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ABSTRACT 

In this paper we present an algorithm of simple implementation but very effective that guarantees to keep an optimal 

stripification (in term of frames per seconds) over a progressive mesh. The algorithm builds on-the-fly the stripification 

on a mesh at a selected level-of-details (LOD) using the stripifications built, during a pre-processing stage, at the lowest 

and highest LODs. To reach this goal the algorithm uses two different operations on the dual graph of the mesh: when the 

user changes the mesh resolution the mesh+strips local configuration is looked up in a table and, after a vertex split opera-

tion, the strips are rearranged accordingly, immediately after a sequence of special topological operation called “tunnel-

ing” with short tunnel length are started till the number of isolated triangles in the mesh get under 10% of the total num-

ber of strips. Moreover, when the user select a relevant LOD it can trigger a tunnelling with higher tunnel length to opti-

mize the stripification. Using these operations we are able to keep the progressive mesh stripified in a time of the same 

order of magnitude of the time needed to change the resolution and, only if required, to perform a time-demanding opti-

mization. Only the stripifications generated by explicit user requests are stored to serve as optimal starting points for fur-

ther inspection. In this way we can always feed the graphics board with a triangle strip representation of the mesh at any 

LOD. 

The results we present demonstrate that we can tightly couple each sequence of vertex splits used to increase the resolu-

tion of the progressive mesh with: a simple rearrangement of the strips followed by a very cheap stripification search with 

a predetermined strategy. A strong feature of the method is that the local rearrangement leads to an implementation that 

keeps almost constant the execution time. The results of the visualization benchmarks are very good: comparing the ren-

dering of the stripified (using this strategy) and the non stripified meshes we can, on average, double the frames per sec-

onds rate. 
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1. Introduction 
Three different lines of research are active in trying to 

improve the management of large meshes: developing 

efficient algorithms for the compression of the meshes 

representation; improving the methods for the construc-

tion of a multiresolution data structure and easily select a 

mesh among all the ones stored in the structure; develop-

ing efficient ways to best render these meshes on current 

computer graphics hardware. 

A good example of the first type of investigation is repre-

sented by the Edgebreaker algorithm and all its im-

provements [Tau98, Ros99, Paj00, Gan02]. This kind of algo-

rithms allow to lossless encode meshes and collection of 

meshes (simplicial complexes) of any type using a re-

duced number (even less than two) of bits per vertex. The 

methods start from a seed triangle and grow on the free 

frontier (the boundary with other triangles not already 

encoded) till all the triangles are encoded. 

The most popular method for building multiresolution 

structure is the progressive mesh method (PM) and all its 

improvements [Hop96, Hop97, Pop97, Hop98, Paj00]. Its great 

popularity derives also from the fact to be available as 

part of Microsoft's DirectX since the release 5.0.  
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Another way to try to compress the geometrical represen-

tation of a triangle mesh is the attempt to reduce the 

throughput between the CPU and the Graphics Process-

ing Unit (GPU). The most common and diffused way to 

reach this goal is to rearrange the information describing 

each single triangle in the mesh in structured forms as the 

triangle strips and the triangle fans [Hae03]. 

A triangle strip is a set of connected triangles where a 

new vertex implicitly defines a new triangle. Triangle 

strips are used to accelerate the rendering of objects rep-

resented as triangle meshes, in a pre-processing stage the 

mesh is partitioned in a set of triangle strips (each of one 

can possibly be composed of one single triangle) and 

then each strip is passed to the GPU for rendering. The 

advantage of the strip representation over rendering each 

triangle separately, is that it makes it theoretically possi-

ble to reduce the number of vertices sent to the GPU 

from 3n (where n is the number of triangles in the mesh) 

to n+2 in the best case. 

In this work we couple a selection and a stripifica-

tion technique: the choice of a LOD over a PM with a 

method to accelerate its rendering. 

