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Katedra matematiky

Modely stochastické a frakcionálńı
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Abstract

Stochastic and Fractional Stochastic Volatility Models

by Tomáš Sobotka

The main subject of the thesis is to study and implement selected stochastic volatil-

ity models alongside the newly proposed approximative fractional stochastic volatility

model (FSV) that was firstly introduced by Intarasit and Sattayatham in 2011 [35].

After the semi-closed form solution of a generic pricing PDE is derived, we compare

these modern approaches on the task of market calibration. This is done using both

synthetic and the real market data. We also inspect a long-range dependence in market

realized volatilities and we comment on suitability of the FSV approach with respect to

the option market calibration.

Plzeň, May 2014.
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Glossary of Notation

AAE(Θ) Average absolute error for parameters Θ and corresponding model

AARE(Θ) Average absolute relative error for parameters Θ and corresponding model

ACV Auto-covariance function

Aggvar Aggregate Variance method

BSM Black-Scholes-Merton model

GA Genetic algorithm

GPH Geweke-Porter-Hudak estimator

H Hurst exponent

i Imaginary unit
√
−1

i.i.d. Independent and identically distributed

K Strike price of an option

L2(Ω) conv. Mean square convergence, Definition 1.7

LRD Long-range dependence, Definition 4.1

LSQ Least-square optimisation routine lsqnonlin()

MAE(Θ) Maximum absolute error for parameters Θ and corresponding model

N (a, b2) Gaussian distribution with mean a and variance b2

ODE Ordinary differential equation

PDE Partial differential equation

Per Periodogram analysis

r Continuously compounded risk-free rate

R/S Rescaled range analysis

St Stock price process

(ST −K)+ max{ST −K, 0}

SA Simulated annealing

SDE Stochastic (ordinary) differential equation

τ Time to maturity, τ := T − t

Θ Parameter set of a model

Vt Value of an option at time t
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Chapter 1

Introduction

1.1 Motivation for standard and fractional stochastic volatil-

ity models

The first attempt to model financial returns is dated back to 1900 when a French math-

ematician, Louis Bachelier, published his PhD thesis called The Theory of Speculation

(English translation in [15]). He suggested a new stochastic process for stock-price mod-

elling and option pricing. The process is the well known Wiener process 1 and it will

be described in the next section. Bachelier’s approach to stock modelling wasn’t fully

appreciated until late 1970s.

The idea was first revisited by Paul Samuelson who incorporated a deterministic drift

term of stock returns. However, the main breakthrough in financial modelling and option

pricing started due to F. Black, M. Scholes and R. C. Merton in 1973. They came up

with the new framework for option pricing, a still widely popular Black-Scholes model

(BSM) [5]. Their framework attains an explicit price for European-style options under

certain assumptions. Therefore, it is very straightforward to value any European-style

contract, while having the market data and the value of a single model parameter. This

led to an immense increase in option trading, but also it raised a wave of criticism.

The criticism involved so called stylised facts that are common to a variety of financial

markets.

1According to Ben-el-Mechaiekh and Dimand (foreword in [17]), W. Feller suggested naming it the
Wiener-Bachelier process.

1
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Empirical stylised facts

After market crash in 1987, empirical studies showing severe discrepancies between the

markets and the BSM started to appear. These discrepancies were lately known as the

stylized facts and we illustrate some of the facts on a data set that will accompany us

throughout the thesis.

Even before Black, Scholes and Merton presented their main result, Mandelbrot in

[41] argued that stock returns are not Normally distributed. In Figures 1.1a - 1.1c we

compare the empirical distribution of logarithmic returns of the FTSE 100 index with

assumed Gaussian distribution. Both the Q-Q plot 1.1b and Figure 1.1c shows that our

sample exhibits fat-tails. Implications of fat-tails are well discussed, for instance, in a

popular book written by N. Taleb [58].
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(a) Sample distribution of logarithmic returns.
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(c) ”Fat tails” of the sample.
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Figure 1.1: A typical distribution of log-returns for financial markets (FTSE 100:
2001-2011).

Another observed effect is called the volatility leverage. For lower than average values

of the spot, the realized volatility tends to reach higher levels than for above average

prices of the spot (see Figure 4.3).

The last empirical fact, we will mention, is known as the volatility clustering. Man-

delbrot was one of the first who made the following observation [41]:
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”...large changes tend to be followed by large changes, of either sign, and small changes

tend to be followed by small changes.”

Mandelbrot also suggests existence of long-range dependence in volatility time-series.

This will be inspected in more detail in Chapter 4.

Beyond the Black-Scholes paradigm

Lately, both practitioners and academics pointed out that tasks of modern financial

modelling require procedures that go well beyond the Black-Scholes model assumptions

and that can mimic most of the introduced stylised facts [37]. In this thesis we focus on

the tasks of option pricing and market calibration for continuous time models only.

Among the most popular option pricing tools are stochastic volatility models. These

approaches neglect constant volatility assumption of the BSM. In fact, as the name

suggests, the realized volatility is modelled as a stochastic process. This enables fit-

ting the whole option price surface with reasonable errors (Chapter 6) and the models

might mimic the volatility leverage (using coefficient ρ), fat-tails and a higher peaked

distribution of returns (compared to the Gaussian distribution).

To explain the volatility clustering phenomena, one might use a stochastic volatility

model that attains a long-range dependence in the volatility process. These approaches

will be referred to as the fractional stochastic volatility models.

Structure of the thesis

In Chapter 2, we introduce the most popular stochastic volatility approaches and sev-

eral fractional volatility models. Thereafter, we focus on the notion of approximative

fractional volatility which is described in more detail.

We derive a generic pricing PDE that attains an explicit semi-closed form solution

for the Bates, Heston and the approximative FSV model. The solution is expressed

in terms of characteristic functions (see Appendix A) and only the Fourier transform

integral (3.20) has to be computed numerically to price a given European call option.

The forth chapter includes estimation of long-range dependence in volatility data. To

this purpose we employ both synthetic and the real market data consisting of 30, 60,

90-day realized volatilities of FTSE 100 returns.
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Derivatives of our main interest, European options, are introduced in Chapter 5. We

also describe the process of calibration to an option market and we briefly mention

optimisation routines that will be applied to this aim.

In Chapter 6, the numerical results of a market calibration are presented for all three

models and for several different calibration methods. We use both synthetically gener-

ated data and the data from FTSE 100 option market.

Last but not least, we conclude all key results of this thesis. We comment on applica-

bility of the newly proposed FSV model in practise and we suggest several aspects for

the future research.

1.2 Preliminaries

In this section we briefly introduce preliminaries that will be used later in the text. We

will follow S. E. Shreve [57], B. Maslowski [44], L. C. Evans [21] and Biagini et al. [4].

See aforementioned references for a more detailed and involving overview. We start with

a generic probability space, that will accompany us in the most parts of the thesis.

1.2.1 Probability space and objects defined on it

Definition 1.1 (σ−algebra). Let Ω be a non-empty set and F be a collection of sets in

Ω. If

(i) ∅ ∈ F ;

(ii) F is closed under the complements, i.e. A ∈ F ⇒ AC ∈ F ;

(iii) F is closed under all countable unions, i.e. A1, A2, ... ∈ F ⇒
∞⋃
n=1

An ∈ F ;

than we say F forms a σ−algebra. Particularly, the smallest σ−algebra containing all

open subsets of R is called the Borel σ−algebra and is denoted as B.

Definition 1.2 (Probability space). Let Ω be a non-empty set, F be a collection of sets

in Ω that forms a σ−algebra. A probability measure P is a function assigning to each

A ∈ F a number in [0, 1]. P has to satisfy the following conditions:

(i) P(Ω) = 1,

(ii) For disjoint sets A1, A2, ... ∈ F ; we have P
( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An).
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The triple (Ω,F ,P) is called a probability space.

First of all, we shall discuss the terminology connected with probability spaces. The

elements of F are called events, ω ∈ Ω is a sample point (or an elementary event) and

the measure P(A) is interpreted as the probability of the event A ∈ F . A property that is

true, except for events with zero probability, is said to hold almost surely (or a.s.). For

all the following definitions, unless specified otherwise, we assume a probability space

denoted by (Ω,F ,P).

Although a probability space is one of the key constructs for random experiments, we

cannot directly observe it. Therefore, we are interested in the mapping from Ω to R,

the values of which we can observe.

Definition 1.3 (Random variable). A real-valued random variable is a function X

defined on Ω; X : ω 7→ R satisfying for all B ∈ B

{ω ∈ Ω : X(ω) ∈ B} = X−1(B) ∈ F .

This means that the set of all ω for which X(ω) maps into subset of Borel σ−algebra B
is stored in F . Equivalently, we say X(ω) is F−measurable.

Next definition introduces a notion of stochastic independence for various objects.

Definition 1.4.

(i) Events A,B ∈ F are said to be stochastically independent if P(A∩B) = P(A)P(B).

(ii) σ−algebras G1 ⊂ F and G2 ⊂ F are stochastically independent if each two events

A ∈ G1, B ∈ G2 are stochastically independent.

