
Efficiently eeping an ptimal
tripification over a CLOD esh

Massimiliano B. Porcu
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy

massi@dsf.unica.it

Nicola Sanna
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy

nsanna@unica.it

Riccardo Scateni
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy

riccardo@unica.it

ABSTRACT

In this paper we present an algorithm of simple implementation but very effective that guarantees to keep an optimal

stripification (in term of frames per seconds) over a progressive mesh. The algorithm builds on-the-fly the stripification

on a mesh at a selected level-of-details (LOD) using the stripifications built, during a pre-processing stage, at the lowest

and highest LODs. To reach this goal the algorithm uses two different operations on the dual graph of the mesh: when the

user changes the mesh resolution the mesh+strips local configuration is looked up in a table and, after a vertex split opera-

tion, the strips are rearranged accordingly, immediately after a sequence of special topological operation called “tunnel-

ing” with short tunnel length are started till the number of isolated triangles in the mesh get under 10% of the total num-

ber of strips. Moreover, when the user select a relevant LOD it can trigger a tunnelling with higher tunnel length to opti-

mize the stripification. Using these operations we are able to keep the progressive mesh stripified in a time of the same

order of magnitude of the time needed to change the resolution and, only if required, to perform a time-demanding opti-

mization. Only the stripifications generated by explicit user requests are stored to serve as optimal starting points for fur-

ther inspection. In this way we can always feed the graphics board with a triangle strip representation of the mesh at any

LOD.

The results we present demonstrate that we can tightly couple each sequence of vertex splits used to increase the resolu-

tion of the progressive mesh with: a simple rearrangement of the strips followed by a very cheap stripification search with

a predetermined strategy. A strong feature of the method is that the local rearrangement leads to an implementation that

keeps almost constant the execution time. The results of the visualization benchmarks are very good: comparing the ren-

dering of the stripified (using this strategy) and the non stripified meshes we can, on average, double the frames per sec-

onds rate.

Keywords

Geometry compression – Stripification – Progressive meshes.

1. Introduction
Three different lines of research are active in trying to

improve the management of large meshes: developing

efficient algorithms for the compression of the meshes

representation; improving the methods for the construc-

tion of a multiresolution data structure and easily select a

mesh among all the ones stored in the structure; develop-

ing efficient ways to best render these meshes on current

computer graphics hardware.

A good example of the first type of investigation is repre-

sented by the Edgebreaker algorithm and all its im-

provements [Tau98, Ros99, Paj00, Gan02]. This kind of algo-

rithms allow to lossless encode meshes and collection of

meshes (simplicial complexes) of any type using a re-

duced number (even less than two) of bits per vertex. The

methods start from a seed triangle and grow on the free

frontier (the boundary with other triangles not already

encoded) till all the triangles are encoded.

The most popular method for building multiresolution

structure is the progressive mesh method (PM) and all its

improvements [Hop96, Hop97, Pop97, Hop98, Paj00]. Its great

popularity derives also from the fact to be available as

part of Microsoft's DirectX since the release 5.0.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific per-

mission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

73

Another way to try to compress the geometrical represen-

tation of a triangle mesh is the attempt to reduce the

throughput between the CPU and the Graphics Process-

ing Unit (GPU). The most common and diffused way to

reach this goal is to rearrange the information describing

each single triangle in the mesh in structured forms as the

triangle strips and the triangle fans [Hae03].

A triangle strip is a set of connected triangles where a

new vertex implicitly defines a new triangle. Triangle

strips are used to accelerate the rendering of objects rep-

resented as triangle meshes, in a pre-processing stage the

mesh is partitioned in a set of triangle strips (each of one

can possibly be composed of one single triangle) and

then each strip is passed to the GPU for rendering. The

advantage of the strip representation over rendering each

triangle separately, is that it makes it theoretically possi-

ble to reduce the number of vertices sent to the GPU

from 3n (where n is the number of triangles in the mesh)

to n+2 in the best case.

In this work we couple a selection and a stripifica-

tion technique: the choice of a LOD over a PM with a

method to accelerate its rendering.

