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Abstract

Samples of porcine carotid artery are examined using Tissue bath MAYFLOWER, Perfusion of tubular organs

Version, Type 813/6. Pressure-diameter diagrams are obtained for fixed axial extension and volumetric flow rate.

Finite element analysis of the experiment, performed using COMSOL software, indicates a negligible effect of

given flow rate on the mechanical response of the tested sample. Also the effect of clamped ends is shown to

be local only. Hence, static analysis in MATLAB software is performed considering the arterial segment as an

incompressible hyperelastic axisymmetric tube. Residual stress at the load-free configuration is taken into account

resulting in the overall stiffening of the model. Comparison of theoretical and experimental pressure-diameter

curves results in the identification of material parameters using the least square method. In addition to classical hy-

perelastic models, such as the neo-Hookean and the Fung’s exponential, two-scale model mimicking arrangement

of soft tissue is considered.
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1. Introduction

The arterial wall mechanics and its interaction with blood flow have been an object of extensive

research during past decades. Many experiments have been performed to investigate the ma-

terial properties of animal and human arteries, see e.g. [8, 12, 13]. Earlier works on this topic

date back to the end of the 19th century, such as the work [27] proving mechanical response

of arteries to be nonlinear with strain-hardening. The common assumption of incompressibility

is confirmed in [5] observing volume change to be very small even for deformations greater

than those in vivo. The anisotropy of the arterial wall is an evident fact due to the enormous

complexity of its microstructure. However, experiments performed in [24] suggest that arterial

segments can be considered as cylindrically orthotropic tubes for modelling purposes. Accord-

ing to [15, 22] material constants are found to be of the order ∼ 1 MPa for elastic modulus and

its fraction of approximately 1/10 for loss modulus. However, mechanical properties depend on

many factors, such as age and volume fraction of constituents, see e.g. [1, 2].

Together with experiments, numerical modelling plays an important role in understanding

arterial mechanics. Since the blood flow through an artery represents a complex problem of

fluid-solid interaction in the framework of continuum mechanics, simplifications concerning

both arterial wall and flow are applied. In [29], for instance, the bypass model is proposed

considering arterial walls as rigid and the blood flow as incompressible Newtonian. More often,
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arterial walls are considered as hyperelastic [28] or linearly viscoelastic [4]. Such assumption

is supported by a biaxial tension test performed with porcine coronary artery tissue in [21].

Although the anisotropy of the tissue is demonstrated, isotropic models are sufficient to describe

in vivo conditions according to authors. On the other hand, isotropic hyperelastic (viscoelastic)

models cannot be capable of describing all aspects of the mechanical response of the arterial

wall resulting from its complex microstructure and from the fact that artery is a living tissue.

According to [26], relevant features that should not be omitted in the modelling of arteries

include anisotropy, residual stresses and remodeling. Therefore, the latest works deal with

these effects and possible modelling approaches.

An anisotropy of the arterial wall can be described using the notion of fiber-reinforced ma-

terials [18]. This approach is applied in [14, 19] to propose a hyperelastic model of arterial wall.

The fibrous nature of the arterial wall is included in the formula of strain-energy function via

two unit vectors representing the orientations of collagenous fibers. Extension for the case of

viscoelastic response is done in [20]. A different approach is proposed in [31] by defining the

eight-chain orthotropic unit element that represents the microstructure. Employing the assump-

tion of affine deformations at the micro-scale, an orthotropic hyperelastic material model of the

arterial wall is obtained.

It is known fact that unloaded arteries are not stress-free due to the certain growth mech-

anisms of the different layers. Also, they are subjected to axial prestretch in vivo, see e.g. [7,

9, 19]. Theoretical framework for dealing with residual stress in arteries is provided in [19]. It

consists in introducing three configurations: reference (stress-free), unloaded and current. The

simplification of geometry of the arterial ring leads to a description of the residual stress with a

single parameter. A similar approach is used in [9] to propose a finite element (FE) model of the

carotid segment. Here, residual stress causes the resulting stress field to be much more uniform.

In [23], the model of prestrained cytoskeleton is embedded into a macroscopic model of arterial

wall using the method of homogenization. Although the model of arterial ring opens, which

is in agreement with observations, author admits that it does not reflect a realistic situation. A

similar approach of including prestress in the material model (using the model of prestressed

cytoskeleton and the notion of representative volume element) is described in [30].

Finally, recent works on numerical modelling of arterial walls deal also with the so-called

remodeling, i.e. change of either geometry or mechanical properties in order to adapt to ap-

plied load [26]. In [16], for instance, the reorientation of collagen fibers within arterial wall is

modelled upon the assumption of their alignment with the directions of principal stresses.

