
The Adaptive Thin Shell Tetrahedral Mesh

Kenny Erleben
Dept. of Computer Science,

University of Copenhagen,

Denmark

kenny@diku.dk

Henrik Dohlmann
3DLab, School of Dentistry,

University of Copenhagen,

Denmark

henrikd@lab3d.odont.ku.dk

Jon Sporring
Dept. of Computer Science,

University of Copenhagen,

Denmark

sporring@diku.dk

ABSTRACT

Tetrahedral meshes are often used for simulating deformable objects. Unlike engineering disciplines that often
focuses on accuracy, computer graphics is biased towards stable, robust, and fast methods. In that spirit we present
an approach for building an adaptive inward shell of the surface of an object. The goal is to device a simple and
fast algorithm capable of building a topologically consistent tetrahedral mesh. The tetrahedral mesh can be used
with several different simulation method, such as the finiteelement method (FEM), and the main contribution of
this paper is a novel tetrahedral mesh generation method based on adaptive surface extrusion.

Keywords
Tetrahedral Mesh, Erosion, Extrusion, Tessellation, Shell, Prism

1 INTRODUCTION
Given a 3D polygonal model created by a 3D artist, it is
often a challenge to create a spatial structure for simulat-
ing a deformable object. Creating a tetrahedral mesh of-
ten results in an enormous number of tetrahedra, hence
a more coarse tetrahedral mesh is often sought in order
to achieve real-time performance. In this paper a mesh
generation method is proposed, that works directly on
the surface of a mesh, avoids a constrained Delaunay
triangulation, is easy to implement, and yields a tetrahe-
dral count, which is linearly proportional with the num-
ber of mesh faces.
Given a watertight twofold boundary representation of
an object such as a connected triangular mesh, a prism
is generated for each triangle by extruding the triangle
inward. The result is a volumetric mesh consisting of
connected prisms. These prisms can easily be tessel-
lated into tetrahedra to create the first layer of the thin
shell tetrahedral mesh. Succeeding layers can be created
by recursively applying this approach. Figure 1 shows

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

(a) Teapot (b) Bowl

Figure 1: Cut-views showing the shell layers inside the
volumetric meshes generated with our method.

examples of thin shells from volumetric meshes.
Polygonal models are seldom twofold, but often suf-
fers from several kinds of degeneracies. The idea we
have illustrated is obviously capable of handling an open
boundary, but cases where edges share more than two
neighboring faces, or where edges self-loop, will gen-
erate prisms, which overlap or degenerate into a zero-
volume prisms. In such cases a mesh reconstruction al-
gorithm [NT03] must be applied first.
The suggested prism generation is reminiscent of an ero-
sion operation with a spherical structural element on the
polygonal model. The radius of the sphere corresponds
to the extrusion length. It is well known that working di-
rectly on the boundary representation [Set99] is fast and
simple, but topological problems arises easily such as
shocks [KTZ95]. The counter-part to shocks are degen-
erated prisms, that is prisms with less than 6 vertices.
These shocks turn out to be the limit on the extrusions
lengths.

B

A D

C

Figure 2: Degenerate prisms results from a too big in-
ward extrusion. This is an example of a swallow tail.

Existing tetrahedral mesh generation methods in the lit-
erature typically create an initial, blockified tetrahedral
mesh from a voxelization or signed distance map. Af-
terwards, nodes are iteratively repositioned, while tetra-
hedra are sub-sampled in-order to improve mesh qual-
ity [MT03, PS04, MBTF04]. In contrast to these meth-
ods, our is surface-based. An implementation of our
method presented is available at [Ope04].