The rest of this work is organized as follows: in sec-

tion 2 we briefly go over the previous work done in ge-

ometry compression, focusing on selection methods and 

stripification algorithms; we then show, in section 3, the 

relations existing between the triangle mesh and its dual 

graph, introduce the tunnelling operator and explain how 

to build a stripification over the lowest resolution LOD of 

a progressive mesh; section 4 is dedicated to detail how 

the stripification is kept consistent while varying the 

LOD in the progressive mesh; in section 5 we show the 

results we obtained using our algorithm on a mesh we 

acquired from cultural heritage manufacts; and, finally, in 

section 0 we draw our conclusions and describe the fu-

ture evolutions of this work. 

2. Previous Work 
Deering [Dee95] was the first to introduce the term 

geometry compression, to describe a set of techniques 

capable of reducing the space occupancy of a generalized 

triangle mesh statistically encoding XYZ positions, RGB 

colors and normals. These techniques operate mainly on 

the geometry of the mesh (i.e., the positions and the at-

tributes of the vertices) relying on the triangle mesh struc-

ture to compress the information on the topology (i.e., 

how the vertices are connected to form the triangles). 

Since the goal of the work was to suggest a series of dif-

ferent operations the designer can perform to reduce the 

space occupancy of a triangle mesh, there wasn't any 

conclusion on the real possibility to move on the graphics 

board some of these stages. 

Even if it is quite a rough classification, since there can be 

found many mixing approaches, we can divide the ge-

ometry compression methods in three main families: 

• Compression methods. Allow to reduce the data 

needed to represent a  mesh; they are well suited 

for transmitting and/or archiving the meshes; 

• Selection methods. Allow to select the resolution 

that best fits the graphics hardware available for 

rendering; they are well suited for transmission 

with a preview effect; they are used to select a rep-

resentation of the object described by the mesh, 

given a triangle/frame-rate budget; 

• Rendering accelerating methods Allow to reduce 

the time spent in sending the information describ-

ing the mesh from the CPU to the GPU thus result-

ing in getting a higher frames per second rate with-

out changing the number of triangles of the mesh 

(its geometry). 

Compression Methods 
After Deering [Dee95] several subsequent works [Tau98, 

Tou98], centered their attention on the problem of com-

pressing the description of the topology arriving at a rele-

vant result with the Edgebreaker method [Ros99, RsS99] 

which claims to reach less than two bits per triangle to 

encode a planar mesh homeomorphic to a disc. 

All these techniques need a decompression stage that is 

not yet implemented in commercial graphics hardware, 

even using new programmable boards. This means that 

they are very efficient for transmission and archiving but 

cannot be used for feeding the GPU. 

It is worth to mention that a useful consequence of the 

Edgebreaker encoding is the easy production of triangle 

strips while processing and decoding the compressed 

dataset [RsS99]. 

Selection Methods 
Many authors presented solutions to generate multireso-

lution structures from an original mesh allowing the user 

to select a given LOD. We just limit ourselves to remind 

it’s possible to divide the methods presenting a fixed 

number of LODs (usually less than ten) from the meth-

ods ranging on a continuous variation of LODs 

(CLODs). 

Even if we don’t want to rehearse all these works let’s 

just briefly remind the main characteristics of the one we 

used in our implementation. 

Progressive meshes (PM) represent the most popular type 

of continuous LOD meshes. They allow the users to eas-

ily encode a complex mesh using a single topological 

operation (Figure 1) called edge collapse (EC) and its 

complement, vertex split (VS). On the PM is possible to 

perform two different but equally important tasks: to 

select the representation best fit for the available hard-

ware, and to progressively transmit the mesh. 
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Figure 1: The two complementary operations per-

formed on a progressive mesh 

The original proposal [Hop96] has been refined during the 

last years: a hybrid compression and selection scheme 

trying to get the best of Edgebreaker compression and 

progressive meshes [Paj00], a further improvement, in 

term of bits per vertex [All01], and the extension of these 

techniques to arbitrary simplicial complexes [Gan02]. 

In our implementation we built a PM representation from 

the original following the longest edge rule: we collapse 

edges in order of decreasing length. We decided to use 

such a simple approach since the pre-processing in which 

we build the PM can be changed without affecting the 

rest of the process and, at this stage of development, we 

wanted to focus on the stripification scheme. 

