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Abstract

We consider a composite medium made of weakly piezoelectric inclusions periodically distributed in the matrix

which is made of a different piezoelectric material. The medium is subject to a periodic excitation with an incidence

wave frequency independent of scale ε of the microscopic heterogeneities. Two-scale method of homogenization

is applied to obtain the limit homogenized model which describes acoustic wave propagation in the piezoelectric

medium when ε → 0. In analogy with the purely elastic composite, the resulting model allows existence of the

acoustic band gaps. These are identified for certain frequency ranges whenever the so-called homogenized mass

becomes negative. The homogenized model can be used for band gap prediction and for dispersion analysis for

low wave numbers. Modeling such composite materials seems to be perspective in the context of Smart Materials

design.
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1. Introduction

By the phononic materials we understand bi-phasic elastic media with periodic structure and

with large contrasts between the stiffness parameters associated with different phases, whereas

their specific mass is comparable. It is well known that for certain frequency ranges, such

elastic structures can suppress the elastic wave propagation, i.e. they exhibit the band gaps.

Here we consider piezoelectric composite materials where the large contrasts are related not

only to elasticity, but also to other piezoelectric parameters, namely the piezoelectric coupling

coefficients and the dielectricity.

An alternative and effective way of modeling the phononic materials is the asymptotic ho-

mogenization method applied to the strongly heterogeneous elastic, or piezoelectric medium.

We consider a composite made of weakly piezoelectric inclusions periodically distributed in the

matrix which is made of a different piezoelectric material. The medium is subject to a periodic

excitation. The homogenized model of acoustic wave propagation in the piezoelectric medium

is characterized by the homogenized elastic, dielectric and piezoelectric parameters and by the

homogenized mass tensor. The dispersion phenomenon and namely the band gap distribution

are inherited from properties of the homogenized mass tensor which depends nonlinearly on

the incident wave frequency; when this tensor is negative (in the sense of its eigenvalues) the

wave equation looses its hyperbolicity. According to the number of the negative eigenvalues the
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wave propagation is restricted to a certain direction, so that the homogenized material is strongly

anisotropic. We refer to interesting paper [7], where anisotropy and randomness aspects in the

phononic materials are discussed.

We would like to stress out that our model is convenient for an approximate modeling of

the long wave dispersion. The homogenized model involves frequency dependent homogenized

mass which allows for prediction of the band gaps, i.e. for some frequencies possibly changing

the hyperbolic type partial differential equation into the elliptic one.

In the context of mathematical modelling, the method of homogenization was proposed to

study the heterogeneous elastic media (sometimes called phononic crystals) in [1] and recently

treated in [2, 3], where also numerical results were reported. For related photonic problem in

electromagnetic wave propagation see [4].

For elastic composites an existence of band gaps for certain wavelengths was shown in [3] as

the consequence of the non-positivity of the limit “homogenized mass density”. In the present

paper we consider acoustic wave propagation in a piezoelectric strongly heterogeneous com-

posite; the problem was formulated in [9]. Here we summarize the essential homogenization

results and propose the dispersion analysis which involves modified Christoffel acoustic tensor,

due to presence of the piezoelectric coupling with the electric field. This is an extension of

the recent publication [11] where the elastic homogenized phononic material was discussed in

detail.

2. Piezoelectric phononic material

We consider a piezoelectric medium whose material properties, being attributed to material

constituents, vary periodically with position; the period is denoted by ε. Throughout the text all

quantities varying with this microstructural periodicity are denoted with superscript ε.

2.1. Definition of the strongly heterogeneous material

The material properties are related to the periodic geometrical decomposition which is now

introduced, see Fig. 1. We consider an open bounded domain Ω ⊂ R
3 and the reference cell

Y =]0, 1[3 with the inclusion Y2 ⊂ Y , whereby the matrix part is Y1 = Y \ Y2. Using the

reference cell we generate the decomposition of Ω as follows

Ωε
2 =

⋃

k∈Kε

ε(Y2 + k) , where K
ε = {k ∈ Z

3| ε(k + Y2) ⊂ Ω} ,

Ωε
1 = Ω \ Ωε

2 ,

so that Ω = Ωε
1 ∪ Ωε

2 ∪ Γε, where Γε is the interface Γε = Ωε
1 ∩ Ωε

2.