(iii) Random variables X(ω), Y (ω) defined on the same probability space are said to

be stochastically independent if σ−algebras G1 :=
{
X−1(B);B ∈ B

}
and G2 :={

Y −1(B);B ∈ B
}

are stochastically independent.

We briefly recall basic properties of random variables.

Definition 1.5. Mathematical expectation (expected value, mean value) of random

variable X(ω) is defined by the following Lebesgue integral:

E[X(ω)] :=

∫
Ω

X(ω)dP,
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whenever the integral exists. Conditional expectation (conditional expected value, con-

ditional mean value) given σ−algebra H ⊂ F is defined as

E[X(ω)|H] :=

∫
H∈H

X(ω)dP,

provided the integral exists. We can understand a conditional expectation as the best

estimate of X given ”all information” in H (and nothing else). Variance of random

variable X(ω) takes the form:

Var[X(ω)] :=

∫
Ω

(X(ω)− E[X(ω)])2 dP = E
[
(X(ω)− E[X(ω)])2

]
.

We will also use characteristic functions of random variables, especially for option

pricing.

Definition 1.6 (Characteristic function). Let X(ω) be a real-valued random variable.

Characteristic function of X(ω) is defined as

fX(φ) := E
[
eiφX(ω)

]
, for φ ∈ R,

where i is the imaginary unit.

Proposition 1.1. Joint characteristic function of two stochastically independent ran-

dom variables X(ω), Y (ω) takes the form

fX+Y (φ) = fX(φ)fY (φ). (1.1)

Proof.

fX+Y (φ) = E
[
eiφ(X(ω)+Y (ω))

]
= E

[
eiφ(X(ω)eiφ(Y (ω)

]
= E

[
eiφX(ω)

]
E
[
eiφY (ω)

]
(by independece)

= fX(φ)fY (φ).

Having a sequence of random variables defined on the same probability space, we

might wonder how to define the notions of convergence/divergence. One of the possible

ways is due to the next definition.
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Definition 1.7 (Mean square convergence). Let (Xn)n∈N be a sequence of random

variables and X be a random variable defined on the same probability space as all Xn.

We say Xn converge to X in the mean squares (or in L2(Ω) norm) if E[X2
n] <∞, for all

n ∈ N, E[X2] <∞ and if

lim
n→∞

E
[
(Xn −X)2

]
= 0. (1.2)

This will be the most useful mean of convergence in this thesis. For another types,

as for instance, a.s. convergence, convergence in probability or in distribution see [2],

Section I.§5. For practical use, one might want to inspect the ”evolution in time” with

respect to random experiments.

Definition 1.8 (Stochastic process). A real-valued stochastic process Xt, t ∈ Λ, is a

collection of real random variables (Xt(ω))t∈Λ, defined on the sample space Ω. Λ is an

index set which is in our case interpreted as time and it can be either a discrete time

(t ∈ N, t ∈ Z) or continuous time set, t ∈ [0, T ] for some T > 0. in this thesis, we assume

the latter case.

If we fix ω we obtain a function of t

X(t) : [0, T ] 7−→ R for any fixed ω,

that is called a sample path (or trajectory) of the process X. Conversely, fixing t gives

us a random variable

X(ω) : Ω 7−→ R for t ∈ [0, T ].

From this point on, we will lose ω in our notation of stochastic processes (and random

variables), as for instance, a process Xt(ω) will be denoted as Xt. Not displaying a

dependence on sample points follows a habit of probabilistic literature and it also eases

(a little bit) the complexity of notation used in this text.

Definition 1.9 (Filtration). Let T be (as previously) a fixed positive number and let

us assume that for each t ∈ [0, T ] there is a σ−algebra Ft ⊂ F . Assume further that

for every 0 ≤ s ≤ t, Fs is included in Ft. Then we call the collection of σ−algebras

(Ft)t∈[0,T ] a filtration.

We can think of the filtration (Ft)0≤t≤T as of a non-decreasing collection of all available

information at time t. To utilise this object we introduce a notion of stochastic process

being adapted to a given filtration.

Definition 1.10 (Adapted stochastic process). Let (Ω,F ,P) be a probability space

equipped with filtration Ft, let Xt be a stochastic process and let t : 0 ≤ t ≤ T for
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some positive T . Xt is said to be an adapted stochastic process if for each t a random

variable X is Ft−measurable.

We recall that if a random variable is Ft-measurable it means that we have all informa-

tion needed to retrieve the value of X at time t. For more information on measurability

with respect to random variables and processes we link the reader to [57] or [2]. In

mathematical finance, processes that are called martingales play an eminent role.

Definition 1.11 (Martingale). Let Mt be a continuous-time stochastic process adapted

to filtration Ft 2. We say Mt is a martingale if E[|Mt|] <∞ and

E [Mt|Fs] = Ms a.s.;

for 0 ≤ s < t ≤ T . E [Mt|Fs] denotes a conditional expectation with respect to the

filtration Fs and intuitively we can understand Ms as the best estimate of the future

outcome at t given the history upto time t.

One can also define super-martingales or sub-martingales and discrete-time martin-

gales, but for our purposes a localised martingale property would be more useful. Before

defining local martingales we look at stopping times (or Markov times).

Definition 1.12 (Stopping time). A non-negative random variable τ defined on a prob-

ability space with filtration Ft, τ : Ω 7→ [0,+∞], is a stopping time (or a Markov time)

provided it is Ft−measurable for all t ≥ 0, i. e.

{τ ≤ t} ∈ Ft ∀t ≥ 0.

Definition 1.13 (Local martingale). A stochastic process Lt adapted to Ft is said to

be a local martingale if there exists a sequence of stopping times (τn)n≥0 such that

(i) the sequence (τn) is a.s. increasing and a.s. diverges, i.e. P (τn+1 > τn) = 1 and

P
(

lim
n→+∞

τn = +∞
)

= 1;

(ii) the stopped process, Lmin{τn,t} is a martingale for every n.

Remark 1.1. Clearly, every martingale is also a local martingale. Converse statement,

however, does not need to be true (see [47]).

Definition 1.14 (Semi-martingale). A stochastic process Zt defined on a probability

space with filtration Ft is said to be a semi-martingale if it can be represented in the

form

Zt = Lt + Vt,

2For simplicity one might consider a natural filtration of Mt which is a σ−algebra generated by all
previous outcomes, denoted as σ(Mu, 0 ≤ u ≤ t).
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where Lt is a local martingale on filtration Ft and Vt is an Ft−adapted stochastic process

with càdlàg 3 sample paths and with a locally bounded variation,

t∫
0

|dVs| <∞ for all ω ∈ Ω and for 0 ≤ t ≤ T,

where the integral is defined as in [14].

1.2.2 Examples of stochastic processes

We will start with the main building block of mathematical finance - a standard Wiener

process 4.

Definition 1.15. A real-valued continuous time stochastic process Wt, 0 ≤ t ≤ T, is

called a Wiener process if

(i) W0 = 0 a.s.,

(ii) Wt−Ws is normally distributed with zero mean and variance t−s for all 0 ≤ s ≤ t,

(iii) for all times 0 < t1 < t2 < ... < tn, random variablesWt1 , Wt2−Wt1 , ...,Wtn−Wtn−1

are stochastically independent.

Lemma 1.2. Wiener process Wt is a martingale.

Proof. Let times 0 ≤ s < t are given.

E [Wt|Fs] = E [Wt −Ws +Ws|Fs]

= E [Wt −Ws|Fs] + E [Ws|Fs]

= E [Wt −Ws|Fs] +Ws

= 0 +Ws.

In the third line we used the fact that Ws is known at time s and since the conditional

expectation of increments Wt −Ws with respect to the filtration Fs is zero, we obtain:

E [Wt|Fs] = Ws.

Because E[|Wt|] <∞ for all t ≥ 0, we conclude the proof.

3From French ”continue à droite, limite à gauche”, meaning right continuous with left limit.
4Also called a Brownian motion.
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We can also observe that Wiener process has stationary increments, i.e. Wt+s −Wt

has the same distribution as Ws. The process attains many interesting properties and

there exist several ways how to define and construct Wt. A curious reader should look

at [57], on how to construct the process via the time-step limit of scaled random walks,

at [44], for interesting historical references and for existence of Wt and also at [2], for

more advance properties.

Another continuous-time process we would like to briefly introduce is a fractional

Brownian motion.

Definition 1.16 (Fractional Brownian motion). A real-valued continuous time process

BH
t , 0 ≤ t ≤ T , called the fractional Brownian motion, is a Gaussian process 5 such

that

(i) BH
0 = 0 a.s.,

(ii) E
[
BH
t

]
= 0, for all t ∈ [0, T ],

(iii) E
[
BH
t B

H
s

]
= 1

2

{
t2H + s2H − (t− s)2H

}
, for 0 ≤ s < t,

where H is known as the Hurst parameter (or equivalently the Hurst exponent) and H

ranges in [0, 1].

In the next paragraph we list several properties of the fractional Brownian motion that

are of our main interest [4]:

• For H = 1
2 , BH

t is the standard Wiener process.

• For H 6= 1
2 , the fractional Brownian motion is not a semi-martingale.

• For H > 1
2 , increments BH

t − BH
s for any 0 ≤ s < t are positively correlated and

conversely for H < 1
2 the increments are negatively correlated.