Stripification Techniques 
The greatest advantage in using triangle strips consists of 

the availability of such a primitive in the OpenGL graph-

ics library. Generating the stripification of a mesh means 

to be able to feed the GPU with the obtained structure 

without any further effort. It is actually to point out that 

OpenGL supports, without any vertex replication, only 

the sequential triangle strips. Generalized strips could 

thus bring to send more than once some vertices to the 

GPU.  

Rearranging the order in which the vertices are stored is 

the typical way to face the problem of reducing the CPU-

GPU throughput. The strips obtained are smaller than the 

original mesh when coming to the final rendering since, 

while the single triangle needs 3 vertices for its visualiza-

tion to be sent to the GPU, the sequential triangle strip 

needs n+2 vertices to be sent to the GPU to render n tri-

angles, and the generalized triangle strip n+s+2 where s 

is the number of swaps. The optimal single sequential 

strip encoding the whole mesh would reduce the number 

of vertices sent to the GPU by a factor of three. 

Several papers illustrate geometrical and topological 

properties of a stripification [Ark96] and many variations 

of algorithms to partition a triangle mesh in strips [Eva96, 

Cho97, Ise01, Est02]. The most relevant work coupling mul-

tiresolution structure and stripification techniques is due 

to El-Sana et al. [ElS99, ElS00]. They introduce a data 

structure called Skip Strip that is used to generate the 

triangles strips. The method maintains a stripified pro-

gressive mesh during the refinement and coarsening 

process. This is an approach similar to the one we pro-

pose, but it relies on a much more complex data structure. 

Working on the Dual Graph 
Each triangle mesh can be alternatively represented by its 

dual graph. It is a graph in which each node is associated 

to a triangle of the original mesh and an edge represents 

an adjacency relation. One trivial property of such a 

graph is that each node has, at most, three incident arcs. 

In case the original mesh is homeomorphic to a sphere 

and has genus 1, each node has exactly three incident 

arcs. 

It is quite common to use this representation to elaborate 

stripification algorithms: it allows to use a regular and 

compact data structure to represent the mesh and one can 

use all the results obtained from the graph theory. Unfor-

tunately it has been proven [Ark96,. Gar76] that a problem 

equivalent to searching the optimal single strip (finding a 

Hamiltonian path on the dual graph) is an NP-complete 

problem, thus the stripification process should be based 

on local heuristics. 

Two approaches for finding a stripification on the mesh's 

dual graph have been proposed: one is to compute a 

spanning tree on the dual graph, partition it into triangle 

strips, and then concatenate these strips into larger ones 

[Tou98], the second one is the so-called tunnelling algo-

rithm and it is explained in detail in section 3. 

3. Triangle Strip over the Progressive Mesh 

Let us first briefly summarize the steps our method per-

forms to keep the stripification at its best. They are:  
1. Build the PM over the given mesh; 

2. Build the stripification on the lowest LOD     

meshes using the procedure detailed in section 3; 

3. Move over the PM performing either a vertex split 

operation (VS) on the mesh to increase the LOD or 

an edge collapse (EC) to decrease the LOD;  

4. Rearrange the stripification using topological op-

erations described in section 4; 

5. Minimize the isolated triangles generated at the 

previous step using the tunnelling algorithm with 

short paths; 

6. Build an optimal stripification using the tunnelling 

algorithm with longer paths, on demand and store it 

in the stripification data structure. 

The step number 1 and 2 are pre-processing steps, we 

perform them on the mesh and then we can store the re-

sults in two supplementary data files, one for the PM and 

another one for the stripifications. 

The Tunnelling Algorithm 
The tunnelling algorithm, as initially proposed by Stewart 

[Ste01] and substantially improved by Porcu and Scateni 

[Por03], performs the stripification of the mesh using a 

simple topological operation on its dual graph. 

EC

VS

vt 

vs 

vl vr 
vl vr vs 
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To do so we need to think the graph edges as colored in 

two possible ways (see Figure 2): 

• solid edges linking nodes associated to triangles in 

the same strip; 

• dashed edges linking nodes associated to adjacent 

triangles not belonging to the same strip. 