Fig. 1. Periodic structure of the piezoelectric composite with ε2-scaled material in the inclusions Y2
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Properties of a three dimensional body made of the piezoelectric material are described by

three tensors: the elasticity tensor cε
ijkl, the dielectric tensor dε

ij and the piezoelectric coupling

tensor gε
kij, where i, j, k = 1, 2, . . . , 3. As usually we assume both major and minor symmetries

of cε
ijkl (cε

ijkl = cε
jikl = cε

klij), symmetry of dε
ij, i.e. dε

ij = dε
ji and the following symmetry of

gε
kij: gε

kij = gε
kji.

We assume that inclusions are occupied by a “very soft material” in such a sense that there

the material coefficients are significantly smaller than those of the matrix compartment, except

the material density, which is comparable in both the compartments; as an important feature

of the modelling, the strong heterogeneity is related to the geometrical scale of the underlying

microstructure by coefficient ε2:

ρε(x) =

{

ρ1 in Ωε
1,

ρ2 in Ωε
2,

cε
ijkl(x) =

{

c1
ijkl in Ωε

1,

ε2c2
ijkl in Ωε

2,

gε
kij(x) =

{

g1
kij in Ωε

1,

ε2g2
kij in Ωε

2,
dε

ij(x) =

{

d1
ij in Ωε

1,

ε2d2
ij in Ωε

2.

(1)

2.2. Problem formulation

We consider a stationary wave propagation in the medium introduced above. Although the

problem can be treated for a general case of boundary conditions, for simplicity we restrict

the model to the description of clamped structures loaded by volume forces and subject to

volume distributed electric charges. Assuming a synchronous harmonic excitation of a single

frequency ω

f̃ (x, t) = f (x)eiωt , q̃(x, t) = q(x)eiωt ,

where f = (fi), i = 1, 2, 3 is the magnitude field of the applied volume force and q is the mag-

nitude of the distributed volume charge, in general, we should expect a dispersive piezoelectric

field with magnitudes (uε, ϕε)

ũε(x, ω, t) = uε(x, ω)eiωt , ϕ̃ε(x, ω, t) = ϕε(x, ω)eiωt .

This allows us to study the steady periodic response of the medium, as characterized by fields

(uε, ϕε) which satisfy the following boundary value problem:

−ω2ρεuε − divσ
ε = f in Ω,

−divDε = q in Ω,

uε = 0 on ∂Ω,

ϕε = 0 on ∂Ω,

(2)

where the stress tensor σ
ε = (σε

ij) and the electric displacement Dε are defined by constitutive

laws

σε
ij = cε

ijklekl(u
ε) − gε

kij∂kϕ
ε,

Dε
k = gε

kijeij(u
ε) + dε

kl∂lϕ
ε.

(3)
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The problem (2) can be weakly formulated as follows: Find (uε, ϕε) ∈ H
1
0(Ω) × H1

0 (Ω)
such that

−ω2

∫

Ω

ρεuε · v +

∫

Ω

cε
ijklekl(u

ε)eij(v) −

∫

Ω

gε
kijeij(v)∂kϕ

ε =

∫

Ω

f · v ,
∫

Ω

gε
kijeij(u

ε)∂kψ +

∫

Ω

dkl∂lϕ
ε∂kψ =

∫

Ω

qψ ,

(4)

for all (v, ψ) ∈ H
1
0(Ω) × H1

0 (Ω), where f ∈ L
2(Ω), q ∈ L2(Ω).

3. Homogenized model of waves in piezo-elastic composite

Problem (4) was studied in [3] using the unfolding method of homogenization to obtain a limit

model when ε → 0. Here the aim is to compare the band gaps predicted by analyzing the

stationary waves in the homogenized continuum with the dispersion diagrams obtained for long

waves propagating in this continuum. For this, we record the theoretical results from [9]. We

remark that the spirit of the homogenization was explained exhaustively in [11] for the case of

elastic composites. In our present application the differences are:

• in analysis of the eigen-solutions related to the “soft” inclusion – piezoelectric materials

couple elastic deformations with an induced electric field;

• piezoelectric properties of the homogenized material involve elasticity, piezo-coupling

and dielectricity tensors; these are determined by the perforated matrix exclusively, anal-

ogously to the purely elastic case;

• the macroscopic model of piezo-elastic wave propagation involves coupled system of the

balance-of-forces equation and the electric field conservation.