The rest of this work is organized as follows: in sec-

tion 2 we briefly go over the previous work done in ge-

ometry compression, focusing on selection methods and

stripification algorithms; we then show, in section 3, the

relations existing between the triangle mesh and its dual

graph, introduce the tunnelling operator and explain how

to build a stripification over the lowest resolution LOD of

a progressive mesh; section 4 is dedicated to detail how

the stripification is kept consistent while varying the

LOD in the progressive mesh; in section 5 we show the

results we obtained using our algorithm on a mesh we

acquired from cultural heritage manufacts; and, finally, in

section 0 we draw our conclusions and describe the fu-

ture evolutions of this work.

2. Previous Work
Deering [Dee95] was the first to introduce the term

geometry compression, to describe a set of techniques

capable of reducing the space occupancy of a generalized

triangle mesh statistically encoding XYZ positions, RGB

colors and normals. These techniques operate mainly on

the geometry of the mesh (i.e., the positions and the at-

tributes of the vertices) relying on the triangle mesh struc-

ture to compress the information on the topology (i.e.,

how the vertices are connected to form the triangles).

Since the goal of the work was to suggest a series of dif-

ferent operations the designer can perform to reduce the

space occupancy of a triangle mesh, there wasn't any

conclusion on the real possibility to move on the graphics

board some of these stages.

Even if it is quite a rough classification, since there can be

found many mixing approaches, we can divide the ge-

ometry compression methods in three main families:

• Compression methods. Allow to reduce the data

needed to represent a mesh; they are well suited

for transmitting and/or archiving the meshes;

• Selection methods. Allow to select the resolution

that best fits the graphics hardware available for

rendering; they are well suited for transmission

with a preview effect; they are used to select a rep-

resentation of the object described by the mesh,

given a triangle/frame-rate budget;

• Rendering accelerating methods Allow to reduce

the time spent in sending the information describ-

ing the mesh from the CPU to the GPU thus result-

ing in getting a higher frames per second rate with-

out changing the number of triangles of the mesh

(its geometry).

Compression Methods
After Deering [Dee95] several subsequent works [Tau98,

Tou98], centered their attention on the problem of com-

pressing the description of the topology arriving at a rele-

vant result with the Edgebreaker method [Ros99, RsS99]

which claims to reach less than two bits per triangle to

encode a planar mesh homeomorphic to a disc.

All these techniques need a decompression stage that is

not yet implemented in commercial graphics hardware,

even using new programmable boards. This means that

they are very efficient for transmission and archiving but

cannot be used for feeding the GPU.

It is worth to mention that a useful consequence of the

Edgebreaker encoding is the easy production of triangle

strips while processing and decoding the compressed

dataset [RsS99].

Selection Methods
Many authors presented solutions to generate multireso-

lution structures from an original mesh allowing the user

to select a given LOD. We just limit ourselves to remind

it’s possible to divide the methods presenting a fixed

number of LODs (usually less than ten) from the meth-

ods ranging on a continuous variation of LODs

(CLODs).

Even if we don’t want to rehearse all these works let’s

just briefly remind the main characteristics of the one we

used in our implementation.

Progressive meshes (PM) represent the most popular type

of continuous LOD meshes. They allow the users to eas-

ily encode a complex mesh using a single topological

operation (Figure 1) called edge collapse (EC) and its

complement, vertex split (VS). On the PM is possible to

perform two different but equally important tasks: to

select the representation best fit for the available hard-

ware, and to progressively transmit the mesh.

74

Figure 1: The two complementary operations per-

formed on a progressive mesh

The original proposal [Hop96] has been refined during the

last years: a hybrid compression and selection scheme

trying to get the best of Edgebreaker compression and

progressive meshes [Paj00], a further improvement, in

term of bits per vertex [All01], and the extension of these

techniques to arbitrary simplicial complexes [Gan02].

In our implementation we built a PM representation from

the original following the longest edge rule: we collapse

edges in order of decreasing length. We decided to use

such a simple approach since the pre-processing in which

we build the PM can be changed without affecting the

rest of the process and, at this stage of development, we

wanted to focus on the stripification scheme.

Stripification Techniques
The greatest advantage in using triangle strips consists of

the availability of such a primitive in the OpenGL graph-

ics library. Generating the stripification of a mesh means

to be able to feed the GPU with the obtained structure

without any further effort. It is actually to point out that

OpenGL supports, without any vertex replication, only

the sequential triangle strips. Generalized strips could

thus bring to send more than once some vertices to the

GPU.