 

Figure 2: A stripified mesh (each color encodes a dif-

ferent strip) and its dual graph. 

In every node there are, at most, two incident solid edges. 

The nodes with only one incident solid edge are terminal 

nodes (corresponding to terminal triangles of the stripifi-

cation). The nodes with three incident dashed nodes cor-

respond to isolated triangles in the stripification. 

The first step of the operation consists, then, of searching 

a special kind of path in the graph called a tunnel. A tun-

nel is an alternating sequence of solid and dashed edges, 

starting and ending with a dashed edge, connecting two 

terminal nodes. Its length is always odd and we denote by 

k-tunnel a tunnel of length k. 

If a tunnel is found, the second step consists, simply, of 

complementing the path, that is, changing each solid edge 

in a dashed edge and vice-versa. After this operation the 

number of solid paths (strips in the triangulation) on the 

graph is reduced by one. See Figure 3 for example. 

 

Figure 3: An example of tunnelling. In the top row a 

1-tunnel is found; in the bottom row there are no 1-

tunnels but only a 3-tunnel. Notice that the number of 

strips decreases from three to two after the first op-

eration and to one after the second. 

This technique can be used both to improve an existing 

stripification or to create a stripification from scratch. In 

the latter case the starting dual graph will have only 

dashed edges and every path of length one can be chosen 

as a tunnel. It is worthwhile to point out that isolated tri-

angles are always considered as terminal nodes of a one-

triangle strip. 

The main problem when implementing the algorithm is 

the possibility that the graph traversal for tunnelling could 

select paths that, when complemented, would generate 

loops. It is thus necessary to follow two additional rules 

(we call them the no-loop rules) during the tunnel search 

to avoid this situation: 

1. The last edge in a tunnel cannot connect two nodes 

belonging to the same strip (see Figure 4). 

2. When a non-final dashed edge, e say, in the tunnel 

joins two nodes belonging to the same strip, the next 

solid edge should go back in the direction of the 

leading node of e (see Figure 5). 

To be able to respect the no-loop rules, we need to distin-

guish between the different strips in the graph. This is 

done tagging each node of the graph (triangle) with an 

identifier corresponding to the strips it belongs to. 

 

Figure 4: An incorrect tunnelling that generates a 

loop. 

e

e
 

Figure 5: The non-final edge e in the tunnel joins two 

nodes belonging to the same strip. Of the two next 

possible steps, we must select the one corresponding 

to the direction that comes back to the leading node of 

e (bottom row), otherwise it will generate a loop (top 

row). One such step always exists because the leading 

and trailing nodes of e are in the same strip. 
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The only minor drawback of the tunnelling algorithm is 

that we are not able to keep the strips sequential, we are 

forced to use generalized strips and then introduce swap 

operations. This is to the fact that by its definition, the 

tunnelling operation change the turns in the graph. 

A sequential strip (Figure 6.a) is, in the dual graph, a path 

of solid edges in which, at each node, we alternatively 

make a left and right turn. When tunnelling over the 

graph it is not possible to keep the strips sequential and 

we are thus obliged to use generalized strips (Figure 6.b). 

2

1

3

4

5

6

7

8

9

10

 
1 2 3 4 5 6 7 8 9 10 

(a) 

2

1

3

4

5

6

7

8

9

10

11

 
1 2 3 4 5 6 5 7 8 9 8 10 8 11 5 3 

(b) 

Figure 6:A sequential strip (a) and a generalized one 

(b). For both we list the vertices to be sent to the CPU. 

The extra vertices (swaps) are in red. The grey edges 

mark the wrong turns. 

4. Strip Rearrangement 
The core of the algorithm is the rearrangement (a graph 

expansion or contraction) of the stripification when 

changing LOD. There are two method to consecutive 

operations applied to recolor the augmented graph: the 

first one is totally local to the triangle loop where the new 

vertex has been inserted and uses a look-up table; the 

second is glocal, it consists in launching a tunnelling on 

the modified stripification with a predefined stop rule. 

First Step: Using a Look-up Table 
We classified many different configurations that can be 

used to restructure the strips after a VS. Each single VS 

split operation insert two new triangles in the mesh, and 

three new edges in the dual graph. 

