial and boundary conditions is the final step of the math-

ematical model derivation. With respect to the problem assumptions specified in the Section 2,

the initial conditions for displacement components and their derivatives are

ur|t=0 = 0 , uϕ|t=0 = 0 ,
∂ur

∂t

∣

∣

∣

∣

t=0

= 0 and
∂uϕ

∂t

∣

∣

∣

∣

t=0

= 0 . (10)

The boundary conditions can be expressed for stress components as

τrϕ|r=r1
= 0 and σr|r=r1

= −
2α0σ0

π

(

1

2
+

∞
∑

n=1

sin (nα0) cos (nϕ)

nα0

)

H(t) , (11)

when the expansion of (1) to the Fourier cosine series was used.

4. Problem solution

There exist several analytical procedures how to solve the equation system (7) under conditions

(10) and (11). Based on our previous experiences acquired by the investigation of analogous

waves problems and with respect to the method used in [5], the combination of integral trans-

form (namely the Laplace transform) with the Fourier (Bernoulli) method will be used.
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4.1. The Laplace transform application

Firstly, the Laplace transform is applied to equations (7). Using the relation for the Laplace

transform of convolution integral and introducing initial conditions (10), the transformed system

(7) has the form

p2 ūr =
2 β c22

2

r (p + β)

(

∂ω̄z

∂ϕ
−

∂2ūϕ

∂r∂ϕ

)

+
α

r (p + α)

(

2 c22
2 ∂2ūϕ

∂r∂ϕ
− c32

2 r
∂∆̄d

∂r

)

+

+
(

c31
2 + c32

2
) ∂∆̄d

∂r
−

2 (c21
2 + c22

2)

r

∂ω̄z

∂ϕ
,

p2 ūϕ = −
2 β c22

2

r (p + β)

(

r
∂ω̄z

∂r
+

∂2ūr

∂r∂ϕ

)

+
α

r (p + α)

(

2 c22
2 ∂2ūr

∂r∂ϕ
− c32

2 ∂∆̄d

∂ϕ

)

+

+ 2
(

c21
2 + c22

2
) ∂ω̄z

∂r
+

(c31
2 + c32

2)

r

∂∆̄d

∂ϕ
, (12)

where p ∈ C is the complex variable of the Laplace transform and the complex functions

ūr (r, ϕ, p), ūϕ (r, ϕ, p), ω̄z (r, ϕ, p) and ∆̄d (r, ϕ, p) correspond to the Laplace transforms of

appropriate real functions mentioned above.

After making some operations with equations (12) and their terms rearrangement, the com-

pact form of the Laplace transform of (7) may be written as

p2 r ω̄z =

[(

1 −
β

p + β

)

c2
22 + c2

21

](

∂ω̄z

∂r
+ r

∂2ω̄z

∂r2
+

1

r

∂2ω̄z

∂ϕ2

)

+

+
(α − β) c2

22 p

(p + α) (p + β)

(

∂3ūr

∂r2∂ϕ
−

1

r

∂3ūϕ

∂r∂ϕ2

)

,

p2 r ∆̄d =

[(

1 −
α

p + α

)

c2
32 + c2

31

](

∂∆̄d

∂r
+ r

∂2∆̄d

∂r2
+

1

r

∂2∆̄d

∂ϕ2

)

+

+
2 (α − β) c2

22 p

(p + α) (p + β)

(

∂3ūϕ

∂r2∂ϕ
+

1

r

∂3ūr

∂r∂ϕ2

)

. (13)

Equations (13) represent partial-differential equations for both the Laplace transforms of the dis-

placement components ur, uϕ and the Laplace transform of the functions ωz, ∆d. But when we

take into account the relation between coefficients of normal λ and shear η viscosity (see [13])

and the relation between E2 and G2, i.e.

λ

η
= 2 (1 + ν) ,

E2

G2
= 2 (1 + µ2) , (14)

and further the assumption ν = µ2 (see Subsection 3.1) and equations (6), we simply find out

that α = β. This fact leads to the essential simplification of (13), the second terms on the right

hand side of both equations vanish, and we obtain two independent partial-differential equations

only for ω̄z or ∆̄d. Finally, defining the complex functions

C2(p) =

√

(

1 −
α

p + α

)

c2
22 + c2

21 and C3(p) =

√

(

1 −
α

p + α

)

c2
32 + c2

31 , (15)

equations (13) can be rewritten into the form

1

r

∂∆̄d

∂r
+

∂2∆̄d

∂r2
+

1

r2

∂2∆̄d

∂ϕ2
−

p2

C2
3

∆̄d = 0 and
1

r

∂ω̄z

∂r
+

∂2ω̄z

∂r2
+

1

r2

∂2ω̄z

∂ϕ2
−

p2

C2
2

ω̄z = 0 . (16)
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4.2. The Fourier method application