The aim of this work is to investigate the mechanical response of the porcine carotid artery

experimentally and to propose a suitable model representing the artery under experimental con-

ditions. The paper is organized as follows. Section 2 describes an experiment which consists in

loading the arterial segment with inner pressure under constant flow rate and axial prestretch.

Pressure-diameter diagrams for both inflation (loading) and deflation (unloading) parts are pro-

vided. In section 3, preliminary estimates and an FE analysis of the artery under experimental

conditions is performed. The simplified geometry of axisymmetric tube is considered using the

hyperelastic material models of the neo-Hookean and the Fung’s type, the fluid is considered

to be incompressible Newtonian. Results indicate a negligible effect of flow rate substantiating

the static analysis performed in MATLAB software in section 4. Here the arterial segment is

represented as a hyperelastic tube loaded with inner pressure considering residual stress at the

load-free configuration. Apart of the neo-Hookean and the Fung’s model, the two-scale hyper-

elastic model introduced in [17] is employed. A comparison with experiment is provided using

the least square method which leads to the identification of material parameters.
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2. Experimental investigation of the artery

2.1. Experimental setting

The porcine carotid artery is obtained from domestic pig. The animal is firstly anesthetized and

after dissection of the carotid artery, it is euthanized by KCl injection. The sample is prepared

by cutting the segment of the artery with the length L and clamped into a measurement de-

vice (Tissue bath MAYFLOWER, Perfusion of tubular organs version, type 813/6, Hugo Sachs

Electronik, Germany), see fig. 1. The sample is prestretched axially within the device to mimic

in vivo conditions with λz = 1.5 so that its current length is l = λzL. This value is chosen

according to the studies [11] and [25] where the value of 1.4 is used for common arteries in

rabbits and 1.5 for porcine carotid arteries, respectively. In [19] the values between 1.1 and

1.9 are chosen depending on the kind of artery. The sample is embedded in the tissue bath

and perfused intraluminarly with a constant flow rate Q = 2 ml/min. The Tyrode’s solution

with the temperature of 36 ◦C is used. The measurement device provides for setting the outlet

pressure, denoted with p2 in fig. 1. At the same time, the outer diameter of the arterial segment

is determined as follows. For each value of p2, the middle segment of the artery of the length

lm = 21 mm (corresponding to Lm = 14 mm at the load-free state) is captured using stereomi-

croscope (Olympus SZ60) and camera (Olympus E440). Three values of diameter are measured

from each photograph in the middle and both ends of measured segment. The resultant diameter

is calculated as the arithmetic mean, i.e. d = (d1 + d2 + d3)/3.

At first, the preconditioning of 4 cycles from 0 up to 200 mm Hg is performed to ensure

unambiguous mechanical response. After that, the sample is loaded from 0 up to 200 mm Hg

using the step of 10 mm Hg and then unloaded to 0 mm Hg using the same step. In fact, it is a

Fig. 1. The measurement device (left, taken with modifications from [32]) and the detailed scheme of

clamped sample (right). The Tyrode’s solution is pumped through the tested sample with constant flow

rate of Q. The outlet pressure, p2, is controlled by the device mounted on the stool. The inlet pressure is

denoted with p1. The arterial sample is clamped to the ends of two rigid pipes and prestretched axially

to the current length of l. Outer diameters, d1, d2 and d3 are measured in the middle segment of the

length lm
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quasi-static process as setting each loading step and taking a photograph is done manually. The

time of whole cycle is approximately t ≈ 6 min providing tstep ≈ 9 s for each step.

2.2. Results

The pressure-diameter diagram for whole inflation-deflation cycle is depicted in fig. 2. Both in-

flation and deflation parts exhibit the strain hardening as it is characteristic for soft living tissues,

the hysteresis corresponds to the viscoelastic behaviour of the arterial wall. For convenience,

the units of pressure are converted as 1 mm Hg = 133.322 Pa.

Fig. 2. The pressure-diameter diagram of the porcine carotid artery. The lower curve corresponds to

inflation, the upper curve to deflation part of the cycle, respectively

3. Preliminary estimates and FE analysis

3.1. Fluid pressure, clamping effect

The Tyrode’s solution is considered as an incompressible Newtonian fluid with the same char-

acteristics as water, i.e. η = 0.001 Pa.s and ρ = 1 000 kg · m−3 (viscosity and mass density).

The flow obeys the incompressible Navier-Stokes equations.