We actually completed the task only for 4-vertices (loops 

of length 4 in the dual graph), where the VS can lead to 

two different topologies: two 4-vertices (two 4-loops 

sharing an edge) or a 3-vertex plus a 5-vertex (a 3-loop 

and a 5-loop sharing an edge). In this case all the possible 

configuration (9+9) allow graph recoloring without iso-

lated triangles. In Figure 11 we list the nine configura-

tions of the 4-loop transforming in a 3-loop plus 5-loop. 

Each couple of new triangles can be assigned to a single 

triangle strip, increasing its size by two. As it is possible 

to notice from the figure the strip section added is always 

a sequential one. 

When dealing with higher degree vertices (longer loops) 

the cases increase rapidly. Splitting a 6-vertex, the most 

commonly found in triangular mesh, can lead to three 

different topologies: a 3-vertex plus a 7-vertex, a 4-vertex 

plus a 6-vertex and two 5-vertices. The problem is that, in 

this case, we are no longer able to always recolor the 

graph without leaving isolated triangles. We can see in 

Figure 7 a split with complete recolor while in Figure 8 

there is a split leaving an isolated triangle. With 8-

vertices, that appear very seldom in triangular meshes, we 

can be obliged even to leave both the inserted triangles 

isolated. 

 

Figure 7: An example of possible graph recoloring 

after a VS. 

 

Figure 8: A configuration where the graph recoloring 

after a VS leaves an isolated triangle (marked grey). 

In Figure 9 we can appreciate how the mechanism works. 

Passing from a LOD to a finer one the strip form stays 

more or less the same while its average length increases 

and a lot of isolated triangles appear. 

 

Figure 9: A close-up view of a local rearrangement 

performed on the Dea madre dataset. 

Second Step: Using the Tunnelling Operator 
Extensive benchmarks performed over different datasets, 

of different genus and size resulted in a percentage of 

recoloring operations introducing isolated triangles quite 
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constant: it varies in the range 45%-50%. In other words 

this corresponds to the insertion of an isolated triangle 

every second VS operation. 

We thus need to repair the strips structure using what we 

have called a glocal tunnelling. The tunnelling operation 

is performed transparently from the user, and uses the 

isolated triangles as seeds for searching very short tunnels 

(starting from 1-tunnels). Since we apply the global op-

erator in a local surrounding of these triangles we can say 

that it is used glocally. The tunnelling is then iterated until 

the number of isolated triangles reach a number that is 

smaller than 10\% of the total number of strips. This 

value is quite empirical: we noticed that when reaching 

this ratio, the frames per second rate almost doubles at 

any resolution for any dataset we used. 

In Figure 10 we can appreciate how the rearrangement 

via the tunnelling works. The strips are completely re-

structured, there are many less isolated triangles and the 

average length increase while the maximal length tends 

to decrease. 

 

Figure 10: A close-up view of a rearrangement per-

formed on the Dea madre dataset using a tunneling 

operation. 

At any stage the user has the possibility to invoke the 

stripification process explicitly, specifying the maximal 

tunnel length. We decided to leave this possibility more 

for completeness than for real need. It is, in fact, quite 

difficult to significantly improve the results obtained 

automatically. 

5. Results and Discussion 
We have performed all our benchmark on a PC with 

a Pentium IV 1.5 GHz CPU with 512 MB of RAM, and 

a NVIDIA GeForce TI 4600 GPU with 128 MB of 

RAM. 

For sake of simplicity we present here only the results 

obtained on the largest dataset we used. 

In Table 1 we list the characteristics of the obtained stripi-

fications. We can notice that the number of isolated trian-

gles depends more on the tunnel length than on the over-

all number of triangles in the mesh. 

 

Maximal tunnel length 
LOD% Only local 

5 9 13 

6.139 1.676 841 489 

4.456 489 140 46 13 

12.11 44.38 88.44 152.10 

17.592 3.025 1.536 869 

9.017 496 141 52 27 

8.77 51.04 88.13 147.59 

27.766 5.115 2.617 1.489 

11.741 785 281 107 52 

10.70 58.13 113.62 199.70 

Table 1: In each cell the first row shows the number 

of strips, the second the number of isolated tri's and 

the last the mean strip length. 