Rearranging the order in which the vertices are stored is

the typical way to face the problem of reducing the CPU-

GPU throughput. The strips obtained are smaller than the

original mesh when coming to the final rendering since,

while the single triangle needs 3 vertices for its visualiza-

tion to be sent to the GPU, the sequential triangle strip

needs n+2 vertices to be sent to the GPU to render n tri-

angles, and the generalized triangle strip n+s+2 where s

is the number of swaps. The optimal single sequential

strip encoding the whole mesh would reduce the number

of vertices sent to the GPU by a factor of three.

Several papers illustrate geometrical and topological

properties of a stripification [Ark96] and many variations

of algorithms to partition a triangle mesh in strips [Eva96,

Cho97, Ise01, Est02]. The most relevant work coupling mul-

tiresolution structure and stripification techniques is due

to El-Sana et al. [ElS99, ElS00]. They introduce a data

structure called Skip Strip that is used to generate the

triangles strips. The method maintains a stripified pro-

gressive mesh during the refinement and coarsening

process. This is an approach similar to the one we pro-

pose, but it relies on a much more complex data structure.

Working on the Dual Graph
Each triangle mesh can be alternatively represented by its

dual graph. It is a graph in which each node is associated

to a triangle of the original mesh and an edge represents

an adjacency relation. One trivial property of such a

graph is that each node has, at most, three incident arcs.

In case the original mesh is homeomorphic to a sphere

and has genus 1, each node has exactly three incident

arcs.

It is quite common to use this representation to elaborate

stripification algorithms: it allows to use a regular and

compact data structure to represent the mesh and one can

use all the results obtained from the graph theory. Unfor-

tunately it has been proven [Ark96,. Gar76] that a problem

equivalent to searching the optimal single strip (finding a

Hamiltonian path on the dual graph) is an NP-complete

problem, thus the stripification process should be based

on local heuristics.

Two approaches for finding a stripification on the mesh's

dual graph have been proposed: one is to compute a

spanning tree on the dual graph, partition it into triangle

strips, and then concatenate these strips into larger ones

[Tou98], the second one is the so-called tunnelling algo-

rithm and it is explained in detail in section 3.

3. Triangle Strip over the Progressive Mesh

Let us first briefly summarize the steps our method per-

forms to keep the stripification at its best. They are:
1. Build the PM over the given mesh;

2. Build the stripification on the lowest LOD

meshes using the procedure detailed in section 3;

3. Move over the PM performing either a vertex split

operation (VS) on the mesh to increase the LOD or

an edge collapse (EC) to decrease the LOD;

4. Rearrange the stripification using topological op-

erations described in section 4;

5. Minimize the isolated triangles generated at the

previous step using the tunnelling algorithm with

short paths;

6. Build an optimal stripification using the tunnelling

algorithm with longer paths, on demand and store it

in the stripification data structure.

The step number 1 and 2 are pre-processing steps, we

perform them on the mesh and then we can store the re-

sults in two supplementary data files, one for the PM and

another one for the stripifications.

The Tunnelling Algorithm
The tunnelling algorithm, as initially proposed by Stewart

[Ste01] and substantially improved by Porcu and Scateni

[Por03], performs the stripification of the mesh using a

simple topological operation on its dual graph.

EC

VS

vt

vs

vl vr
vl vr vs

75

To do so we need to think the graph edges as colored in

two possible ways (see Figure 2):

• solid edges linking nodes associated to triangles in

the same strip;

• dashed edges linking nodes associated to adjacent

triangles not belonging to the same strip.

Figure 2: A stripified mesh (each color encodes a dif-

ferent strip) and its dual graph.

In every node there are, at most, two incident solid edges.

The nodes with only one incident solid edge are terminal

nodes (corresponding to terminal triangles of the stripifi-

cation). The nodes with three incident dashed nodes cor-

respond to isolated triangles in the stripification.

The first step of the operation consists, then, of searching

a special kind of path in the graph called a tunnel. A tun-

nel is an alternating sequence of solid and dashed edges,

starting and ending with a dashed edge, connecting two

terminal nodes. Its length is always odd and we denote by

k-tunnel a tunnel of length k.