• For H > 1
2 , the fractional Brownian motion attains a long-range dependence which

is defined later in Chapter 4 (Definition 4.1).

The use of fractional Brownian motion has been proposed in so-called fractional Black-

Scholes models, for instance in [31] or [19], and also in fractional stochastic volatility

models.

5Which means that all its finite-dimensional distributions, defined e.g. in [44], are Gaussian.
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Figure 1.2: Sample paths of a fractional Brownian motion for different H.

A stochastic counting process Gt, 0 ≤ t ≤ T, keeps count of the number of events

that have happened up to time t [6]. Gt will be integer-valued, non-negative and also

non-decreasing process.

Definition 1.17 (Poisson process). A Poisson process Nt, 0 ≤ t ≤ T , is a counting

process with the following properties:

(i) N0 = 0 a.s.,

(ii) the process has stationary and stochastically independent increments,

(iii) P(Nt = n) = (λJ t)
n

n! e−λJ t for n ∈ N0 and λJ ∈ R+.

A constant λJ is known as the intensity of jump occurrences (or the hazard rate). The

expected number of jumps in a time interval of length τ equals to λJτ and the jump

times are exponentially distributed. Clearly, for λJ 6= 0, Nt is not a martingale.

Proposition 1.3. Let Nt be a Poisson process with intensity λJ , then the compensated

Poisson process Ct, 0 ≤ t ≤ T , defined as

Ct = Nt − λJ t,

is a martingale.
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Proof. We utilise the independence of Nt−Ns on the filtration Fs for every 0 ≤ s < t ≤ T
and a fixed T > 0. Also the expected value of the increment is λJ(t− s).

E[Ct|Fs] = E [Ct − Cs + Cs|Fs]

= E [Ct − Cs|Fs] + E [Cs|Fs]

= E [Nt −Ns − λJ(t− s)|Fs] + Cs

= E [Nt −Ns]− λJ(t− s) + Cs

= Cs.

E[|Ct|] <∞ for all 0 ≤ t ≤ T , hence Ct is a martingale.

The Poisson process can take only values in N0 (all jumps are of a unit size) which

motivates us to define a compound Poisson process.

Definition 1.18 (Compound Poisson process). A stochastic process Ut, 0 ≤ t ≤ T, is

said to be a compound Poisson process if it can be decomposed as

Ut =

Nt∑
i=0

Yi,

whereNt is the Poisson counting process and Yi are identically, independently distributed

(i.i.d.) random variables. These variables are also independent of Nt.

The previous definition does not specify the distribution of Yi. In this thesis, we

will assume (unless mentioned otherwise) that the random variables Yi are log-normally

distributed. Similarly as for the standard Poisson process, we can also construct a

compensated compound Poisson process. This proves to be especially useful for the task

of stock evolution modelling.

1.2.3 Stochastic differential equations and Itô integrals

We will define an integral with respect to the Wiener process and its filtration. For an

approximative fractional model, we will employ a modification of this approach that was

developed by Thao and Nguyen [60]. This stochastic integral is introduced in the second

part of Chapter 2. Firstly, we present a well known stochastic integral which is named

after Japanese mathematician Kiyoshi Itô.
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Definition 1.19 (Itô integral). Let Wt, 0 ≤ t ≤ T , be the standard Wiener process

adapted to the filtration Ft. Let ∆t is also an Ft−adapted stochastic process such that

E

 T∫
0

∆tdt

 <∞. (1.3)

Let Πn = {0 = t0, t1, ..., tn = T} be the partitioning set and the norm ‖ Πn ‖ is defined

as

‖ Πn ‖= max
k=1,2,...,n−1

(tk+1 − tk).

The Itô integral IT is then obtained by the following expression

IT =

T∫
0

∆tdWt := lim
‖Πn‖→0

n−1∑
i=0

∆ti(Wti+1 −Wti) (1.4)

IT defined above is a random variable and the following theorem lists some of its

properties.

Theorem 1.4. Let T > 0, let ∆t and Γt, 0 ≤ t ≤ T , be Ft−adapted stochastic processes

that satisfy (1.3). Itô integral It defined by (1.4) has the following properties:

(i) (Adaptivity) For each t, It is Ft−measurable.

(ii) (Continuity) The sample paths of It are continuous.

(iii) (Itô isometry) E
[
I2
t

]
= E

∫ t
0 ∆2

sds.

(iv) (Linearity)
∫ t

0 (a∆s + bΓs)dWs = a
∫ T

0 ∆sdWs + b
∫ T

0 ΓsdWs for a, b ∈ R.

(v) (Martingale) E [It] = 0 and It is a martingale.

Proof. For the proof, see Section 4.2 of [57] for simple process integrands and for more

general integrands, see Section 4.3 in the same book.

Itô integrals are of key importance for the stochastic differential equations (SDE’s).

In fact, they appear in what is defined as the strong solution of an SDE. Let us start

with the definition of this class of differential equations.

Definition 1.20 (SDE). Let Ft be a filtration generated by a Wiener process Wt, let

T be a positive constant. Also let µ : R× [0, T ] 7→ R, σ : R× [0, T ] 7→ R be measurable

functions and X0 be F0−measurable random variable. A stochastic differential equation
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can be expressed in the form of stochastic differential

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, t ∈ [0, T ] (1.5)

X0 = x0 ∈ R. (1.6)

Moreover, if
∫ T

0 µ(Xt, t)dt <∞ and
∫ T

0 σ2(Xt, t)dt <∞ then a continuous Ft−adapted

process Xt satisfying

Xt = x0 +

t∫
0

µ(Xs, s)ds+

t∫
0

σ(Xs, s)dWs, t ∈ [0, T ], (1.7)

is said to be a (strong) solution of the SDE (1.5)-(1.6).

Remark 1.2. The first integral on the right hand side of (1.7) is a Lebesgue integral and

the second one is an Itô integral. The functions µ(Xt, t), σ(Xt, t) are called the drift

and diffusion respectively. Xt defined as (1.7) is also known as an Itô process.

Definition 1.21 (Pathwise uniqueness). Let Xt, 0 ≤ t ≤ T, and Yt, 0 ≤ t ≤ T, are

adapted stochastic processes defined on the same probability space with filtration Ft. If

both processes satisfy (1.5)-(1.6) and also if

Xt = Yt a.s. for all t ∈ [0, T ],

we say that the processes Xt, Yt are indistinguishable. The solution of (1.5) is (pathwise)

unique, if any two processes satisfying the SDE with respect to the same initial condition

are indistinguishable.

For many practical applications (e.g. pricing by Monte-Carlo simulation), it might be

important to inspect when an SDE, given by a model, attains a unique strong solution.

In particular, we will have the following SDE representation of volatility process for both

Heston and Bates models (see Chapter 2).

vt = −κ(vt − v̄)dt+ ξ
√
vtdWt, (1.8)

v0 = v, (1.9)

where, for now, assume κ, v̄ ∈ R+ and ξ ∈ R − {0}. Also the initial condition v is

a (deterministic) constant in [0, 1]. The classical existence and uniqueness theorem

introduced by K. Itô requires the Lipschitz continuity for both drift and diffusion (see

[44]). The term ξ
√
vt, however, is not Lipschitz continuous and hence this result cannot

be applied. This brings us to the next theorem that is due to Yamada and Watanabe

(1971) [64].
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Theorem 1.5 (Pathwise existence and uniqueness). [26] Consider SDE (1.5)-(1.6),

where µ(Xt, t) = µ(Xt) and σ(Xt, t) = σ(Xt). If

|µ(x)− µ(y)| ≤ C|x− y|, (1.10)

|σ(x)− σ(y)|2 ≤ g(|x− y|), for all x, y ∈ R, (1.11)

where C > 0 is a constant, g represents a strictly increasing function on [0,∞] such that

g(0) = 0 and lim
n→0+

∫∞
n g−2(x)dx =∞, then the SDE has a unique strong solution.

Proof. The proof can be found in the original paper [64].

Important corollary is made in [34], page 168. For the one-dimensional case (as in

(1.8)), it is enough to show that the drift is Lipschitz continuous function (i.e. as in

(1.10)) and diffusion is Hölder continuous with exponent 1/2. This implies the existence

and uniqueness of a strong solution. For the SDE (1.8), Hölder continuity assumption

means that we are able to find a constant C > 0 such that

|ξ
√
vt(ω1)− ξ

√
vt(ω2)| ≤ C

√
|vt(ω1)− vt(ω2)|,

for all t ∈ [0,∞] and for vt(ω1), vt(ω2) ∈ R+. Since ξ is a constant, we can clearly obtain

C (as assumed vt(ω1), vt(ω2) ≥ 0, so we would set C := |ξ|). Moreover, the drift in

(1.8) is Lipschitz continuous, hence we conclude that the initial value problem (1.8) has

a unique strong solution (with respect to parameter bounds and non-negativity of v0).

A useful tool for solving certain SDE’s is the famous Itô-Doeblin formula 6.

Lemma 1.6 (Itô-Doeblin). Let Xt, 0 ≤ t ≤ T, be an Itô process defined by (1.7).