2 MINIMAX INWARD EXTRUSI-
ON

The thin shell layer is produced by extruding each tri-
angle in the mesh inwardly, thus producing prisms. We
will require the following three properties of the prisms:
No two prisms must intersect each other, prisms must
have volume larger than zero, and all prisms must be
convex. Unfortunately, even for a perfectly connected
twofold triangle mesh, too large inward extrusions will
cause problems as illustrated in Figure 2. In the fig-
ure, the large extrusion length causes prismsB andC
to become non-convex. Furthermore,A andD, B and
D, C andA, andB andC are overlapping. Fortunately,
these degenerate and unwanted prisms can be avoided
by reducing the extrusions. Thus, we must seek an up-
per bound on how far, we can extrude the triangle faces
inwardly without causing degenerate prisms.
To make the inward extrusion, we first compute the out-
ward, angle-weighted normals [AB03] for all vertices.
Then for a triangle consisting of three vertices~p1, ~p2,
and~p3, with angle weighted normals~n1,~n2, and~n3, the
inward extruded prism is defined by the six points:~p1,
~p2, and~p3, and

~q1(ε) = ~p1−~n1ε, (1)

~q2(ε) = ~p2−~n2ε, (2)

~q3(ε) = ~p3−~n3ε, (3)

whereε > 0 is the extrusion length. The notation is il-
lustrated in Figure 3. Clearlyε must be strictly posi-

p
1

p
2

p
3

q
1

q
2

q
3

n
1

n
2

n
3

n
q

Figure 3: The six points and pseudo normals defining
the prism and extrusion direction.

tive, however to further guarantee convexity and posi-
tive volume of the prisms, we will use the normal of the
extruded faces to generate an upper bound onε.
The direction of the normal of the extruded face,~nq, can
be found from~q1,~q2, and~q3, using the cross-product:

~nq(ε) = (~q2(ε)−~q1(ε))× (~q3(ε)−~q1(ε)) . (4)

By the distributive property of the cross product, we find
a second order polynomial inε,

~nq(ε) = ((~p2−~p1)× (~p3−~p1))
︸ ︷︷ ︸

~c

+((~p2−~p1)× (~n1−~n3)+ (~n1−~n2)× (~p3−~p1))
︸ ︷︷ ︸

~b

ε

+((~n1−~n2)× (~n1−~n3))
︸ ︷︷ ︸

~a

ε2

=~aε2 +~bε +~c. (5)

Observe that~c 6=~0, since its magnitude is equal to twice
the area of the triangle being extruded.
To ensure positive volume and convexity, it is sufficient
to ensure positivity of the dot product of the normal of
the extruded face,~nq, with the pseudo normals,~n1, ~n2,
and~n3. I.e. we must have that,

~n1 ·~nq(ε) > 0, (6)

~n2 ·~nq(ε) > 0, (7)

~n3 ·~nq(ε) > 0. (8)

Using (5), we may formulate the constraints as the fol-
lowing system of inequalities,

~n1 ·~a ~n1 ·~b ~n1 ·~c
~n2 ·~a ~n2 ·~b ~n2 ·~c
~n3 ·~a ~n3 ·~b ~n3 ·~c

ε2

ε
1

 > 0. (9)

The largest positiveε fulfilling the system of constraints
is the upper bound on the inward extrusion lengths. We
find the upper bound by solving for each row the roots
of the the second order polynomial inε. The three rows

(a) Propeller (b) Funnel

Figure 4: Close-up cut-views showing how a global ex-
trusion length causes thin shell layers.

yield a total of 6 roots. If no positive root exist, thenε =
∞, otherwiseε must be less than the smallest positive
root.
The three convexity constraints ensure that no neighbor-
ing prism will intersect each other, nor will the prism
turn its inside out, i.e. flipping the extruded face oppo-
site the original face. A global extrusion length for the
entire layer can be found by iterating over each prism.
The global extrusion length of the layer is found as

ε = min
(
ε0, . . . ,εn−1) , (10)

whereε i is the extrusion length for thei’th prism. Af-
terwards, it is a simple matter to compute the actual ex-
trusion and generating the prisms. In some cases us-
ing the maximum possible extrusion length of a prism
can degenerate it. The degenerated prism will have
a zero-area extruded face and is easily detected and
treated [ED04]. During triangulation degenerate prisms
can be dealt with by insertion of an extra internal corner
point.