If a tunnel is found, the second step consists, simply, of

complementing the path, that is, changing each solid edge

in a dashed edge and vice-versa. After this operation the

number of solid paths (strips in the triangulation) on the

graph is reduced by one. See Figure 3 for example.

Figure 3: An example of tunnelling. In the top row a

1-tunnel is found; in the bottom row there are no 1-

tunnels but only a 3-tunnel. Notice that the number of

strips decreases from three to two after the first op-

eration and to one after the second.

This technique can be used both to improve an existing

stripification or to create a stripification from scratch. In

the latter case the starting dual graph will have only

dashed edges and every path of length one can be chosen

as a tunnel. It is worthwhile to point out that isolated tri-

angles are always considered as terminal nodes of a one-

triangle strip.

The main problem when implementing the algorithm is

the possibility that the graph traversal for tunnelling could

select paths that, when complemented, would generate

loops. It is thus necessary to follow two additional rules

(we call them the no-loop rules) during the tunnel search

to avoid this situation:

1. The last edge in a tunnel cannot connect two nodes

belonging to the same strip (see Figure 4).

2. When a non-final dashed edge, e say, in the tunnel

joins two nodes belonging to the same strip, the next

solid edge should go back in the direction of the

leading node of e (see Figure 5).

To be able to respect the no-loop rules, we need to distin-

guish between the different strips in the graph. This is

done tagging each node of the graph (triangle) with an

identifier corresponding to the strips it belongs to.

Figure 4: An incorrect tunnelling that generates a

loop.

e

e

Figure 5: The non-final edge e in the tunnel joins two

nodes belonging to the same strip. Of the two next

possible steps, we must select the one corresponding

to the direction that comes back to the leading node of

e (bottom row), otherwise it will generate a loop (top

row). One such step always exists because the leading

and trailing nodes of e are in the same strip.

76

The only minor drawback of the tunnelling algorithm is

that we are not able to keep the strips sequential, we are

forced to use generalized strips and then introduce swap

operations. This is to the fact that by its definition, the

tunnelling operation change the turns in the graph.

A sequential strip (Figure 6.a) is, in the dual graph, a path

of solid edges in which, at each node, we alternatively

make a left and right turn. When tunnelling over the

graph it is not possible to keep the strips sequential and

we are thus obliged to use generalized strips (Figure 6.b).

2

1

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

(a)

2

1

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 5 7 8 9 8 10 8 11 5 3

(b)

Figure 6:A sequential strip (a) and a generalized one

(b). For both we list the vertices to be sent to the CPU.

The extra vertices (swaps) are in red. The grey edges

mark the wrong turns.

4. Strip Rearrangement
The core of the algorithm is the rearrangement (a graph

expansion or contraction) of the stripification when

changing LOD. There are two method to consecutive

operations applied to recolor the augmented graph: the

first one is totally local to the triangle loop where the new

vertex has been inserted and uses a look-up table; the

second is glocal, it consists in launching a tunnelling on

the modified stripification with a predefined stop rule.

First Step: Using a Look-up Table
We classified many different configurations that can be

used to restructure the strips after a VS. Each single VS

split operation insert two new triangles in the mesh, and

three new edges in the dual graph.

We actually completed the task only for 4-vertices (loops

of length 4 in the dual graph), where the VS can lead to

two different topologies: two 4-vertices (two 4-loops

sharing an edge) or a 3-vertex plus a 5-vertex (a 3-loop

and a 5-loop sharing an edge). In this case all the possible

configuration (9+9) allow graph recoloring without iso-

lated triangles. In Figure 11 we list the nine configura-

tions of the 4-loop transforming in a 3-loop plus 5-loop.

Each couple of new triangles can be assigned to a single

triangle strip, increasing its size by two. As it is possible

to notice from the figure the strip section added is always

a sequential one.