Let V = V (x, t), V : R × [0,∞] 7→ R, be a function with continuous partial derivatives
∂V
∂t ,

∂V
∂x ,

∂2V
∂x2 . Then the process Yt = V (Xt, t) has the stochastic differential

dYt =
∂V

∂t
dt+

∂V

∂x
dXt +

1

2

∂2V

∂x2
σ2(Xt, t)dt. (1.12)

Proof. The proof can be found in [21], Section 4.D.

When deriving partial differential equations that mimic value of a self-financing port-

folio (Chapter 3), we will also need a two-dimensional version of Itô-Doeblin lemma

which is conveniently described in Section 4.6. of [57].

6The Lemma is more commonly known as the Itô formula. Due to the recent discovery of the original
work of Wolfgang Döblin, several authors suggested re-naming this lemma [57].



Chapter 1. Introduction 16

To model dynamics of volatile markets, several authors proposed adding a jump term

governed by a Poisson process 7

Xt−YtdNt,

where Xt− = lims→t− Xs. The symbolical notation YtdNt is, in fact, the Poisson sum

YtdNt =

dNt∑
i=1

Yi,

and to recall definition of a compound process, Yi are i.i.d. random variables. Combining

a drift and a diffusion from (1.7) with the previously defined sum, one would obtain the

jump-diffusion SDE. This class of stochastic differential equations is not discussed in the

thesis, mainly because we set up the pricing PDE’s for diffusion processes only. After

the characteristic function with respect to option pricing are derived we may (using

Proposition 1.1 and independence) retrieve the joint characteristic function as a product

of diffusion and pure-jump characteristic functions. This way we obtain a characteristic

functions of option pricing models with jump-diffusion dynamics without additional

complexity brought by the jump term. The procedure of derivation of characteristic

function with respect to option pricing is assessed more thoroughly in Chapter 3.

1.2.4 Theorems used for a derivation of pricing PDE’s

In this section we present two important theorems (without proofs) for the option pricing

task.

Theorem 1.7 (Girsanov). Let Wt, 0 ≤ t ≤ T , be a Wiener process adapted to the

filtration Ft. Also let Θt, 0 ≤ t ≤ T, be an adapted process. Define

Zt = exp

−
t∫

0

ΘsdWs −
1

2

t∫
0

Θ2
sds

 , W̃t = Wt +

t∫
0

Θsds, (1.13)

and assume that

E

 T∫
0

Θ2
sZ

2
sds

 <∞.
Then E[ZT ] = 1 (T is fixed) and under the probability measure P̃, defined as

P̃(A) =

∫
A

ZTdP for all A ∈ F , (1.14)

the process W̃t, 0 ≤ t ≤ T, is a Wiener process.

7Respectively governed by a compensated Poisson process (under the risk-neutral measure).
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Definition 1.22 (Risk-neutral measure). A probability measure P̃, defined by (1.14)

where E[ZT ] = 1, is said to be risk-neutral if

(i) measure P̃ is equivalent to the probability measure P, i.e. if

P̃(A) = 0⇔ P(A) = 0, A ∈ F ;

P̃(B) = 1⇔ P(B) = 1, B ∈ F ,

(ii) under P̃, the discounted stock price process St exp{−
∫ t

0 Rsds}, 0 ≤ t ≤ T , where

both the interest rate process Rt and the stock price process St are adapted, is a

martingale.

First requirement for the risk-neutral measure is the following. We want both measures

P̃ and P to agree on sets with measure zero and on the sets that will happen almost surely.

In this thesis we focus on pricing of option contracts and on market calibration. Thus,

we utilise a single probability measure - the risk-neutral one. However, since the market

volatility is not tradable, models introduced in the next chapter will not have a unique

risk-neutral measure 8. This would lead to the notion known as the market price of

volatility risk, which we discuss in Section 3.2. We are not specifying P̃ nor showing

the relation between the two measures, one would certainly need to be more specific

when using the calibrated models for risk-management purposes. In that case, one

obtains model parameters that are with respect to P̃ (i.e. from the market calibration

procedure), but one also needs to evaluate risk-measures (e.g. Vaule-at-Risk, see [63])

under the original probability measure.

Theorem 1.8 (Feynman-Kac). Consider SDE (1.5) and let h(y) be a Borel-measurable

function. For a fixed T > 0 let t ∈ [0, T ]. Define the function

g(x, t) = E [h(X(T ))|Xt = x] . (1.15)

Assume E [h(X(T ))|Xt = x] <∞ for all x, t. Then g(x, t) satisfies the partial differential

equation
∂g(x, t)

∂t
+ µ(x, t)

∂g(x, t)

∂x
+

1

2
σ2(x, t)

∂2g(x, t)

∂x2
= 0, (1.16)

with the terminal condition

g(x, T ) = h(x) for all x.

8This follows directly from the incompleteness of markets under the stochastic volatility models, see
Theorem 5.4.9 in [57]
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Proof. The proof depends on a lemma that states the process g(Xt, t) defined by (1.15)

is a martingale. For the whole outline of the proof see [57], Section 6.4.

For financial applications, we might rather use a modification of Feynman-Kac theo-

rem where g(x, t) = E
[
e−r(T−t)h(X(T ))|Xt = x

]
, r ∈ R and instead of a homogeneous

right hand side of (1.16) we would obtain a term rg(x, t). Function g(x, t) represents

a discounted mean value of random variable h(X(T )) given Xt = x. If we set h(y)

as a pay-off of a financial derivative conditional on the spot reaching y at time T , in

fact, we obtain a fair market price as the solution of (1.16) for t = 0 and for the spot

price process Xt. The solution can be retrieved either numerically or, as in our case,

analytically. This depends on the choice of underlying process Xt. The model overview,

that might help us choose the spot price process, follows in the next chapter. Last but

not least, for an n−dimensional version of the Fenman-Kac theorem we link the reader

to [57], Section 6.6.



Chapter 2

Overview of dynamic volatility

modelling

Both stochastic and fractional stochastic volatility models will be introduced in this

chapter. We will briefly describe the most popular approaches in terms of option pricing

alongside recently proposed fractional volatility modelling. Following Intarasit & Sat-

tayatham [35], we will also show how dynamics of an approximative fractional model

can be transformed into the standard stochastic volatility settings.

All considered models share the following assumptions ([63] Part I, Chapter 5 and

Part IV, Chapter 51):

• No arbitrage opportunities occur, thus the risk-free rate r is unique. More-

over, r is constant during the life of the given option;

• Any fraction of a stock can be bought and trading of securities is contin-

uous in time;

• Short selling of any security is allowed at the considered market.

By short selling we mean that an investor can sell any available asset even the one she

does not own at the moment. Later she re-purchase the asset to cover the transaction.

For simplicity, we also omit dividend payments.

19
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2.1 Stochastic volatility models

Market dynamics is modelled by a system of two SDE’s. The first differential equation

describes evolution of a stock price process (hence denoted by St). The second equation

corresponds most commonly to variance 9 of the underlying price. For option pricing

tasks, the state space SDE’s are accompanied by deterministic initial value constraints,

S0, v0 ∈ R+.

One of the first models came up in 1987, developed by John Hull and Alan White

[32]. The model assumes the following market dynamics,

dSt = rStdt+
√
vtStdWt, (2.1)

dvt = C1vtdt+ C2vtdW
?
t , (2.2)

where r, C1 and C2 are parameters of the model. The increments of Wiener processes

Wt, W
?
t are assumed to be stochastically independent under the original model. Wig-

gins [62] suggested the use of correlation coefficient ρ, i.e. E[dWtdW
?
t ] = ρdt, which

would be the case of all further stochastic volatility models. The variance process vt fol-

lows geometrical Brownian motion which implies that some of the interesting statistical

properties are explicitly known to us [36]:

E[
√
vt] = E[σt] = σ0 exp

{
1

2
C1t−

1

8
C2

2 t

}
,

V ar[σt] = σ2
0

[
1− exp

{
−1

4
C2

2 t

}]
exp {C1t} .

Option pricing under the Hull-White market dynamics can be implemented using Monte-

Carlo simulations or (for European options) by analytical expression firstly derived in

[32].

Chin [9] argues, using empirical analysis by Cont [13], that a model with variance

process vt expressed by the geometric Brownian motion (2.2) cannot reflect observed

decay rate of implied volatilities. To deal with this shortcoming of the Hull-White

model, mean-reverting approaches for volatility have been developed by Scott [55]. We

will introduce a modified version of the model from an article by Chesney and Scott [8]:

dSt = rStdt+ eytStdWt, (2.3)

dyt = −κ(yt − ȳ)dt+ ξdW ?
t . (2.4)

9Hence the name stochastic volatility models.
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Unlike in most of the models, volatility under the Chesney & Scott dynamics is ex-

pressed as σt = eyt . There are two parameters within the drift term of dyt; κ describes

a reversion rate and ȳ denotes an average level around which process yt fluctuates. The

diffusion term is represented by a constant and instantaneous volatility cannot attain

negative values. According to [36], the model needs strong negative correlation to reflect

observed properties of market volatility.