3 ADAPTIVE EXTRUSION
Badly shaped surface triangles can in some cases cause
an inefficient small global extrusion length, as illus-
trated in Figure 4. This is caused by the global optimiza-
tion in (10), in which a single prism near high curvature
will dictate the thickness of the entire layer. Multiple
layers will give an impression of a solid or dense object,
but will introduce a large number of tetrahedra. The thin
shell also causes the tetrahedra to turn into slivers, if the
global extrusion length is too small. To overcome such
inefficient thin shell layers, we propose to use an adap-
tive extrusion length.
To calculate the adaptive extrusion length, a surface ver-
tex is assigned an extrusion length equal to the minimum
extrusion length of the neighboring prisms, of which the
vertex is part. Thus for vertex,v

εv = min
p∈P(v)

ε p, (11)

whereP(v) denotes the set of all prisms, of whichv is
part. Choosing the size of the adaptive extrusion length

(a) Propeller (b) Teapot

(c) Bowl (d) Funnel

Figure 5: Adaptive extrusion length using (11) causes
self intersection of the thin shell layers.

in this way does not violate the convexity requirement to
the prisms, since given a convex prism, one can always
shrink any one of the extrusion lines without destroying
convexity.
Nevertheless, this is a local solution, and as is shown
in Figure 5, vertices with large extrusion lengths causes
self-intersections with opposing faces. Our remedy is to
use a root-search method to search for a smaller layer
thickness without self-collisions. The idea is to re-cast
the problem into a simulation formulation, where the ex-
trusion length is thought of as a time parameter of an
evolving surface. Thus we seek the point in time, where
the evolving surface touches itself from opposite sides.
The simulation loop consist simply of the following two
steps:

• Perform collision detection,

• Update the extrusion length values.

These are repeated for a fixed number of iterations.
For each extrusion line we will keep a minimum value
of the extrusion lengthεmin, a maximum value of the ex-
trusion lengthεmax, and a current value of the extursion
lengthε. The interval[εmin,εmax] represents the range of
values, where we look for a solution forε. Initially the
value of the minimum, maximum, and current extrusion
length are all set equal to (11). During the search for a
solution, the minimum and current extrusion length val-
ues will be changed, but the maximum length value is
left unchanged.
The parameterεmin is the largest value that will not de-
stroy the convexity requirement and is therefore always
changed to a value that guarantees non-penetration. The
parameterε is the next guess for a non-penetrating ex-
trusion line, and it is set to the half-way point between
εmin andεmax.

A spatial grid data structure [TBHPG03] is used to per-
form collision detection. During a first pass the axis
aligned bounding boxes of all the extrusion lines are
mapped into the spatial grid, and then in a second pass
the axis aligned bounding boxes of the prisms are used
to query for overlap with the extrusion lines. Whenever
an overlap is found a penetration test is performed be-
tween the prism and extrusion line, The brute-force pen-
etration test consist of testing, whether the extrusion line
penetrates the five faces of the prism. This can be op-
timized to perform only penetration testing against the
original surface face and the extruded face of the prism.
If the extrusion line originates from a vertex shared with
the prism, then the penetration test is ignored.
Upon having completed the collision query, a set of col-
liding extrusion lines and prisms are returned. Now we
iterate over all these pairs, and mark each extrusion line,
while finding the intersection point with the surface and
extruded faces of the prism. If the distance to the inter-
section point from the originating surface vertex is lower
than the minimum extrusion length, then the minimum
extrusion length of the vertex is updated to this distance.
If a non-penetrating extrusion line is found, then the cur-
rent extrusion lengthε yields a new possible value for
the minimum extrusion lengthεmin. However instead
of simply setting the minimum extrusion length equal
to the current extrusion length, our experiments indicate
that it is better to down-scale the value of current extru-
sion length, before assigning it to the minimum extru-
sion length. This is because, it is likely that the extrusion
lines on the opposite side of the shell layer also will in-
crease their minimum extrusion lengths. Down-scaling
their values will reduce the chance for the growing ex-
trusion lines to cause a self-collision.
Figure 6 shows a pseudo-code version of the simulation
loop, which iteratively adjusts the extrusion lengths.
Upon completion of the last iteration of the simulation
loop, the value ofεmin and notε is used as the extrusion
length, since onlyεmin is guaranteed not to cause any
self-collisions. Figure 7 shows close-ups of cut-views
of volumetric meshes generated using the iteratively ad-
justed adaptive extrusion length method. Notice that
the adaptive extrusion length is small near sharp rigdes,
and at flat regions the adaptive extrusion length are in-
creased to the point, where the extruded surface meets
with prisms from the opposite of the object.