When dealing with higher degree vertices (longer loops)

the cases increase rapidly. Splitting a 6-vertex, the most

commonly found in triangular mesh, can lead to three

different topologies: a 3-vertex plus a 7-vertex, a 4-vertex

plus a 6-vertex and two 5-vertices. The problem is that, in

this case, we are no longer able to always recolor the

graph without leaving isolated triangles. We can see in

Figure 7 a split with complete recolor while in Figure 8

there is a split leaving an isolated triangle. With 8-

vertices, that appear very seldom in triangular meshes, we

can be obliged even to leave both the inserted triangles

isolated.

Figure 7: An example of possible graph recoloring

after a VS.

Figure 8: A configuration where the graph recoloring

after a VS leaves an isolated triangle (marked grey).

In Figure 9 we can appreciate how the mechanism works.

Passing from a LOD to a finer one the strip form stays

more or less the same while its average length increases

and a lot of isolated triangles appear.

Figure 9: A close-up view of a local rearrangement

performed on the Dea madre dataset.

Second Step: Using the Tunnelling Operator
Extensive benchmarks performed over different datasets,

of different genus and size resulted in a percentage of

recoloring operations introducing isolated triangles quite

77

constant: it varies in the range 45%-50%. In other words

this corresponds to the insertion of an isolated triangle

every second VS operation.

We thus need to repair the strips structure using what we

have called a glocal tunnelling. The tunnelling operation

is performed transparently from the user, and uses the

isolated triangles as seeds for searching very short tunnels

(starting from 1-tunnels). Since we apply the global op-

erator in a local surrounding of these triangles we can say

that it is used glocally. The tunnelling is then iterated until

the number of isolated triangles reach a number that is

smaller than 10\% of the total number of strips. This

value is quite empirical: we noticed that when reaching

this ratio, the frames per second rate almost doubles at

any resolution for any dataset we used.

In Figure 10 we can appreciate how the rearrangement

via the tunnelling works. The strips are completely re-

structured, there are many less isolated triangles and the

average length increase while the maximal length tends

to decrease.

Figure 10: A close-up view of a rearrangement per-

formed on the Dea madre dataset using a tunneling

operation.

At any stage the user has the possibility to invoke the

stripification process explicitly, specifying the maximal

tunnel length. We decided to leave this possibility more

for completeness than for real need. It is, in fact, quite

difficult to significantly improve the results obtained

automatically.

5. Results and Discussion
We have performed all our benchmark on a PC with

a Pentium IV 1.5 GHz CPU with 512 MB of RAM, and

a NVIDIA GeForce TI 4600 GPU with 128 MB of

RAM.

For sake of simplicity we present here only the results

obtained on the largest dataset we used.

In Table 1 we list the characteristics of the obtained stripi-

fications. We can notice that the number of isolated trian-

gles depends more on the tunnel length than on the over-

all number of triangles in the mesh.

Maximal tunnel length
LOD% Only local

5 9 13

6.139 1.676 841 489

4.456 489 140 46 13

12.11 44.38 88.44 152.10

17.592 3.025 1.536 869

9.017 496 141 52 27

8.77 51.04 88.13 147.59

27.766 5.115 2.617 1.489

11.741 785 281 107 52

10.70 58.13 113.62 199.70

Table 1: In each cell the first row shows the number

of strips, the second the number of isolated tri's and

the last the mean strip length.

In Table 2 we show the time, in seconds, used to refine

the stripification obtained with only local refinement. We

remind that the cost of the local refinement is included in

the cost of performing a resolution change.

Maximal tunnel length
LOD%

5 9 13

13 6.484 4.438 5.312

27 4.360 1.750 2.579

52 8.750 5.155 4.156

Table 2: Time in seconds to refine the stripifications.

Average Cache Miss Ratio

The number of vertex cache misses plays a fundamental

role in rendering efficiency [Dee95]. If we want to

achieve a good rendering sequence than, the Average

Cache Miss Ratio (ACMR), whose value ranges from 0.5

to 3, should be kept as low as possible. To get this goal,

several reordering algorithms has been proposed, for

standard meshes [Cho97], triangle stripes [Hop99] and

progressive meshes [Bog02].

We evaluated ACMR for several data set, using stripes

generated with our system using the tunnelling algorithm.

Without any kind of reordering mechanism, ACMR is

~0.7 for a cache of 32 positions for all data sets, com-

pared to a typical ACMR of ~1.0 for standard stripifica-

tion procedures. This suggests that stripes calculated with

tunnelling algorithm have a built-in cache friendly atti-

tude.