For brevity, in what follows we employ the following notation:

aY2
(u, v) =

∫

Y2

c2
ijkle

y
kl(u) ey

ij(v),

dY2
(φ, ψ) =

∫

Y2

d2
kl∂

y
l φ ∂y

kψ,

gY2
(u, ψ) =

∫

Y2

g2
kije

y
ij(u) ∂y

kψ,

�Y2
(u, v) =

∫

Y2

ρ2u · v,

(5)

whereby analogical notation is used when integrating over Y1.

3.1. Auxiliary eigenvalue problem

The auxiliary eigenvalue problem arises due to linearity of the limit model. The displacement

and electric potential fields waves are expanded in series based on the eigen-solution of the

associated piezo-elastic problem representing vibrations of the piezo-material in inclusion Y2

with clamped boundary ∂Y2; the material is electrically insulated on ∂Y2.
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Particular solution Let us define ϕ2P = q(x)p̃(y) where p̃ ∈ H1
0 (Y2) is the unique solution

satisfying

dY2
(p̃, ψ) =

∫

Y2

ψ ∀ψ ∈ H1
0 (Y2) ,

hence also dY2

(

ϕ2P , ψ
)

= q(x)

∫

Y2

ψ ∀ψ ∈ H1
0 (Y2) .

(6)

Spectral problem Find eigenelements [λr; (zr, pr)], where zr ∈ H
1
0(Y2) and pr ∈ H1

0 (Y2),
r = 1, 2, . . . , such that

aY2
(zr, v) − gY2

(v, pr) = λr�Y2
(zr, v) ∀v ∈ H

1
0(Y2),

gY2
(zr, ψ) + dY2

(pr, ψ) = 0 ∀ψ ∈ H1
0 (Y2),

(7)

with the orthonormality condition imposed on eigenfunctions zr:

aY2
(zr, zs) + dY2

(pr, ps) = λr�Y2
(zr, zs)

!
= λrδrs. (8)

The orthogonality in (8) follows easily by rewriting (7) for v = zs and ψ = pr,

aY2
(zr, zs) − gY2

(zs, pr) = λr�Y2
(zr, zs) ,

gY2
(zs, pr) + dY2

(ps, pr) = 0,

so that on eliminating gY2
(zs, pr) one obtains

aY2
(zr, zs) + dY2

(ps, pr) = λr�Y2
(zr, zs)

!
= λs�Y2

(zs, zr) .

Moreover, the ellipticity of aY2
(·, ·) and dY2

(·, ·) yields λr > 0 for all r = 1, 2, . . .

Perturbations in the inclusion Using the above auxiliary problems the relative motion and

electric field fluctuations in Y2 can be described by functions u2(x, y) and ϕ2(x, y), respec-

tively. With the eigenelements (zr, pr) defined in (7)-(8) and having computed ϕ2P we have the

decomposed forms

u2(x, y) =
∑

r≥1

αr(x)zr(y) ,

ϕ2(x, y) = ϕ2H + ϕ2P =
∑

r≥1

αr(x)pr(y) + q(x)p̃(y) ,
(9)

where αr is expressed as follows:

αr =
1

λr − ω2

[

f (x) ·

∫

Y2

zr + ω2u(x) ·

∫

Y2

ρ2zr + q(x)gY2
(zr, p̃)

]

, (10)

where u(x) is the homogenized displacement (amplitude) field satisfying the macroscopic equa-

tions (18), see below.
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3.2. Homogenized coefficients – macroscopic model

The macroscopic model of elastic waves in strongly heterogeneous piezoelectric composite

involves two groups of the homogenized material coefficients:

• the homogenized coefficients depending on the incident wave frequency – these are re-

sponsible for the dispersive properties of the homogenized model. This group of the

coefficients depends just on the material properties of the inclusion (except the material

density, which is averaged over whole Y )

• the second group of coefficients is related exclusively to the matrix compartment – it

determines the macroscopic piezo-elastic properties.

Frequency-dependent coefficients It should be stressed out that the dispersion arises from

the inertia in Y2 represented by the fluctuating field u2, see (11) below. Due to the auxil-

iary eigenvalue problems and (9) it can be expressed in terms of the macroscopic quantities

(u(x), q(x), f(x)) representing the local amplitudes of displacements, electric charge and vol-

ume force, respectively; denoting ∼
∫

= 1
|Y |

∫

, the following holds

∼

∫

Y2

ρ2u2 =
∑

r≥1

1

λr − ω2

[

f (x) ·

∫

Y2

zr⊗ ∼

∫

Y2

ρ2zr

+ω2u(x) ·

∫

Y2

ρ2zr⊗ ∼

∫

Y2

ρ2zr + q(x)gY2
(zr, p̃) ∼

∫

Y2

ρ2zr

]

,

(11)

We introduce the eigenmomentum mr = (mr
i ),

mr =

∫

Y2

ρ2zr.