4 PRISM TESSELLATION
For solid state simulations it is convenient to have ob-
jects on tetrahedra form, hence we will tesselate our
prisms into tetrahedra. Due to space limitations, we
will have to disregard degeneracies, these are however
treated in details in [ED04]. For non-degenerate prisms
having 6 corners, 3 is the minimum number of tetrahe-
dra we can tesselate the prism into, and this tesselation

for i=1 to max iteration do
Results R = collision(lines,prisms)
for each (line,prism) in R do

let p be originating point of line
let v be intersection point of line
εmin(line) = min(εmin(line),dist(p,v))
mark(line) = true

next (line,prism)
for each line in lines do

if not mark(line) then
tmp = ε(line)*0.9;
if tmp > εmin(line) then

εmin(line) = min(tmp,εmax(line))
end if

end if
tmp = (ε(line) + εmin(line))/2
ε(line) = min(εmax(line),tmp)
q(line) = p(line) - n(line) * ε(line)
mark(line) = false

next line
next i

Figure 6: Pseudo-code for iterative adjustment of adap-
tive extrusion length.

(a) Propeller (b) Teapot

(c) Bowl (d) Funnel

Figure 7: Close-ups of volumetric mesh cut-views,
showing the effect of the iteratively adjusted adap-
tive extrusion length, which gives a thick and non-
overlapping layer.

Figure 8: A Prism iteratively tessellated into 3 tetrahe-
dra from left to right. It is helpful to imagine that the
rightmost face has been inwardly extruded to produce
the leftmost face. The yellow tetrahedra illustrate the
iteratively produced tetrahedra.

Falling (F)

Rising (R)
Falling (F)

Figure 9: Classification of prism sides as falling (F) or
rising (R).

is illustrated in Figure 8. For methods such as Finite
Element Modelling (FEM) it is useful for neighbouring
prisms to be tesselated such that the generated triangular
faces match. We call this tesselation consistency, and it
results in a global combinatorial problem.
A prism can be tesselated into three tetrahedra in 6 dif-
ferent ways. In order to classify the 6 types of tesse-
lations, we will mark the rectangular sides of a prism
as falling (F) or rising (R). The edge type depends on
whether the tesselation edge is falling or rising as we
travel along the extruded prism face in counter clock
wise manner. This is illustrated in Figure 9. We ob-
serve that our tetrahedra tesselation strategy will always
have two prism sides of the same type, and the last side
of opposite type. Thus we can only have 6 different pat-
terns tabulated in Table 1. The consistency requirement
implies that if one side of a prism is marked asF , then

F R R
R F R
R R F
R F F
F R F
F F R

Table 1: The 6 three-tetrahedra tesselation types.

F

R F

R

R

F

R

R

F
F

R

F

Figure 10: Tesselation example. A simple 3D sur-
face mesh (a tetrahedron) as seen parallel to the sur-
face normal. The letters R/F denotes the choice of Ris-
ing/Falling triangulation of the prism sides, which can-
not be seen in this projection.

F

R F

R

F

F

R

F
F

Figure 11: Inconsistent tesselation example. The middle
prism will have the same type on all sides, which is not
possible.

the neighboring prism will have marked the same side
asR. In short, no neighboring prisms will have a side
marked with the same type. A simple tesselation exam-
ple is shown in Figure 10.
Our algorithm for ensuring global consistency is as fol-
lows: We start at a single prism and choose one of the 6
tesselation types. Then we visit the neighboring prisms
and choose a tesselation, which is consistent with neigh-
boring prisms already tesselated.
With this algorithm, inconsistency may arise as shown
in Figure 11. Here, the middle prism is the last prism
to be visited. Clearly, it is impossible to assign a tes-
selation type to the prism, since all three sides should
have the same type. This can be repaired by picking
one of the neighboring prisms and flipping the type of
its shared edge. This action will not change the type of
any of the edges marked with arrows in Figure 11. In
this case no further inconsistencies are introduced, and
the repairing action of the example does not have large
scale effect.
Fixing inconsistency locally is attractive, since it limits
the computation time, but there is no guarantee that a lo-
cal solution always can be found. An example of a non-
local problem is the dead-lock shown in the top of Fig-
ure 12. In this example, none of the edges shared with
the inconsistent prism can be flipped without creating
an inconsistent neighboring prism, since all the edges
marked with arrows are of the same type. The solu-