In Table 3 several ACMR values for different data sets

are listed, depending on cache size.

The tunnelling algorithm behaves well because of the

stripes’ shape. As one can see, for instance, in Figure 12,

stripes appear to be packed instead of being elongated as

usual. This preserves locality also in vertex ordering and

then cache friendly behavior.

Cache size
Data Set

16 32 64

Oilpump 0.77 0.70 0.64

David 0.78 0.71 0.68

Dea Madre 0.78 0.71 0.67

Table 3: ACMR values for three different data sets

based on the cache size.

78

6. Conclusions and Future Work
We presented a simple but very effective algorithm al-

lowing to compute an optimal stripification on a progres-

sive mesh. Optimal, in this context, means to at least

double the frames per second rate with respect to non

stripified mesh.

The method we used is a two steps one: first we recolor

the dual graph of the mesh using a look-up table and then

we transparently launch a tunneling algorithm with a

short tunnel length.

We are already planning to get a better insight about the

look-up table. As we already mentioned we are not able

to automatically avoid the creation of isolated triangles

only looking at the strips passing through the loop of

triangles sharing the vertex to split. We think that extend-

ing the analysis also to the neighbor triangles (say, the

triangles that can be reached from the split vertex travers-

ing two edges) can help to increase the number of recol-

oring without creation of isolated triangles.

Another line of development regards a better analysis of

the capabilities of vertex arrays on the GPU. At present

we don't clip the triangle strips in chunks the best fit on

the arrays and we should insert a further parameter in the

visualization tool to take this into account.

The last improvement we are planning is on the fine tun-

ing of the rendering. At present we can select the LOD

and then verify the fps obtainable. In the next release it

will be possible to set the fps budget and let the system

select the possible LOD visualizable.

Acknowledgements
The Dea madre dataset was obtained from tridimensional

scans of manufacts exposed at the Museo Archeologico

Nazionale in Cagliari. We are indebted to its director,

Carlo Tronchetti, for letting us use these digital data and

to the VCG of the ISTI-CNR in Pisa for the hardware

and software used in the acquisition and reconstruction.

We thank Daniele Vacca for his work on the visualiza-

tion tool.

7. References
[All01] Alliez P. and Desbrun M. Progressive compression for lossless

transmission of triangle meshes. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages

195–202. ACM Press, 2001.

[Ark96] Arkin E. M., Held M., Mitchell J. S. B., and Skiena, S. S. Ham-

iltonian triangulations for fast rendering. The Visual Computer 12,

9 (1996), 429–444.

[Bog02] Bogomjakov A. and Gotsman, C. Universal Rendering Se-

quences for Transparent Vertex Caching of Progressive Meshes. In

Computer Graphics Forum 21 , 2 (June2002)

[Cho97] Chow M. M. Optimized geometry compression for real-time

rendering. In IEEE Visualization ’97 (Nov. 1997), pp. 346–354.

[Dee95] Deering, M.F. Geometry Compression. In Proceedings of SIG-

GRAPH 95, pp. 13–20.

[ElS00] El-Sana, J., Evans, F., Kalaiah, A., Varshney, A., Skiena, S., and

Azanli, E. Efficiently computing and updating triangle strips for

real-time rendering. Computer-Aided Design 32, 13 (Oct. 2000),

753–772.

[ElS99] El-Sana J. A., Azanli E., and Varshney A. Skip strips: Maintain-

ing triangle strips for view dependent rendering. In IEEE Visualiza-

tion ’99 (Oct. 1999), pp. 131–138.

[Est02] Estkowski R., Mitchell J. S. B., and Xiang, X. Optimal decom-

position of polygonal models into triangle strips. In Proceedings of

the eighteenth annual symposium on Computational geometry

(2002), ACM Press, pp. 254–263.

[Eva96] Evans F., Skiena S. S., and Varshney A. Optimizing triangle

strips for fast rendering. In IEEE Visualization ’96 (Oct. 1996), pp.

319–326.

[Gan02] Gandoin P.M. and Devillers O. PROGRESSIVE LOSSLESS

COMPRESSION OF ARBITRARY SIMPLICIAL COMPLEXES.