In Table 2 we show the time, in seconds, used to refine 

the stripification obtained with only local refinement. We 

remind that the cost of the local refinement is included in 

the cost of performing a resolution change. 

Maximal tunnel length 
LOD% 

5 9 13 

13 6.484 4.438 5.312 

27 4.360 1.750 2.579 

52 8.750 5.155 4.156 

Table 2: Time in seconds to refine the stripifications. 

Average Cache Miss Ratio 

The number of vertex cache misses plays a fundamental 

role in rendering efficiency [Dee95]. If we want to 

achieve a good rendering sequence than, the Average 

Cache Miss Ratio (ACMR), whose value ranges from 0.5 

to 3, should be kept as low as possible. To get this goal, 

several reordering algorithms has been proposed, for 

standard meshes [Cho97], triangle stripes [Hop99] and 

progressive meshes [Bog02]. 

We evaluated ACMR for several data set, using stripes 

generated with our system using the tunnelling algorithm. 

Without any kind of reordering mechanism, ACMR is 

~0.7 for a cache of 32 positions for all data sets, com-

pared to a typical ACMR of ~1.0 for standard stripifica-

tion procedures. This suggests that stripes calculated with 

tunnelling algorithm have a built-in cache friendly atti-

tude. 

In Table 3 several ACMR values for different data sets 

are listed, depending on cache size. 

The tunnelling algorithm behaves well because of the 

stripes’ shape. As one can see, for instance, in Figure 12, 

stripes appear to be packed instead of being elongated as 

usual. This preserves locality also in vertex ordering and 

then cache friendly behavior. 

Cache size  
Data Set 

16 32 64 

Oilpump 0.77 0.70 0.64 

David 0.78 0.71 0.68 

Dea Madre 0.78 0.71 0.67 

Table 3: ACMR values for three different data sets 

based on the cache size. 
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6. Conclusions and Future Work 
We presented a simple but very effective algorithm al-

lowing to compute an optimal stripification on a progres-

sive mesh. Optimal, in this context, means to at least 

double the frames per second rate with respect to non 

stripified mesh. 

The method we used is a two steps one: first we recolor 

the dual graph of the mesh using a look-up table and then 

we transparently launch a tunneling algorithm with a 

short tunnel length. 

We are already planning to get a better insight about the 

look-up table. As we already mentioned we are not able 

to automatically avoid the creation of isolated triangles 

only looking at the strips passing through the loop of 

triangles sharing the vertex to split. We think that extend-

ing the analysis also to the neighbor triangles (say, the 

triangles that can be reached from the split vertex travers-

ing two edges) can help to increase the number of recol-

oring without creation of isolated triangles.  

Another line of development regards a better analysis of 

the capabilities of vertex arrays on the GPU. At present 

we don't clip the triangle strips in chunks the best fit on 

the arrays and we should insert a further parameter in the 

visualization tool to take this into account. 

The last improvement we are planning is on the fine tun-

ing of the rendering. At present we can select the LOD 

and then verify the fps obtainable. In the next release it 

will be possible to set the fps budget and let the system 

select the possible LOD visualizable. 
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Figure 11: The graph rewriting rules to apply when inserting a new vertex with a VS operation. In each couple, 

on the left the configuration before the VS (the vertex to be split is marked in red), on the right the configuration 

after the VS (the new inserted vertex is marked in blue). 

 

 

         

Figure 12: An example of LOD change on the “Dea madre” dataset. From left to right: the 9% LOD optimally 

stripified (51,511 tri's and 10 strips); the 13% LOD obtained from the 9% one only with local mesh restructuring 

operations (this and the subsequent are meshes of 74,381 tri's, 6,139 strips with 4,456 isolated tri's); the same 

mesh after a 6-tunnels search (1,676 strips with 489 isolated tri's); after a 10-tunnels search and graph recoloring 

(841 strips with 140 isolated tri's); after a 14-tunnels search and graph recoloring (489 strips with 46 isolated 

tri's). 
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