Due to (11) the following tensors are introduced, all depending on ω2:

• Mass tensor M∗ = (M∗
ij)

M∗
ij(ω

2) =∼

∫

Y

ρδij −
1

|Y |

∑

r≥1

ω2

ω2 − λr
mr

i m
r
j ; (12)

• Applied load tensor B∗ = (B∗
ij)

B∗
ij(ω

2) = δij −
1

|Y |

∑

r≥1

ω2

ω2 − λr
mr

i

∫

Y2

zr
j ; (13)

• Applied charge tensor Q∗ = (Q∗
i )

Q∗
i (ω

2) = −
1

|Y |

∑

r≥1

ω2

ω2 − λr
mr

i gY2
(zr, p̃) . (14)
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Coefficients related to the perforated matrix domain As mentioned above, the second

group of the homogenized coefficients is defined independently of the material in the inclu-

sions. In other words, the homogenized tensors of elasticity C∗
ijkl, piezoelectricity G∗

kij and

dielectricity D∗
kl can be recovered in the same form which is defined for periodically perforated

piezoelectric material. Below we summarize the results which follow as consequences of the

homogenization treated in [6] for a piezoelectric bi-phasic composite.

In order to compute C∗, G∗ and D∗, we must solve the local microscopic problems for the

corrector functions; these are now listed.

1. Find (χij, πij) ∈ H
1
#(Y1) × H1

#(Y1), i, j = 1, . . . , 3 such that
{

aY1

(

χ
ij + Π

ij , v
)

− gY1
(v, πij) = 0 , ∀v ∈ H

1
#(Y1) ,

gY1

(

χ
ij + Π

ij, ψ
)

+ dY1
(πij , ψ) = 0 , ∀ψ ∈ H1

#(Y1) ,
(15)

where Π
ij = (Πij

k ) = (yjδik);

2. Find (χk, πk) ∈ H
1
#(Y1) × H1

#(Y1), i, j = 1, . . . , 3 such that
{

aY1

(

χ
k, v

)

− gY1

(

v, πk + Πk
)

= 0 , ∀v ∈ H
1
#(Y1) ,

gY1

(

χ
k, ψ

)

+ dY1

(

πk + Πk, ψ
)

= 0 , ∀ψ ∈ H1
#(Y1) ,

(16)

where Πk = yk.

Using the corrector basis functions just defined we compute the homogenized coefficients:

C∗
ijkl =

1

|Y |

[

aY1

(

χ
kl + Π

kl, χ
ij + Π

ij
)

+ dY1

(

πkl, πij
)]

,

D∗
ki =

1

|Y |

[

dY1

(

πk + Πk, πi + Πi
)

+ aY1

(

χ
k, χ

i
)]

, (17)

G∗
kij =

1

|Y |

[

gY1

(

χ
ij + Π

ij , Πk
)

+ dY1

(

πij, Πk
)]

.

The homogenized coefficients are involved in the macroscopic (global) equations; we find

(u, ϕ) ∈ H
1
0(Ω) × H1

0 (Ω) such that

− ω2

∫

Ω

(M∗(ω2) · u) · v

+

∫

Ω

C∗
ijklekl(u) eij(v) −

∫

Ω

G∗
kijeij(v) ∂kϕ =

=

∫

Ω

(B∗(ω2) · f) · v +

∫

Ω

qQ∗(ω2) · v ∀v ∈ H
1
0(Ω) ,

and
∫

Ω

G∗
kijeij(u) ∂kψ + D∗

kl∂lϕ ∂kψ =

∫

Ω

q ψ ∀ψ ∈ H1
0 (Ω) .