The most popular mean-reverting model is the one by Steven Heston [29].

dSt = rStdt+
√
vtStdWt, (2.5)

dvt = −κ(vt − v̄)dt+ ξ
√
vtdW

?
t , (2.6)

where v̄ represents a long term variance and the last parameter ξ denotes volatility of

vt. A popularity of the model comes from its tractability and from the existence of a

semi-closed solution for European option prices. Unless the Feller’s condition is satis-

fied, 2κv̄ ≥ ξ2 [22], the discretized variance process can reach negative values, which

is an issue that has to be dealt with. This model will be implemented for calibration,

option pricing tasks and will be compared with the jump-diffusion and approximative

fractional models introduced later in this text.

Another frequently used approach has been developed by Hagan et al [28].

dSt = σtS
β
t dW

(1)
t , (2.7)

dσt = ασtdW
(2)
t . (2.8)

Stochastic Alpha, Beta, R model (SABR) is increasingly popular for portfolio hedging

and risk management purposes. Many other modelling approaches have been introduced,

for instance, models by Stein and Stein / Schöbl and Zhu in [54].

Jump-diffusion and stochastic volatility

To improve flexibility of models and to enhance market calibration, many academics

and professionals suggested a jump-diffusion modification of the stock price process St.

The first model to utilise jump-diffusion processes in finance was introduced by Robert

C. Merton in 1976. A jump process alongside stochastic volatility has been proposed by
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Bates [1].

dSt = rStdt+
√
vtStdWt + YtSt−dNt, (2.9)

dvt = −κ(vt − v̄)dt+ ξ
√
vtdW

?
t , (2.10)

where Wiener processes are, as in previous cases, correlated with coefficient ρ. Nt is

a compensated Poisson process with annual frequency λJ and YtSt− represents an am-

plitude of the jump at time t. Drift and diffusion terms of dvt are the same as in the

Heston’s approach - the model retains mean-reverting property and despite having more

parameters, it is still tractable for pricing tasks. This will be inspected in Chapter 6.

One can add a jump process to the second equation as well.

dSt = rStdt+
√
vtStdWt + Y

(1)
t St−dNt, (2.11)

dvt = −κ(vt − v̄)dt+ ξ
√
vtdW

?
t + Y (2)dN?

t . (2.12)

The model was introduced by Duffie et al. in [18] and there are several implementations

either with correlated or independent Poisson processes 10. As empirical studies have

shown (e.g. [23], [25]), this approach might suffer from over fitting. While having four

more parameters, it might not provide as good market fit as the Bates model.

2.2 Fractional stochastic volatility models

Comte and Renault pioneered the use of a fractional Brownian motion in stochastic

volatility [11]. Their asset pricing model is a modification of the original Hull-White

approach [32].

dYt = σtdWt, (2.13)

d(lnσt) = κ lnσt + γdBH
t ; (2.14)

BH
t =

∫ t

0

(t− s)H−1/2

Γ(H + 1/2)
dWs, (2.15)

where
∫ t

0 dB
H
s is understood in a path-wise sense, Yt describes a logarithmic price (lnSt)

at time t and both κ, γ are parameters of the model. Option prices can be retrieved

by a Monte-Carlo simulation framework. For the option pricing and portfolio hedging

tasks, Comte and Renault proposed a new affine fractional model driven by the following

10The later case means that increments Nt −Ns are stochastically independent on N?
t −N?

s for any
0 ≤ s < t ≤ T .
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SDE’s:

dSt = rStdt+
√
vtStdW

(1)
t , (2.16)

dXt = −κ(Xt − v̄)dt+ γXtdW
(2)
t , (2.17)

vt = θ +Xα
t . (2.18)

where Xα
t can be formally expressed using the following notation,

Xα
t =

∫ t

−∞

(t− s)H−1/2

Γ(H + 1/2)
Xsds. (2.19)

For the definition of fractional integral (2.19) see [12]. Authors have discussed how to

discretize the integral and, as previously, the prices of derivatives are obtained by the

means of simulation.

A model with jump-diffusion stock evolution alongside approximative fractional volatil-

ity was introduced by Intarasit and Sattayatham [35] in 2011.

dSt = rStdt+
√
vtStdWt + YtSt−dNt, (2.20)

dvεt = −κ(vεt − v̄)dt+ ξvεt dB
ε
t . (2.21)

Parameters and processes Yt, Nt and, of course, Wt are defined similarly as in case of the

Bates model. We will discuss the notation of dBε
t in more detail later in this text. The

main advantage of this approach, according to the authors, should lie in its tractability

with respect to option pricing. The model can be transformed into the standard volatility

settings (Section 2.3) and also the standard hedging arguments and assumptions can be

used to derive a semi-closed form solution for European option prices (which we will

asses in Chapter 3).

2.3 Approximate fractional stochastic volatility

To describe approximative FSV modelling, we will closely follow [35] and [59]. Instead

of the fractional Brownian motion, we will consider a process,

Bt =

∫ t

0
(t− s)H−1/2dWs, (2.22)

where H is a constant ranging from [0, 1] and as in case of the fractional Brownian

motion, also known as the Hurst exponent. For H > 1/2 process Bt has a long memory
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[53]. Moreover, we can approximate Bt by

Bε
t =

∫ t

0
(t− s+ ε)H−1/2dWs, (2.23)

such that Bε
t converges to Bt in L2(Ω) as ε tends to 0 (for proof see [60]). Also Bε

t

is a semimartingale with respect to the filtration Ft generated by the standard Wiener

process Wt (following Proposition 2.1 and Remark 2.1). The use of approximation Bε
t

instead of the fractional Brownian motion provides several advantages. Firstly, there

is no arbitrage opportunity under the approximative model dynamics for a wide class

of simple and self-financing portfolios 11. Secondly, if we exploit (2.29) as the driving

process of dvt, we can use a standard Itô stochastic calculus instead of more advanced

mathematical techniques for derivation of pricing PDE’s.

To describe approximative fractional approaches, we start with dynamics of vt as in

[35].

dvt = −κ(vt − v̄)dt+ ξvtdBt. (2.24)

Before transforming the approximative version of (2.24), we need to define the fractional

integral that comes up in the solution,

vt = −κ
t∫

0

(vs − v̄)ds+ ξ

t∫
0

vsdBs. (2.25)

Definition of fractional integral
∫
f(t, ω)dBt

To define integration with respect to Bt, we start with a deterministic integrand f(t)

[53].

Definition 2.1. Let (Ω,F ,P) be a probability space equipped with filtration Ft gen-

erated by a standard Wiener process. Let a deterministic function f(t) with bounded

variation on t ∈ [0, T ] be given for a fixed T > 0. Then the fractional integral
∫ t

0 f(s)dBs

is defined as

It :=

t∫
0

f(s)dBs = f(t)Bt −
t∫

0

Bsdf(s). (2.26)

11If St is not a semimartingale, there exist arbitrages in this class. For more details on arbitrages, see
[16].
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If we recall definition of Bt as in (2.22), we note that the integral on the right-hand

side of (2.26) exists in the Riemann-Stieltjes sense for almost all ω [53]. Now we will

consider an integrand that is represented by a stochastic process.

Definition 2.2. Let a stochastic process Xt, 0 ≤ t ≤ T , have sample paths of bounded

variation for almost all ω. Then we define the fractional integral of Xt,

It :=

t∫
0

XtdBs = XtBt −
t∫

0

BsdXt − [X,B]t , (2.27)

provided the right-hand side integral exists in a path-wise (Riemann-Stieltjes) sense and

[X,B]t represents the quadratic variation 12 of Xt and Bt.

In a similar fashion, we are able to define an integral with respect to the semimartingale

(2.23). Furthermore, the following theorem was introduced by Ngueyen and Thao in [60].

Theorem 2.1. Let Xt be a stochastic process with continuous sample paths of bounded

variation on [0;T ] and E
∫ t

0 (Xs)
2ds < ∞. Let Bε

t be a process defined by (2.23). The

stochastic integral,

Iεt =

t∫
0

XtdB
ε
s , (2.28)

converges uniformly in L2(Ω) to It (2.27) as ε→ 0 for t ∈ [0, T ].

Proof. Proof of the theorem is shown in [53].

Transformation into the standard stochastic volatility settings

Proposition 2.1. Bε
t (2.23) can be decomposed as

Bε
t = (H − 1/2)

∫ t

0
ϕεsds+ εH−1/2Wt, (2.29)

where ϕεt represents Itô integral,

ϕεt =

∫ t

0
(t− s+ ε)H−3/2dWs. (2.30)

Proof. [59], [53]: We start with a process ϕεt where 1/2 < H < 1 (or 0 < H < 1/2) and

we set a := H − 1/2. We integrate the process with respect to dt. Then a stochastic

12Quadratic variation of stochastic processes is discussed e.g. in [14]
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version of the Fubini’s theorem is applied to interchange a Lebesgue integral and a

stochastic integral.

t∫
0

ϕεsds =

t∫
0

u∫
0

(t− u+ ε)a−1dWuds

=

t∫
0

 t∫
u

(t− s+ ε)a−1ds

 dWu

=

t∫
0

(
(t− u+ ε)a

a
− εa

a

)
dWu

=
1

a

t∫
0

(t− u+ ε)adWu −
1

a

t∫
0

εadWu

=
1

a
(Bε

t − εaWt) .