Now, we use the Fourier (Bernoulli) method for solving two independent partial-differential

equations (16). We will assume that corresponding solutions may be expressed in variable

separation form

∆̄d (r, ϕ, p) = U1(r, p) Φ1(ϕ) and ω̄z (r, ϕ, p) = U2(r, p) Φ2(ϕ) . (17)

Substituting supposed solutions (17) in equations (16), we obtain Bessel differential equations

for the complex functions U1(r, p) and U2(r, p) and ordinary differential equations for the real

functions Φ1(ϕ) and Φ2(ϕ). The general solutions of mentioned equations can be written as

U1(r, p) = A1(p) Jn

(

ipr

C3

)

+ A2(p) Yn

(

ipr

C3

)

,

U2(r, p) = A3(p) Jn

(

ipr

C2

)

+ A4(p) Yn

(

ipr

C2

)

,

Φ1(ϕ) = B1 cos (nϕ) + B2 sin (nϕ) ,

Φ2(ϕ) = B3 cos (nϕ) + B4 sin (nϕ) , (18)

where Ai(p) and Bi (i = 1, . . . , 4) represent integration constants and Jn and Yn (n = 0, 1, 2, . . .)
are the nth order Bessel functions of the first and second kind, respectively. When we take into

account: (i) the properties of Jn and Yn (see e.g. [16]), (ii) the displacement functions ur,

uϕ reach finite values for r = 0, (iii) the dilatation ∆d is an even function of ϕ and (iv) the

rotation ωz is an odd function of ϕ, we find out that A2(p) = A4(p) = 0 and B2 = B3 = 0.

Consequently, the solutions ∆̄d (r, ϕ, p) and ω̄z (r, ϕ, p) of linear equations (16) are given by

∆̄d =
∞

∑

n=0

Pn(p) Jn

(

ipr

C3

)

cos (nϕ) and ω̄z =
∞

∑

n=1

Qn(p) Jn

(

ipr

C2

)

sin (nϕ) . (19)

Now, introducing the equality α = β together with relations (15) and (19) into modified

equations (12) and after the definition of simple complex functions

z1(r, p) =
ipr

C3(p)
and z2(r, p) =

ipr

C2(p)
, (20)

we obtain relations for required Laplace transforms:

ūr(r, ϕ, p)=−
i C3(p)

p
J1(z1(r, p)) P0(p) −

1

r p2

∞
∑

n=1

[

{

C3(p)2
[

nJn(z1(r, p))−

− z1(r, p)Jn−1(z1(r, p))
]

Pn(p) + 2 n C2(p)2
Jn(z2(r, p)) Qn(p)

}

cos (nϕ)

]

,

ūϕ(r, ϕ, p)=−
1

r p2

∞
∑

n=1

[

{

2 C2(p)2
[

nJn(z2(r, p)) − z2(r, p)Jn−1(z2(r, p))
]

Qn(p) +

+ n C3(p)2
Jn(z1(r, p)) Pn(p)

}

sin (nϕ)

]

, (21)

in which the functions Pn(p) (n = 0, 1, 2, . . .) and Qn(p) (n = 1, 2, . . .) are unknown for the

present.
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4.3. The integral transforms of required functions

Equations (21) represent the Laplace transforms of the required functions ur and uϕ in which the

unknown complex functions Pn(p) and Qn(p) need to be determined. The boundary conditions

(11) will be used for this purpose. Owing to the fact that (11) are formulated for the stress

components τrϕ and σr, it is necessary to take the Laplace transform of (11) and to use (21) for

the derivation of the corresponding complex functions τ̄rϕ (r, ϕ, p) and σ̄r (r, ϕ, p). Introducing

(3) in (4), taking the Laplace transform of resulted relations and inserting (21) in them, one can

write

τ̄rϕ = 2ρ C2
2

∞
∑

n=1

[{(

n(n + 1)

(

C3

pr

)2

Jn(z1(r, p)) − n
iC3

pr
Jn−1(z1(r, p))

)

Pn(p) +

+2

[(

n(n + 1)

(

C2

pr

)2

+
1

2

)

Jn(z2(r, p)) −
iC2

pr
Jn−1(z2(r, p))

]

Qn(p)

}

sin (nϕ)

]

,

σ̄r = 2ρ C2
2

{(

1

2

(

C3

C2

)2

J0(z1(r, p)) +
iC3

pr
J1(z1(r, p))

)