(18)

This variational formulation is associated with the strong formulation, which can easily be

obtained from (18) on integrating there by parts. Classical solution (u, ϕ) must satisfy the

following equations imposed in domain Ω:

ω2M∗
ij(ω

2) uj + ∂j

(

C∗
ijklekl(u) − G∗

kij∂kϕ
)

= −B∗
ij(ω

2)fj − qQ∗
i (ω

2) ,

∂k

(

G∗
kijeij(u) + D∗

kl∂lϕ
)

= q ,
(19)

where u = 0 and ϕ = 0 on ∂Ω.
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As an important feature of the limit macroscopic equations, its inertia term is defined in

terms of the ω-dependent homogenized mass tensor M∗
ij. It was proved in [3] for the elas-

tic media that there exist intervals of frequencies for which the limit problem admits only an

evanescent solution; these intervals are called the acoustic band gaps. More precisely, such

intervals are indicated by negative definiteness, or negative semi-definiteness of M∗
ij(ω

2); while

the first case does not admit any oscillating solution, in the latter one the admissibility of an

oscillating response depends on the assumed polarization of propagating waves. Thus, some

frequencies may result in a strongly anisotropic behaviour of the homogenized medium. Simi-

lar conclusions can be derived also in the present situation with the piezoelectric coupling.

3.3. Band gaps

In the context of our homogenization-based modelling of phononic materials, the band gaps are

frequency intervals for which the propagation of waves in the structure is disabled completely,

or restricted just for some polarizations.

The band gaps can be classified w.r.t. the polarization of waves which cannot propagate.

Given a frequency ω, there are three cases to be distinguished according to the signs of eigen-

values γr(ω), r = 1, 2, 3 (in 3D), which determine the “positivity, or negativity” of the mass:

1. propagation zone – all eigenvalues of M∗
ij(ω) are positive: then homogenized model

(19) admits wave propagation without any restriction of the wave polarization;

2. strong band gap – all eigenvalues of M∗
ij(ω) are negative: then homogenized model (19)

does not admit any wave propagation;

3. weak band gap – tensor M∗
ij(ω) is indefinite, i.e. there is at least one negative and one

positive eigenvalue: then propagation is possible only for waves polarized in a manifold

determined by eigenvectors associated with positive eigenvalues. In this case, the notion

of wave propagation has a local character, since the “desired wave polarization” may

depend on the local position in Ω.

For detailed discussion on computing the band gaps for elastic homogenized structures we

refer to [3, 11]. In Fig. 2 we illustrate weak band gap distribution for piezoelectric composite

formed by matrix PZT5A with embedded spherical inclusions made of BaTiOx3, where the scale

parameter correction was ε = 0.01. The procedure of rescaling the physical material parameters

in the context of assumed scaling ansatz in (1) was discussed in [11] for elastic composites, the

principle remains valid also for piezoelectric structures.

3.4. Dispersion analysis

We consider guided waves propagating in the heterogeneous medium. For propagation of long

waves we proposed in [11] to analyze the dispersion curves using the homogenized model, al-

though this was developed for stationary waves. Such an approximate modeling is valid for a

large difference in the elasticity and other piezoelectric parameters between the two compart-

ments.

Usually the band gaps are identified from the dispersion diagrams. For the homogenized

model the dispersion of guided plane waves is analyzed in the standard way using the following

ansatz:

u(x, t) = ū e−i(ωt−xjκj) ,

ϕ(x, t) = ϕ̄ e−i(ωt−xjκj) ,
(20)
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Fig. 2. Distribution of the weak band gaps (white strips) for the piezoelectric composite. The curves

correspond to eigenvalues of the mass tensor M∗(ω)

where ū is the displacement polarization vector (the wave amplitude), ϕ̄ is the electric potential

amplitude, κj = njκ, |n| = 1, i.e. n is the incidence direction, and κ is the wave number. The

dispersion analysis consists in computing nonlinear dependencies ū = ū(ω) and κ = κ(ω); for

this one substitutes (20) into the homogenized model (19) with zero r.h.s.:

−ω2M∗
ij(ω

2)uj − C∗
ijkl

∂2uk

∂xj∂xl

+ G∗
kij

∂2ϕ

∂xj∂xk

= 0 ,

G∗
kij

∂2ui

∂xk∂xj

+ D∗
kl

∂2ϕ

∂xk∂xl

= 0 .

(21)

Thus on introducing

Γik = C∗
ijklnjnl , the standard Christoffel acoustic tensor,

γi = G∗
kijnjnk ,

ζ = D∗
klnlnk ,

(22)

we obtain

−ω2M∗
ij(ω

2)ūj + κ
2 (Γikūk − γiϕ̄) = 0 ,

κ
2 (γkūk + ζϕ̄) = 0 .