Hence Bε
t = εaWt + (H − 1/2)

∫ t
0 ϕ

ε
sds.

Remark 2.1. Since the standard Wiener process is a martingale, Bε
t forms up a semi-

martingale.

Using the result which was first shown by Thao [59], we can transform volatility

process vεt ,

dvεt = −κ(vεt − v̄)dt+ ξvεt dB
ε
t ,

= [(aξϕεt − κ)vεt − κv̄] dt+ ξvεt ε
adWt,

= [(aξϕεt − κ)vεt − θ] dt+ ξvεt ε
adWt, (2.31)

where a = H−1/2 and θ = κv̄ is a constant. Because of our interest in the long-memory

property, we will consider only H ranging from (1/2, 1) 13. Then the transformed model

takes the following form

dSt = rStdt+
√
vtStdWt + YtSt−dNt, (2.32)

dvt = [(aξϕεt − κ)vt − θ] dt+ ξvtε
adW ?

t , (2.33)

where a correlation coefficient ρ can be artificially added, such that E[dWtdW
?
t ] = ρdt.

13The transformed model exhibits a long memory in vt for H > 0.5, for arguments see [53].
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Derivation of the pricing solution

for FSV model

In this chapter we will derive a semi-closed form solution to price European-style options.

At the beginning, we will follow [23] and [63], to derive a general valuation PDE for

stochastic volatility models without jumps. For description of system dynamics, we will

use notation of Gatheral [23], i.e.

dSt = rStdt+
√
vtStdW

(1)
t , (3.1)

dvt = αdt+ β
√
vtdW

(2)
t , (3.2)

E
[
dW

(1)
t dW

(2)
t

]
= ρdt, (3.3)

where α = α(St, vt, t), β = β(St, vt, t) and ρ is an instantaneous correlation between

standard Wiener processes W
(1)
t ,W

(2)
t for t ≥ 0.

3.1 Self-financing portfolio

Let Π = Πt be the value of self-financing portfolio 14 π at time t. Let π be delta

(i.e. ∂Π
∂St

= 0) and vega hedged ( ∂Π
∂vt

= 0) and let it consist of one option priced V =

V (St, vt, t), (−∆) units of the underlying stock with a price S = St and (−∆1) units

of another option with V1 = V1(St, vt, t). Then the portfolio value is determined by the

following expression

Π = V −∆S −∆1V1. (3.4)

14We cannot withdraw nor add funds to the portfolio in t > 0. The change in portfolio value Π is thus
given only by changes in prices of the underlying assets for constant positions.

27
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The portfolio is self-financing and thus a change in its value is given by

dΠ = dV −∆dS −∆1dV1. (3.5)

Using Itô lemma, we can derive expressions for differentials dV and dV1.

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂vt
dvt +

1

2
vtS

2∂
2V

∂S2
dt+

1

2
vtβ

2∂
2V

∂v2
t

dt

+ ρvtβS
∂2V

∂vt∂S
dt, (3.6)

dV1 =
∂V1

∂t
dt+

∂V1

∂S
dS +

∂V1

∂vt
dvt +

1

2
vtS

2∂
2V1

∂S2
dt+

1

2
vtβ

2∂
2V1

∂v2
t

dt

+ ρvtβS
∂2V1

∂vt∂S
dt. (3.7)

Having explicitly expressed dV and dV1, we substitute the differentials into equation

(3.5).

dΠ =

[
∂V

∂t
+

1

2
vtS

2∂
2V

∂S2
+

1

2
vtβ

2∂
2V

∂v2
t

+ ρvtβS
∂2V

∂vt∂S

]
dt

−
[
∂V1

∂t
+

1

2
vtS

2∂
2V1

∂S2
+

1

2
vtβ

2∂
2V1

∂v2
t

+ ρvtβS
∂2V1

∂vt∂S

]
∆1dt

+

[
∂V

∂S
−∆1

∂V1

∂S
−∆

]
dS +

[
∂V

∂vt
−∆1

∂V1

∂vt

]
dvt. (3.8)

Assumption that π is delta and vega hedged directly implies[
∂V

∂S
−∆1

∂V1

∂S
−∆

]
= 0, and

[
∂V

∂vt
−∆1

∂V1

∂vt

]
= 0.

Hence, we are able to express ∆ and ∆1:

∆1 =
∂V/∂vt
∂V1/∂vt

; ∆ =
∂V

∂S
− ∂V/∂vt
∂V1/∂vt

∂V1

∂S
, (3.9)
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provided ∂V1/∂vt 6= 0. Due to hedging assumptions, the change in portfolio value (3.8)

is simplified to:

dΠ =

[
∂V

∂t
+

1

2
vtS

2∂
2V

∂S2
+

1

2
vtβ

2∂
2V

∂v2
t

+ ρvtβS
∂2V

∂vt∂S

]
︸ ︷︷ ︸

=A

dt

−
[
∂V1

∂t
+

1

2
vtS

2∂
2V1

∂S2
+

1

2
vtβ

2∂
2V1

∂v2
t

+ ρvtβS
∂2V1

∂vt∂S

]
︸ ︷︷ ︸

=B

∆1dt

= Adt−B∆1dt. (3.10)

In the last line we used a short-hand notation for derived terms. The value of portfolio

is immune to any changes in stock price St and thus admits no risk. Furthermore, we

assume that there is a unique risk-free rate which we denote by r. We also utilise values

of hedging parameters ∆,∆1.

Adt−B∆1dt = r(V −∆S −∆1V1)dt

A−B∆1 = r(V −∆S −∆1V1)

A− rV + ∂V
∂S rS

∂V/∂vt
=
B − rV1 + ∂V1

∂S rS

∂V1/∂vt
(3.11)

provided ∂V/∂vt 6= 0.

3.2 Market price of volatility risk

Each side of equation (3.11) depends either on V (St, vt, t) or V1(St, vt, t). Both sides

have to be equal to some function g = g(St, vt, t). In our case, we will closely follow

[23] and without loss of generality we set g = −(α − φβ√vt), where according to the

CAPM 15, φ represents the market price of volatility risk. As we are interested in the

price of option V , we use just the left-hand side of (3.11).

A− rV +
∂V

∂S
rS = −(α− φβ

√
vt)

∂V

∂vt
;

∂V

∂t
+

1

2
vtS

2∂
2V

∂S2
+

1

2
vtβ

2∂
2V

∂v2
t

+ ρvtβS
∂2V

∂vt∂S
− rV + rS

∂V

∂S
= −(α− φβ

√
vt)

∂V

∂vt
.

(3.12)

To simplify the last equation, we substitute τ = T − t, where T is the time to maturity

of option V . We also express the equation in terms of logarithm of the stock price,

15CAPM stands for Capital Asset Pricing Model, for more information see [63].
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xt = ln(S), rather than S.

−∂V
∂τ

+
1

2
vt
∂2V

∂x2
t

+

(
r − 1

2
vt

)
∂V

∂xt
+ ρβvt

∂2V

∂vt∂xt
− rV +

1

2
vtβ

2∂
2V

∂v2
t

= −(α− φβ
√
vt)

∂V

∂vt
.

(3.13)

As discussed in Chapter 1, the markets under stochastic volatility models are not com-

plete and the price of an option depends on the choice of g (i.e. depends on investor’s

risk preferences with respect to the portfolio π). To obtain unique option prices, we

chose the risk-neutral drift of dvt, defined as α̂ = α+φβ
√
vt, which rules out φ from our

equations. This is justified, because we are interested only in fitting models to option

prices. We also assume that SDE’s for St and vt are in the risk-neutral form. Hence, all

calibrated parameters will be under a risk-neutral measure.

−∂V
∂τ

+
1

2
vt
∂2V

∂x2
t

+

(
r − 1

2
vt

)
∂V

∂xt
+ ρβvt

∂2V

∂vt∂xt
− rV +

1

2
vtβ

2∂
2V

∂v2
t

+ α
∂V

∂vt
= 0.

(3.14)

3.3 Price of a call option in terms of in-the-money proba-

bilities

Price of a call option has to satisfy (3.14) with initial condition that is given by the

pay-off function of the call option.

−∂Vc
∂τ

+
1

2
vt
∂2Vc
∂x2

t

+

(
r − 1

2
vt

)
∂Vc
∂xt

+ ρβvt
∂2Vc
∂vt∂xt

− rVc +
1

2
vtβ

2∂
2Vc
∂v2

t

+ α
∂Vc
∂vt

= 0;

(3.15)

Vc(τ = 0,K) = Vc(t = T,K) = (ST −K)+. (3.16)

The price can be also expressed as an expectation of the discounted pay-off.

Vc(τ,K) = e−rτE
[
(ST −K)+

]
= StP1(xt, vt, τ)− e−rτKP2(xt, vt, τ)

= extP1(xt, vt, τ)− e−rτKP2(xt, vt, τ), (3.17)

where P1, P2 can be interpreted as risk-neutral probabilities that option expires in the

money conditional on the value of xt = lnSt. We can substitute (3.17) for Vc in (3.15).

The equation has to be satisfied for any combination of real parameters r, τ and for any
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price St. For K = 0, St = 1, we obtain the PDE with respect to P1 only.