Considering the arterial segment as a cylindrical tube, the pressure corresponding to the

laminar flow exhibits a linear decrease,

p(z) =
p1 − p2

l
z + p2 , (1)

see e.g. [3]. Here, z denotes the coordinate aligned with the longitudinal axis of the tube, z = 0
and z = l refer to the outlet and the inlet region, respectively. The pressure difference can be

estimated using the Poiseuille’s formula for a laminar flow,

Q =
πr4

in

8

p1 − p2

µl
, (2)

where rin denotes the inner radius of the tube. In our case, the estimate of (p1 − p2) ∼ 1 Pa is

obtained. Comparing to the applied load (each step ∼ 102 Pa), the pressure corresponding to

the flow is negligible and thus the arterial segment can be considered as statically loaded with

the inner pressure ∆P ≈ p2.
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Although the arterial segment can be represented with a cylindrical tube at the unloaded

configuration, its shape at the current configuration is in fact more complex. However, for

loading consisting of the inner pressure and the longitudinal stretch, the representation with the

cylindrical tube is appropriate for the middle part, far enough from clamped ends.

3.2. FE analysis

To confirm the assumptions resulting from the preliminary estimates, the FE analysis is per-

formed. The arterial segment is represented as a cylindrical tube at the reference configuration

and residual stresses are not taken into account. Considering the axial symmetry, the fluid oc-

cupies the rectangle [0, Rin] × [0, L] and the solid occupies the rectangle [Rin, Rout] × [0, L] at

the reference configuration. Here, Rin = 1.07 mm, Rout = 2.38 mm and L = 14 mm.

The solid part (i.e. the arterial wall) is considered as a hyperelastic incompressible material.

The neo-Hookean and the Fung’s energy functions are employed, their expressions as well as

particular choice of material constants are detailed in section 4. The fluid part is considered as

an incompressible Newtonian fluid, as it is mentioned in previous section.

Boundary conditions of the model are defined as follows. For the fluid, the constant inlet

flow rate of Q = 2 ml/min and the outlet pressure p2 are prescribed. The solid part is stretched

along the z-axis at first with λz = 1.5 and then the left (Z = 0) and the right (Z = L) faces are

fixed to represent clamping of the sample.

The results are depicted in figs. 3 to 6. In fig. 3, the distribution of the Von Mises stress

at the current configuration of the solid part is depicted. The profile of the tube at the current

Fig. 3. Deformation and Von Mises stress distribution in the arterial wall involved by the stretch ratio of

λz = 1.5 and the flow rate Q = 2 ml/min. Reference geometry is also indicated

Fig. 4. Pipe profile at the current configuration for

outlet pressure p2 = 0 Pa
Fig. 5. Dependence of the fluid pressure on the

height Z for outlet pressure p2 = 0 Pa
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Fig. 6. Dependence of the difference between the inlet and outlet pressure on the outlet pressure with

constant inner flow Q = 2 ml/min

configuration is also depicted in fig. 4. The distribution of the fluid pressure along the longitu-

dinal axis is plotted in fig. 5. The dependence is nearly linear according to (1) except for the

regions influenced by clamped ends. The pressure difference between the inlet and outlet re-

gion is small compared to stresses within the arterial wall and it even decreases with increasing

outlet pressure, see fig. 6. Clearly, the assumptions resulting from preliminary estimations are

confirmed. The clamping effect is only local and the pressure corresponding to the flow of the

Tyrode’s solution is negligible.

4. Static analysis

4.1. Basic relations

Description of deformations of the arterial wall follows the approach presented in [19]. To take

into account the residual stresses, three configurations are introduced, see fig. 7. The reference

configuration, Ω0, corresponds to cut arterial segment that is supposed to be stress-free. The

position of any material point is described using the cylindrical coordinate system {R, Θ, Z},

where R ∈ [Rin, Rout], Θ ∈ [0, 2π − α] and Z ∈ [0, L]. Here, α denotes the opening angle. At

the current configuration, the spatial coordinates are denoted with {r, θ, z}, where r ∈ [rin, rout],
θ ∈ [0, 2π] and z ∈ [0, l].