(23)

In (23) we can eliminate ϕ̄ (assuming κ
2 �= 0), thus the dispersion analysis reduces to the

“elastic case” where the acoustic tensor is modified:

−ω2M∗
ij(ω

2)ūj + κ
2 Hikūk = 0 ,

where Hik = Γik + γiγk/ζ .
(24)
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Fig. 3. Illustration of the dispersion analysis output for the piezoelectric composite, angle of incidence

is 45deg. The dispersion curves κ
β(ω) computed according to (25). In the weak band gaps (grey/green

strips) analyzed according to Fig. 2 waves can propagate in one or two directions only. In the second

band gap only one polarization exists, with the phase velocity determined by the blue (solid) curve, in the

first band gap two polarizations can propagate. In the “full propagation zones” (white) the three curves

correspond to the three wave polarizations

The dispersion is analyzed in terms of the following problem:

• for all ω ∈ [ωa, ωb] and ω �∈ {λr}r compute eigenelements (ηβ, wβ):

ω2M∗
ij(ω

2)wβ
j = ηβHikw

β
k , β = 1, 2, 3 ; (25)

• if ηβ > 0, then κ
β =

√

ηβ,

• else ω falls in an acoustic gap, wave number is not defined.

In heterogeneous media, in general, the polarizations of the three (or two in 2D) waves (out-

side the band gaps) are not mutually orthogonal, which follows easily from the fact that {wβ}β

are M∗(ω2)-orthogonal. Moreover, in the presence of the piezoelectric coupling, which intro-

duces another source of anisotropy, the standard orthogonality is lost even for heterogeneous

materials with “symmetric inclusions” (circle, hexagon, etc.), in contrast with elastic structures

where these designs preserve the standard orthogonality.

4. Conclusion

The purpose of the paper was to present an extension of the homogenization-based modeling

adapted from [11] to the piezoelectric phononic materials.
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The principal ingredient of the homogenization procedure is the scale dependence of the

elastic coefficients in the mutually disconnected inclusions - this leads to acoustic band gaps

due to the negative effective mass phenomenon appearing in the upscaled model. From the

point of the mathematical model, the main difference between the elastic and the piezoelectric

homogenized phononic materials is the eigenvalue problem solved in the inclusions – in the

latter case there arises the constraint related to the induced electric field.

The main advantage of the homogenization based two-scale modeling lies in the fact, that

the homogenization based prediction of the band gap distribution for stationary or long guided

waves is relatively simple and effective, cf. [11], in comparison with the “standard computa-

tional approach” based on a finite scale heterogeneous model, requiring to evaluate the whole

Brillouin zone for the dispersion diagram reconstruction which, as the consequence, leads to a

killing complexity. Here we treated the stationary waves in a finite domain. An infinite domain

could be considered when guided waves were in our focus, however, here we do not treat guided

“short” waves such that the wave length interfere with the microstructure scale. If it were the

case, the short wave dispersion should rather be studied in the framework of the Bloch wave

theory.

Usually in realistic media a small damping exists. Adding a small viscosity to our model

changes completely the theoretical homogenization result. In contrast with the purely non-

dissipative material where existence of a small band gap is guaranteed by virtue of the ho-

mogenized mass tensor (a band gap is distributed in the vicinity of any eigenfrequency of the

inclusion problem (7)), in the viscous case we are not able to prove a similar result. However

the band gaps in our sense, i.e. identified by the negative (semi)definiteness of the homogenized

mass, still may exist depending on the proportion of the viscose damping. This was obsereved

in our numerical tests and will be subject of a forthcoming paper.

The further research in this field will address the following tasks:

• modeling validation – the band gap prediction provided by the homogenized model will

be compared with prediction computed on the non-homogenized medium for a given scale

of heterogeneities, cf. [12]; similar study was reported in [11] for the elastic situation.

• numerical study of the piezoelectric inclusion shape and polarization influence on the

dispersion properties; similar studies were reported for the elastic case, showing its sig-

nificant importance.

• optimal design of the piezo-phononic material; the research related to the sensitivity anal-

ysis was published in [9], [10] in the context of shape sensitivity at the microscopic level

(reference cell Y and the inclusion Y2).

• modeling of more complicated microstructures w.r.t. their topology, i.e. multiple disjoint

inclusions with “different orientations”, or embedded inclusions, see [5] for the elastic

case. We expect that the topology of the “microstructural arrangement” of the composite

may have remarkable influence on the dispersion properties.
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[3] Ávila, A., Griso, G., Miara, B., Rohan, E., Multi-scale modelling of elastic waves – theoretical

justification and numerical simulation of band gaps, Multiscale Modeling & Simulation, SIAM,

Vol. 7, 2008, 1–21.
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