R

R F

R

R

F

R

R
F

R

R F

R

R

F

R

R
F

F

F R

Figure 12: Top picture shows a inconsistent tesselation
in a dead-lock. The bottom picture shows that incon-
sistency problem have been propagated to neighboring
prisms further away by extended the region where we
search for possible edge flips.

R

R F

F

R

F

R

R
R

R

F R

R

R F

Figure 13: The rippling solution to the dead-locked case
shown in Figure 12.

tion to the problem is shown in the bottom of Figure 12.
We let the inconsistency ripple as water waves over to
neighboring prisms, in a search for a single prism, where
an edge flip does not give rise to a new inconsistency.
When such a prism is encountered, we track the trajec-
tory of the ripple wave-front back to the originating in-
consistent prism and flip all shared edges lying on this
path. The result of the rippling for this specific case is
shown in Figure 13. Notice that two edges are flipped,
which are the edges lying on the path from the unas-
signed prism to the prism that could be flipped. Also
notice that all edges marked with arrows are unaffected
by the rippling action. This property ensures that the rip-
pling action will not cause inconsistencies in any prisms
elsewhere in the mesh.
A pseudo-code of the tesselation-pattern-finding algo-
rithm is shown in Figure 14. It is our experience

algorithm tesselation-pattern()
Queue Q
Push first prism onto Q
While Q not empty do

Prism p= pop(Q)
mark p as visited
N = neighboring prisms of p
if N is not tesselated then
pick random pattern of p

else if consistent pattern with N
assign consistent pattern to p

else
if exist n∈ N that can be flipped

flip type of shared edge with p
assign constent pattern to p

else
perform-rippling

end if
end if
for all unvisited n∈ N do

push(Q,n)
next n

End while
End algorithm

Figure 14: Pseudo-code for determining tesselation pat-
tern.

that the rippling distance rarely exceeds more than 1–2
faces [ED04]. The tesselation algorithm is thus a com-
putational cheap and fast solution to an unpleasant prob-
lem.

5 RESULTS
The adaptive thin tetrahedral shell mesh method has
been tested on several surface meshes, 14 of these sur-
face meshes are shown in Figure 15, and number of iter-
ations and total running time for these meshes are listed
in Table 2. In [ED04] the time-complexity of the actual
tesselation was shown to scale linearly with the num-
ber of faces in the original surface mesh. The running
time is therefore clearly dependent on the shape of the
original surface mesh. As can be seen from the table,
surface meshes with small thin structures have the worst
running time. This is because in every second iteration
of the iterative adjustment of the extrusion length, ex-
trusion lines in these thin regions are increased, leading
to penetrations. In the succeding iteration the extrusion
lines are shortened to remove the penetration. This os-
cillating behaviour only slowly converges towards a so-
lution.
Figure 16 shows plots of the number of collisions per
iteration. The plots indicate that the iterative adjustment
of the adaptive extrusion lengths converges toward a so-
lution, when given enough iterations. The plots how-
ever also indicate that the number of collisions is not a
strictly monotone decreasing function. It is thus difficult
to say anything conclusive about the convergence rate.
Cut-views of the generated tetrahedral meshes can be

Figure 15: The 14 original surface meshes.

|F| |I | time(secs.)
box 12 1 0.01
cylinder 48 1 0.01
pointy 96 100 0.42
diku 288 100 2.95
tube 512 1 0.15
sphere 760 1 0.26
teapot 1056 76 14.05
propeller 1200 72 19.89
funnel 1280 45 13.89
cow 1500 100 37.03
bend 1604 1 0.74
bowl 2680 85 136.75
torus 3072 1 1.49
knot 5760 1 5.94