P0(p) +

+

∞
∑

n=1

[{[(

n(n + 1)

(

C3

pr

)2

+
1

2

(

C3

C2

)2
)

Jn(z1(r, p)) −
iC3

pr
Jn−1(z1(r, p))

]

Pn(p)+

+2

(

n(n + 1)

(

C2

pr

)2

Jn(z2(r, p)) − n
iC2

pr
Jn−1(z2(r, p))

)

Qn(p)

}

cos (nϕ)

]}

. (22)

Then introducing relations (22) in the Laplace transforms of boundary conditions (11),

which can be expressed as

τ̄rϕ(r, ϕ, p)|
r=r1

= 0 and σ̄r(r, ϕ, p)|r=r1
= −

2α0σ0

πp

(

1

2
+

∞
∑

n=1

sin (nα0) cos (nϕ)

nα0

)

, (23)

we obtain the system of two equations for each Pn(p) and Qn(p). Their solution can be written

in the form:

P0(p) = −
σ0α0

2 πp KP2(0, p)
, Pn(p) = Rn(p) KQ1(n, p) and Qn(p) = −Rn(p) KP1(n, p),

(24)

where

Rn(p) =
K(n, p)

KQ1(n, p) KP2(n, p) − KQ2(n, p)KP1(n, p)
,

KP1(n, p) =
n

z1(r1, p)

(

Jn−1(z1(r1, p)) −
(n + 1)

z1(r1, p)
Jn(z1(r1, p))

)

,

KP2(n, p) = ρ C2(p)2
[(

1

2
K32(p) −

n(n + 1)

z1(r1, p)2

)

Jn(z1(r1, p)) +
1

z1(r1, p)
Jn−1(z1(r1, p))

]

,

KQ1(n, p) = 2

[(

1

2
−

n(n + 1)

z2(r1, p)2

)

Jn(z2(r1, p)) +
1

z2(r1, p)
Jn−1(z2(r1, p))

]

,

KQ2(n, p) = 2 ρ C2(p)2 n

z2(r1, p)

(

Jn−1(z2(r1, p)) −
(n + 1)

z2(r1, p)
Jn(z2(r1, p))

)

,

K(n, p) = = −
σ0 sin (n α0)

n π p
and K32(p) =

(

C3(p)

C2(p)

)2

. (25)
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Substituting (24) and (25) into relations (21), we get the final form of the Laplace transforms

ūr (r, ϕ, p) and ūϕ (r, ϕ, p) of required displacement components. If we compare these relations

with appropriate relations from [5], the analogy of terms is obvious.

As the verification of derivation process correctness, we can use the limit transition from

the viscoelastic case to the elastic one. There exist several possibilities how it can be done. The

easiest way is to set the material parameters equal to: E2 = 0, E1 = E, G1 = G and µ1 = µ.

Introducing these assumptions into the resulting equations for viscoelastic case and after some

rearrangements, we obtain the same relations for ūr and ūϕ as in [5].

The inverse Laplace transform of resulting complex functions for an elastic disc was per-

formed analytically using the residue theorem in [5]. The author shows that the Laplace trans-

forms have the infinite number of singular points (the poles of the first or the second order), so

he expressed the solutions in time domain as the infinite sums of transforms residues in poles.

The number of summed terms then corresponds to the number of dispersion curves taken into

account. Contrary to the elastic problem, the situation is more complicated in the viscoelas-

tic case. Taking the analysis of singularities of relations (21), we find out that singular points

involve not only poles of the first or the second order but also branch points. It makes the ana-

lytical inverse Laplace transform much more complicated, so another method for the inversion

will be probably used in future work.

5. Conclusion

The problem of a thin viscoelastic non-rotating disk subjected to non-stationary radial load on

the part of its rim was investigated analytically in this paper. The mathematical model of the

problem solved was derived for the case of standard linear viscoelastic solid model. After that,

the integral transforms of the disc displacement components ur and uϕ were derived using the

combination of the Laplace transform and the Fourier (Bernoulli) method. Presented relations

were derived for the case of pressure radial load with constant amplitude, but one should men-

tion that these results are valid also for all excitations the amplitude function of which can be ex-

panded into the cosine Fourier series. With respect to the complex form of resulting functions,

the analytical inversion of the Laplace transforms obtained is relatively complicated. Conse-

quently, other possibilities of the inversion are explored to finish the analytical solution and to

obtain particular analytical results. Concretely, we focus on the following methods: (i) the sub-

stitution of Bessel functions by their definition integrals, (ii) the application of the asymptotic

expansions of Bessel functions, (iii) the numerical inversion of the Laplace transforms.
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