No shear occurs at the current state, hence the deformation gradient at the cylindrical coor-

dinates takes the form

F =

⎛

⎝

r′(R) 0 0
0 hr

R
0

0 0 λz

⎞

⎠ . (3)

Here, h is a constant parameter related to the opening angle and λz is a constant axial stretch,

h =
2π

2π − α
, λz =

l

L
. (4)

The arterial wall is assumed to be incompressible providing the expression for current radius as

r(R) =

√

R2

hλz
+ C . (5)
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Fig. 7. An arterial segment at the stress-free reference configuration Ω0, the load-free configuration Ωres

and the current configuration Ω. Redrawn with modifications from [19]

Here, C is to be determined from the boundary conditions. Applying the momentum balance,

∂σrr

∂r
+

1

r
(σrr − σθθ) = 0 , (6)

the constitutive equation of hyperelasticity,

σ =
∂Ŵ

∂F
F

T − pI , (7)

and the boundary conditions,

σrr(rin) = −∆P, , σrr(rout) = 0 , (8)

we obtain the relationship between ∆P and C,

∆P =

∫ Rout

Rin

r′

r

( r

R
Ŵ2 − r′Ŵ1

)

dR . (9)

Here, σ is the Cauchy stress tensor, p is the hydrostatic pressure, ∆P is the pressure applied

to the inner face of the tube and Ŵi denotes the partial derivative of Ŵ with respect to the

corresponding diagonal component of the deformation gradient,

Ŵi =
∂Ŵ

∂λi
, λi = Fii . (10)
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4.2. Material models

Three material models defined by various formulas of strain-energy functions are employed.

The isotropic neo-Hookean and the anisotropic Fung’s material model are defined as

ŴNH =
µ

2

(

tr Ĉ − 3
)

,

ŴFung =
c

2
[exp(q) − 1] ,

(11)

where Ĉ = (detC)−1/3
C, C = F

T
F, µ and c are material parameters. The function q in the

Fung’s model is defined as

q = b1Ê
2

θθ + b2Ê
2

zz + b3Ê
2

rr + 2b4ÊθθÊzz + 2b5ÊzzÊrr+

2b6ÊrrÊθθ + b7Ê
2

θz + b8Ê
2

rz + b9Ê
2

rθ .
(12)

Here, Êij are the components of the Green-Lagrange strain tensor referred to cylindrical coor-

dinates, bi’s are non-dimensional material parameters.

Also, the so-called “balls and springs” (BS) model introduced in [17] is employed. It is a

two-scale orthotropic hyperelastic model motivated by the arrangement of the microstructure of

soft tissues. Its mechanical response can be described by an approximative analytical formula

of strain-energy function,

Wbs = Ws + Wm , (13)

where

Ws =
1

2

3
∑

i=1

i�=j �=k

Ki
ki

1 + ki
lijlik [(Fii − 1) + γiPi]

2 , (14)

and

Wm =
K1K2K3(1 + k1)(1 + k2)(1 + k3)

[

1 − F eff
11

F eff
22

F eff
33

]2

∑

3

i=1,i�=j �=k 2KjKk(1 + kj)(1 + kk)
ljilki

γ2

i

(

F eff
jj F eff

kk

)2
. (15)

Here, Ki’s, ki’s, lij’s and γi’s are material parameters related to the microstructure (stiffness of

matrix and cells, geometrical anisotropy, relative sizes of cells), see [17, 30] for details. The

effective stretches are defined as

F eff
ii =

Fii − 1

γi(1 + ki)
+ 1 . (16)

In general, this orthotropic model contains 11 material parameters. However, this number is

reduced for the case of transverse isotropy (7 material parameters) or isotropy (3 material pa-

rameters).

4.3. Influence of residual stresses

To obtain pressure-diameter curves, equations derived in this section are implemented in MAT-

LAB software. For a given pressure ∆P , the unknown constant C is determined from (9) using

the Newton-Raphson iteration scheme. The diameter is then calculated using (5) as

d = 2r(Rout) . (17)
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The influence of residual stresses on the mechanical response is studied by controlling the

parameter α (the opening angle, see fig. 7). If α = 0, no residual stress is involved, i.e. the

load-free configuration is also stress-free. Increasing value of α then accounts for increasing

residual stress. The pressure-diameter curves for various values of α are plotted in fig. 8 for

the neo-Hookean and the Fung’s model. The geometry of the segment is characterized with

Rin = 1.07 mm, Rout = 2.38 mm, and the axial stretch is λz = 1.5. The material parameters

are chosen as those resulting from identification in the following section. For both material

models, the tube stiffens with increasing residual stress, i.e. certain value of inner pressure ∆P
causes smaller deformation of diameter d when opening angle α increases.

Fig. 8. Influence of the residual stress on the mechanical response of the arterial segment. The neo-

Hookean (left) and the Fung’s model (right) are employed with different values of opening angle α.