Table 2: Performance Statistics using Iterative Adjust-
ment. Maximum iteration count was set to 100 in all 14
test cases. The|F |-column gives the face count of the
meshes, and the|I |-column shows the number of itera-
tions.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000
Collisions per iteration

iteration

co
lli

si
on

s

pointy
propeller
bowl
funnel
cow
diku
teapot

Figure 16: Collisions detected in each iteration.
Collision-free test cases are not shown.

seen in Figure 1, 7, and 17. A user specified global max-
imum extrusion length was used, hence not all tetrahe-
dral meshes fill out the inside void. The figures clearly
show that the adaptive method is capable of filling out
the inside of a surface mesh much more efficiently than
the global extrusion length solution.

6 DISCUSSION
In this paper we have presented results showing that it is
possible to generate a thin adaptive shell without topo-
logical errors. Our results show that the adaptive thin
shell tetrahedral mesh generation method is versatile,
robust, simple to implement, and yields useful results.
For the proposed consistent tesselation, we have not yet
proven that it is always possible to find a consistent pat-
tern of rising and falling tesselation edges. Neverthe-

Figure 17: Cut-views of a few selected meshes.

less, we have not yet encountered difficulties with the
method, and we believe that the combinatorial problem
of finding a consistent tesselation pattern is tractable.
We leave the proof for future work.
Lastly the iterative adjustment of the adaptive extrusion
lengths can be improved in two ways. Firstly, the con-
vergence rate could be improved to yield faster running
times. Secondly, as seen in Figure 1, 7, and 17 some
prisms seem to loose the race in increasing their extru-
sion lengths, before the algorithm terminates. The effect
is most noticely seen in case of the bowl mesh, where
some prisms could be extruded more to reduce empty
space inside the mesh. We leave both these problems
for future work.

References
[AB03] Henrik Aanæs and J. Andreas Bærentzen.

Pseudo–normals for signed distance
computation. InProceedings of VISION,
MODELING, AND VISUALIZATION, 2003.

[ED04] Kenny Erleben and Henrik Dohlmann. The thin
shell tetrahedral mesh. In Søren Ingvor Olsen,
editor,Proceedings of DSAGM, pages 94–102,
August 2004.

[KTZ95] Benjamin B. Kimia, Allan R. Tannenbaum, and
Steven W. Zucker. Shapes, shocks, and
deformations I: The components of
two-dimensional shape and reaction-diffusion
space.International Journal of Computer
Vision, 15:189–224, 1995.

[MBTF04] N. Molino, R. Bridson, J. Teran, and R. Fedkiw.
Adaptive physics based tetrahedral mesh
generation using level sets. (in review), 2004.

[MT03] M. Müller and M. Teschner. Volumetric meshes
for real-time medical simulations. InProc.
BVM (Bildverarbeitung für die Medizin), pages
279–283, Erlangen Germany, March 2003.

[NT03] Fakir S. Nooruddin and Greg Turk.
Simplification and repair of polygonal models
using volumetric techniques.IEEE
Transactions on Visualization and Computer
Graphics, 9(2):191–205, 2003.

[Ope04] OpenTissue, 2004. http://www.opentissue.org.

[PS04] Per-Olof Persson and Gilbert Strang. A simple
mesh generator in matlab.SIAM Review,
46(2):329–345, June 2004.

[Set99] James A. Sethian.Level Set Methods and Fast
Marching Methods. Evolving Interfaces in
Computational Geometry, Fluid Mechanics,
Computer Vision, and Materials Science.
Cambridge University Press, 1999. Cambridge
Monograph on Applied and Computational
Mathematics.

[TBHPG03] M. Teschner, M. Müller B. Heidelberger,
D. Pomeranets, and M. Gross. Optimized
spatial hashing for collision detection of
deformable objects. InProc. Vision, Modeling,
Visualization, pages 47–54, Munich, Germany,
November 2003.

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	G03-full.pdf
	F53-full.pdf