−∂P1

∂τ
+

1

2
vt
∂2P1

∂x2
t

+

(
r +

1

2
vt

)
∂P1

∂xt
+ ρβvt

∂2P1

∂vt∂xt
+

1

2
vtβ

2∂
2P1

∂v2
t

+ (α+ ρβvt)
∂P1

∂vt
= 0.

(3.18)

Following similar arguments, we are able to retrieve the PDE for P2 by setting St = r =

0, K = −1.

−∂P2

∂τ
+

1

2
vt
∂2P2

∂x2
t

+

(
r − 1

2
vt

)
∂P2

∂xt
+ ρβvt

∂2P2

∂vt∂xt
+

1

2
vtβ

2∂
2P2

∂v2
t

+ α
∂P2

∂vt
= 0. (3.19)

3.4 Characteristic functions

Instead of solving the system of two PDEs (3.18)-(3.19) directly, we express characteristic

functions of the log-price at maturity T . After characteristic functions fj = fj(φ, τ) for

j = 1, 2, are known, we can easily obtain Pj using the inverse Fourier transform.

Pj =
1

2
+

1

π

∫ ∞
0

Re

(
eiφ ln(K)fj

iφ

)
dφ. (3.20)

As in the original paper by Heston [29], we assume that characteristic functions fj are

of the following form:

fj = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx} . (3.21)

Moreover, as a direct consequence of the discounted version of Feynman-Kac theorem,

fj follows PDE (3.18) and (3.19). Firstly, we substitute assumed expression (3.21) for

f1.

−
(
∂C1

∂τ
+ vt

∂D1

∂τ

)
f1 + ρβvtiφD1f1 −

1

2
vtφ

2+
1

2
vtβ

2D2
1f1

+

(
r +

1

2
vt

)
iφf1 + (α− ρβvt)f1D1 = 0, (3.22)

f1 is a characteristic function of the log price process and thus cannot be identically

equal to zero.

−∂C1

∂τ
+ vt
−∂D1

∂τ
+ ρβvtiφD1 −

1

2
vtφ

2+
1

2
vtβ

2D2
1

+

(
r +

1

2
vt

)
iφ+ (α− ρβvt)D1 = 0. (3.23)
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Instead of a general drift of variance process dvt, we assume a linear drift term with

respect to vt, i.e. α(St, vt, t) = θ + ᾱ(St, t)vt. After rearranging terms with C1, D1 and

factoring out vt we obtain:

vt

[
−∂D1

∂τ
+ ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (ᾱ+ ρβ)D1

]
−∂C1

∂τ
+ riφ+ θD1 = 0. (3.24)

We assume that instantaneous variance does not hit zero, i.e. vt > 0, for t : 0 ≤ t ≤ T .

Since all terms outside the brackets are independent on vt, we deduce that

∂D1

∂τ
= ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (ᾱ+ ρβ)D1; (3.25)

∂C1

∂τ
= riφ+ θD1. (3.26)

Following the same steps, one can obtain a system of equations for f2 as well. Therefore

characteristic functions fj defined by (3.21) have to satisfy the following system of four

differential equations

∂D1

∂τ
= ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (ᾱ+ ρβ)D1; (3.27)

∂D2

∂τ
= ρβiφD2 −

1

2
φ2 +

1

2
β2D2

2 −
1

2
iφ+ ᾱD2; (3.28)

∂Cj
∂τ

= riφ+ θDj ; (3.29)

with respect to the initial condition

Cj(0, φ) = Dj(0, φ) = 0, (3.30)

where j = 1, 2. The first two equations for Dj are known as the Riccati equations with

constant coefficients. Once Dj are obtained, one can solve the last two ODE’s by a

direct integration.

3.5 Solution of the Ricatti equation with constant coeffi-

cients

For notational convenience we will rewrite equations (3.27) and (3.28) using abbreviated

form.
∂Dj(τ, φ)

∂τ
= AjD

2
j +BjDj +Kj , (3.31)
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where Aj , Bj and Kj are in general complex constants. Their values will be studied

later, now we show how to solve (3.31). Let us also denote:

∆j =
√
B2
j − 4AjKj ; Yj =

−Bj + ∆j

2Aj
; gj =

Bj −∆j

Bj + ∆j
.

Proposition 3.1. Assuming Aj 6= 0 for j = 1, 2, Ricatti equations (3.31) attain an

analytical solution with respect to the initial condition Dj(0, φ) = 0,

Dj(τ, φ) =
Yj
(
1− e∆jτ

)
1− gje∆jτ

.

Proof. Without loss of generality, we will solve the equation for fixed j and for y = Dj .

We can rewrite (3.31) as an ODE without the fixed index j.

y′ = Ay2 +By +K, (3.32)

Ay′ = (Ay)2 +ABy +AK, (3.33)

Since A, B and K are constant in time (or with respect to τ), we are able to substitute

v = Ay; v′ = Ay′ +A′y = Ay′.

v′ = v2 +Bv +AK, (3.34)

−u
′′

u
= −Bu

′

u
+AK, (3.35)

where v = −u′/u; v′ = −u′′u−(u′)2

u2 = v2 − u′′

u′ . The equation can be rewritten in the

following form

0 = u′′ −Bu′ +AKu. (3.36)

Moreover, we can solve (3.36) explicitly.

u(τ) = I1 exp

{
B −

√
B2 − 4AK

2
τ

}
+I2 exp

{
B +

√
B2 − 4AK

2
τ

}
= I1e

B−∆
2

τ+I2e
B+∆

2
τ ,

where I1, I2 ∈ R and both can be expressed due to initial condition:

u′(0) = I1

(
B −∆

2

)
+ I2

(
B + ∆

2

)
= 0;

u(0) = I1 + I2 = γ; γ ∈ R− {0}.
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Solving the system of two linear equations we obtain I1, I2.

I1 = γ
B + ∆

2∆
;

I2 = −γB −∆

2∆
,

and the solution u(τ) :

u(τ) = γ

[(
B + ∆

2∆

)
e

B−∆
2

τ −
(
B −∆

2∆

)
e

B+∆
2

τ

]
. (3.37)

To obtain y(τ) we go through steps (3.32)-(3.36) backwards.

u′ = γ

[(
B2 −∆2

4∆

)
e

B−∆
2

τ −
(
B2 −∆2

4∆

)
e

B+∆
2

τ

]
;

= γ

[
AK

∆
e

B−∆
2

τ − AK

∆
e

B+∆
2

τ

]
.

Since v = u′

u :

v =
2AK

(
e

B−∆
2

τ − e
B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ − (B −∆)e

B+∆
2

τ
.

Using y = v/A, one can obtain the solution:

y =
2K

(
e

B−∆
2

τ − e
B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ − (B −∆)e

B+∆
2

τ
;

=
2K

(
e

B−∆
2

τ − e
B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ
(

1− B−∆
B+∆e

∆τ
) ;

=
2K
B+∆

(
1− e∆τ

)
1− B−∆

B+∆e
∆τ

. (3.38)

As we fix j = 1 or j = 2, we substitute B = Bj , K = Kj and ∆ becomes ∆j . Then we

arrive at the expression in Proposition 3.1.

Remark 3.1. By the proof of 3.1 we have managed to show that proposed expression

solves our Ricatti equation. Moreover, this solution is unique which is discussed alongside

other properties in a book by W. T. Reid [52]. We also neglect the case when Aj = 0,

which would imply (equally) zero diffusion term in the volatility process (β ≡ 0). Thus

there would be no other source of randomness apart from the Wiener process Wt in the

stock evolution.
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3.6 Option pricing formula

Comparing (3.27)-(3.28) with (3.31), we set the values of Aj , Bj and Kj (Table 3.1).

Table 3.1: Values of constants Aj , Bj and Kj , notation as in (3.1).

j 1 2

Aj
1
2β

2 1
2β

2

Bj ρβiφ+ ᾱ+ ρβ ρβiφ+ ᾱ

Kj −1
2φ(φ− i) −1

2φ(φ+ i)

In the next step, we integrate the right-hand side of (3.29) for t ∈ [0, τ ] to express Cj .

Cj(τ, φ) = riφτ + θ

∫ τ

0
Dj(t, φ)dt

= riφτ + θ

∫ τ

0

Yj
(
1− e∆jt

)
1− gje∆jt

dt

= riφτ + θYj

[
τ +

∫ τ

0

(gj − 1)e∆jt

1− gje∆jt
dt

]
= riφτ + θYjτ − θYj

gj − 1

∆jgj
ln

(
1− gje∆jτ

1− gj

)
= riφτ + θYjτ −

θ

A
ln

(
1− gje∆jτ

1− gj

)
. (3.39)

For diffusion stochastic volatility models, we obtain characteristic functions in the

form of fj(τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx}. In case of the models with jumps,

we also need to include a characteristic function of a compound, compensated Poisson

process, denoted by ψ (see Appendix A). As in [23], we get the following result

f∗j (τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx+ ψ(φ)τ} , (3.40)

which would be used to price European calls for the Bates and FSV model. Characteristic

functions of each model are summarised in the Appendix A.