In 2002 Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, San Antonio, Texas, ACM

Press, pp. 372–379.

[Gar76] Garey M. R., Johnson D. S., and Tarjan R. E. The planar hamil-

tonian circuit problem is NP-complete. SIAM Journal of Computing

5, 4 (Dec 1976), 704–714.

[Hae03] Haeyoung L., Desbrun M. and Schröder, P. Progressive encod-

ing of complex isosurfaces. In ACM Trans. Graph. 22, 3, pp. 471–

476.

[Hop96] Hoppe H. Progressive meshes. In Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques,

1996, ACM Press, pp. 99–108.

[Hop97] Hoppe, H. View-Dependent Refinement of Progressive Meshes.

In Proceedings of SIGGRAPH 97, pp. 189–198.

[Hop98] Hoppe, H. Efficient implementation of progressive meshes. In

Computers & Graphics 22, 1, pp. 27–36.

[Hop99] Hoppe, H. Optimization of mesh locality for transparent vertex

caching. In Proceedings of SIGGRAPH 99 (Aug. 1999), Computer

Graphics Proceedings, Annual Conference Series, pp. 269–276.

[Ise01] Isenburg M. Triangle strip compression. Computer Graphics

Forum 20, 2 (2001), 91–101.

[Paj00] Pajarola R. and Rossignac J. Compressed Progressive Meshes.

In 2000 IEEE Transactions on Visualization and Computer Graphics

6, 1 (Jan. - Mar. 2000), pp. 79–93.

[Pop97] Popovic J. and Hoppe H. Progressive Simplicial Complexes. In

Proceedings of SIGGRAPH 97, pp. 217–224.

[Por03] Porcu M. and Scateni R. An Iterative Stripification Algorithm

Based on Dual Graph Operations. In Proceedings of Eurographics

2003 (short presentations) (Sep. 2003) pp. 69–75.

[Ros99] Rossignac J. Edgebreaker: Connectivity Compression for

Triangle Meshes. In 1999 IEEE Transactions on Visualization and

Computer Graphics 5, 1 (Jan. - Mar. 1999), pp. 47–61.

[RsS99] Rossignac J. and Szymczak A. Wrap&Zip decompression of the

connectivity of triangle meshes compressed with Edgebreaker. In

Computational Geometry 14, 1-3 (1999), pp. 119–135.

[Spe97] Speckmann B. and Snoeyink J. Easy triangle strips for TIN

terrain models. In Canadian Conference on Computational Geome-

try (1997), pp. 239–244.

[Ste01] Stewart A. J. Tunneling for triangle strips in continuous level-

of-detail meshes. In Graphics Interface (June 2001), pp. 91–100.

[Tau98] Taubin G. and Rossignac J. Geometric Compression Through

Topological Surgery. In 1998 ACM Transactions on Graphics 17, 2

(Apr. 1998), pp. 84–115.

[Tou98] Touma C. and Gotsman C. Triangle Mesh Compression. In

Graphics Interface '98 (Jun. 98), pp. 26–34.

 [Xia99] Xiang X., Held M., and Mitchell J. S. B. Fast and effective

stripification of polygonal surface models. In 1999 ACM Sympo-

sium on Interactive 3D Graphics (Apr. 1999), pp. 71–78.

79

Figure 11: The graph rewriting rules to apply when inserting a new vertex with a VS operation. In each couple,

on the left the configuration before the VS (the vertex to be split is marked in red), on the right the configuration

after the VS (the new inserted vertex is marked in blue).

Figure 12: An example of LOD change on the “Dea madre” dataset. From left to right: the 9% LOD optimally

stripified (51,511 tri's and 10 strips); the 13% LOD obtained from the 9% one only with local mesh restructuring

operations (this and the subsequent are meshes of 74,381 tri's, 6,139 strips with 4,456 isolated tri's); the same

mesh after a 6-tunnels search (1,676 strips with 489 isolated tri's); after a 10-tunnels search and graph recoloring

(841 strips with 140 isolated tri's); after a 14-tunnels search and graph recoloring (489 strips with 46 isolated

tri's).

80

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	G03-full.pdf
	F53-full.pdf