Curves describe the dependence of outer diameter d on the applied inner pressure ∆P

4.4. Comparison with experiment

Theoretical pressure-diameter curves are compared with the inflation part of the experimental

cycle depicted in fig. 2. The geometry of the model is obtained from measurements of the cut

arterial segment. It is Rin = 1.58 mm, Rout = 2.77 mm, opening angle α = 0.41 π and the

axial stretch is λz = 1.5. A comparison with experimental data is provided using the least

Fig. 9. Comparison of theoretical pressure-diameter curves with experimental data involving the inflation

part of the cycle. The neo-Hookean and the Fung’s model are depicted on the left, the BS approximative

model (both orthotropic and isotropic) on the right figure
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square method which leads to the identification of material parameters. Results for the neo-

Hookean, the Fung’s and the BS model are depicted in fig. 9. Approximate values of material

parameters of each model resulting from identification are listed in boxes.

The neo-Hookean as well as the isotropic restriction of the BS model exhibit opposite pattern

compared to the experiment (strain-softening instead of strain-hardening). Therefore, theoret-

ical curves of these models do not fit experimental data. The Fung’s exponential and the BS

orthotropic models, on the other hand, exhibit a good agreement with experiment proving their

applicability for the modelling of arterial walls.

5. Conclusion

The mechanical response of the porcine carotid artery exhibits typical patterns of soft tissues.

After preconditioning, both strain-hardening and hysteresis are observed during inflation and

deflation phases. In the experiment, the sample is prestretched axially to mimic in vivo condi-

tions.

The preliminary estimates and the following FE analysis indicate that the arterial segment

under the experimental conditions can be represented as a cylindrical tube loaded statically with

the inner pressure and the axial stretch. The analysis is performed considering the load-free

configuration to be stress-free for simplicity. However, the same conclusions can be expected

when the residual stress is taken into account as its contribution to the mechanical response is

the overall stiffening.

Adopting these assumptions, the static analysis is performed considering the arterial seg-

ment as an incompressible hyperelastic tube. Here, both axial prestretch and residual stress

are taken into account. Influence of the residual stress consists in the stiffening of the model,

i.e. it can be understood as a subsidiary mechanism of arteries to bear loads caused by pul-

satile blood flow and to reduce inadequate deformations in vivo. However, residual stress is

taken into account via a single parameter in this model considering the open arterial segment

as stress-free. In real arteries, residual stress is a more complex problem resulting from certain

growth mechanisms of the different layers.

Comparison of theoretical pressure-diameter curves with experimental data is provided for

the neo-Hookean, the Fung’s and the so-called “balls and springs” (BS) material model. Both

the Fung’s and the BS models provide a good agreement with experiment due to their anisotropy

and a large number of material constants (7 and 11, respectively). The neo-Hookean and the

isotropic restriction of the BS model, on the other hand, exhibit an opposite pattern (strain-

softening) in the mechanical response when compared to the experiment. Therefore, these

models do not seem to be suitable for the modelling of arterial walls. Values of the material

parameters found for the Fung’s model seem to be reasonable although in [6] slightly differ-

ent values for a rabbit carotid artery were obtained. Namely, c ∼ 104 Pa, b1 and b2 ∼ 10−1,

b3 ∼ 10−3 and b4 to b6 ∼ 10−2. Apart of different tissue, material parameters are obtained upon

an assumption of a stress-free state at the load-free configuration which may also lead to dif-

ferent results. Material constant found for the neo-Hookean model corresponds to the Young’s

modulus of ≈ 2×105 Pa. It does not correspond to the Young’s modulus of the examined tissue

since the mechanical response of the neo-Hookean model differs significantly from the experi-

mental observation. However, the same order of value for dynamic elastic moduli are obtained

in [15, 10] for carotid human arteries (0.49 − 6.08 × 105 Pa) and arteries of dogs (∼ 105 Pa).

Concerning the BS model, the approximative analytical formula of the strain energy func-

tion is employed in this work for simplicity. Although it exhibits a good agreement with exper-
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iment, the approximative formula is in fact not accurate for the values of material parameters

obtained in the identification. In other words, it does not represent the material with its mi-

crostructure as proposed in [17]. Rather, it may be understood as a phenomenological model.

Aims for the future are to consider accurate formula of the BS model capturing the mi-

crostructure and including prestress with the possible application on the study of activation and

contraction of living tissue. To consider various experimental and modelling conditions such

as the variation of flow rate, dynamic and cyclic loading and to describe hysteresis in the me-

chanical response as well as time dependent behaviour, viscoelastic models must be employed.

Possible approach for creating such models, for instance, is the notion of internal variables.

Challenging topic is also the degradation of tissue at the microlevel caused by the collagenase

and elastase treatment. Modelling of the mechanical response of the degraded tissue using the

BS model is of further interest.
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