Remark 3.2. We recall, that the price of a European call option is retrieved using fj

or f∗j in the inverse Fourier transform integral (3.20) and then by evaluating expression

(3.17).
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Estimation of the Hurst exponent

In this chapter we will introduce several techniques to measure long-range dependence

(LRD) in a given time-series. These techniques are well developed and implemented in

various programming frameworks. We will use MATLAB codes written by Chu Chen 16

and Rafal Weron [61] (GPH estimator) to analyse a long-time persistence in both syn-

thetic and realized volatility data.

In literature the LRD is defined in various ways. First of all, we will start with

the auto-covariance (ACV) function of a given stochastic process. Let (Ω,F , P ) be a

generic probability space on which a stochastic process Xt, 0 ≤ t ≤ T for some finite T ,

is defined. Assuming E[Xt] <∞, one can express auto-covariance of X by

CXX(t, s) = E [(Xt − EXt)(Xs − EXs)] .

In case of a second-order stationary process 17 X, the ACV function depends only on

the difference between t and s, k := s− t for 0 ≤ t ≤ s and thus it will be denoted as a

function of k,

γX(k) = E [(Xt − EXt)(Xt+k − EXt+k)] .

Definition 4.1 (LRD). A second-order stationary stochastic process Xt, 0 ≤ t ≤ T,

with finite mean and variance is said to have long-range dependence if

lim
k→∞

γX(k)

Ckα
= 1, (4.1)

16Codes available under the BSD license at http://www.mathworks.com/matlabcentral/

fileexchange/19148-hurst-parameter-estimate. For our purposes, we changed plots and added ap-
proximative bounds on estimates.

17The first moment and covariance of the process do not vary in time.
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where γXt(k) is an auto-covariance function of the process, both C and α are constants

and α ∈ (0, 1) . Dependence between Xt and Xt+k decays slowly as k → ∞ and the

sum of auto-covariances for different lags diverges,

+∞∑
k=1

γX(k) = +∞. (4.2)

One can understand the LRD phenomenon quite intuitively. For increasing lag k,

the dependence might be small, but its cumulative effect is not negligible due to (4.2).

Moreover, the Definition 4.1 gives us a clue on how to measure degrees of dependence.

The auto-covariance function for an arbitrary LRD process follows the power law

γX(k) ≈ Ckα.

In this chapter, we will focus on estimation of the Hurst exponent which is related to α,

α = 2H − 1. If we recall, α ∈ (0, 1), one can easily see that for LRD processes H takes

values from 1/2 to 1 [3].

4.1 Available methods

R/S method

In the original paper, hydrologist E.H. Hurst discovered long-range dependence of water

levels at the river Nile. To describe this phenomena on a time-series D = {Di}Ni=1, he

employed a cumulative mean adjusted series,

Zn =

n∑
i=1

(Di − µ); µ =
1

N

N∑
1

Di,

and then he defined a range function as

R(n) = max {Z1, Z2, ..., Zn} −min {Z1, Z2, ..., Zn} .

Rescaled range statistics (R/S) is then obtained by R(n)/S(n), where S(n) is a standard

deviation of the first n elements of D. Hurst described an asymptotic behaviour of R/S

statistics [33] by

E
[
R(n)

S(n)

]
= CnH as n→∞. (4.3)
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This result has been known as the Hurst effect [42]. To estimate H, one tries to fit

ln[R(n)/S(n)] by a straight line using the least squares method. A slope of the regres-

sion line forms out our estimate of H provided none of the linear regression assumptions

were violated. R/S method, although being the oldest, is still widely used, mainly for

its ease of implementation.

Aggregate Variance method

Given a time-series with standard deviation σ which is generated by fractional Gaussian

noise 18, one can obtain a relation between standard deviation of sample mean (σn) and

the sample size [56]:

σn =
σ

n1−H . (4.4)

The relation is, in fact, just a generalization of a well-known result for a standard

Gaussian noise,

σn =
σ√
n
.

Hence, an estimate of the Hurst exponent can be retrieved by partitioning the series and

comparing a size of partitions with its standard deviations of sample means. Again, we

construct a regression line in the least square sense with slope β. Then, the estimate of

H can be expressed as

Ĥ = 1− β/2. (4.5)

Higuchi method

The Higuchi method for the long-memory estimation is based on a relation between the

expectation of a block curve length and fractal dimension of the block data. Firstly,

we construct a new time series from the one that is given. Assuming initial time series

D = {Di}Ni=1 of N elements (i.e. discrete observations with regular intervals), we build

a k dimensional series for the kth block as follows

Dm
i : Dm, Dm+k, Dm+2k, ..., Dm+Jk,

18A fractional Gaussian noise is formed out of increments of a fractional Brownian motion defined
by 1.16, whereas a standard Gaussian noise consists of the increments generated by a standard Wiener
process.
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Table 4.1: List of all employed estimators.

Estimation procedure Abbreviation used Introduced in

Aggregate Variance method Aggvar [3]

Geweke-Porter-Hudak estimator GPH [24]

Higuchi method Higuchi [30]

Peng method Peng [48]

Periodogram analysis Per [3]

Rescaled range analysis R/S [33]

for J =
[
N−m
k

]
, where [x] denotes an integer point function and m = 1, 2, ..., k. The

length of a curve represented by Dm
i can be defined as [30]:

L(k) =

(
J∑
i=1

|Dm+ik −Dm+(i−1)k|

)
N − 1

Jk2
. (4.6)

Higuchi showed that the expectation of L(k) follows the power law

E[L(k)] = k−d, (4.7)

where d = 2−H. Hence, to estimate H, we apply the same procedure as in case of the

Hurst’s R/S analysis.

In the next section, we employ aforementioned estimators alongside others that were

described, for instance, in a paper by Serinaldi [56] and a book by Beran [3].

Remark 4.1. To estimate the Hurst exponent from volatility data, our initial time series

would be formed out of the increments of (simulated) volatility, i.e. the ith element

would be

Di = vti − vti−1 ,

for i = 1, 2, ..., N − 1 while having N observations of the realized or simulated volatility.

Remark 4.2. Estimates of the Hurst exponent will be further referred to as Ĥ, whereas

the simulated or the theoretical value is denoted by H.

4.2 Estimation on synthetic data

To test different estimators we have simulated 10000 sample paths of five long-range

dependent processes driven by fractional Brownian motions. Each process was simulated

with different value of the Hurst exponent and, with our focus on LRD, we employed
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Table 4.2: Average estimates ± sample variance of estimates.

Method H = 0.60 H = 0.65 H = 0.70 H = 0.75 H = 0.80

Aggvar .5876± .0010 .6358± .0008 .6845± .0008 .7336± .0007 .7849± .0006
GPH .5849± .0068 .6408± .0061 .6997± .0059 .7597± .0054 .8280± .0051
Higuchi .5983± .0007 .6480± .0007 .6978± .0006 .7467± .0006 .7952± .0005
Peng .5963± .0011 .6462± .0010 .6963± .0010 .7464± .0010 .7972± .0011
Per .6013± .0008 .6541± .0007 .7066± .0007 .7604± .0006 .8149± .0006
R/S .6194± .0008 .6618± .0009 .7050± .0010 .7485± .0010 .7905± .0011

the following set of the Hurst parameter values.

H(sim) = {0.60, 0.65, 0.70, 0.75, 0.80} (4.8)

The simulated processes follow a pathwise SDE, where κ, v̄, ξ are fixed and H ∈ H(sim),

dvt = −κ(vt − v̄)dt+ ξvtdB
H
t , (4.9)

for these parameters:

κ = 5, v̄ = 0.1, ξ = 2.

and for the initial condition v0 = 0.05. Equation (4.9) was discretized using a fractional

Milstein-type scheme 19 with ∆t = 2−10. To keep simulated paths non-negative, a re-

flection rule, vt = max {vt,−vt}, was used 20.

After synthetic data were generated, we used procedures to obtain an estimate of

the Hurst parameter alongside variance of the estimates. The most satisfying results

were obtained using the Huguchi method. This procedure provided us with the lowest

average error and estimates for different sample paths were consistent, having the lowest

variance out of the tested approaches.

Table 4.3: Average absolute relative errors (AARE, for definition see Chapter 6).

Aggvar GPH Higuchi Peng Per R/S

2.11% 1.75% 0.39% 0.50% 1.01% 1.43%

Due to the heuristic nature of all estimators, we also analysed a decay in estimate

quality for decreasing length of discretized trajectories. This criteria should be of great

importance, since only a limited amount of market data is available to us. All estimates

are within ±0.2 bounds from the expected H for a dataset with 8196 observations.

19This scheme is introduced in [27].
20In fact, non-negativity of discrete realizations of (4.9) is not necessary, until we interpret vt as

volatility of St.



Chapter 4. Estimation of the Hurst exponent 41

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Simulated value of H

E
s
t
im

a
t
e
s
o
f
H

Estimation of the Hurst parameter for fractional processes

 

 

aggvar

gph

higuchi

peng

per

RS

Target value

Figure 4.1: Estimates of the Hurst exponent.
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Figure 4.2: Estimate quality versus length of simulated trajectory (H = 0.7).

Results for H = 0.7 are pictured in Figure 4.2. Most consistent results throughout

H(sim) were observed for Higuchi, Aggregate Variance and R/S methods. GPH estimator

performed (in terms of the average error) very well for H = 0.7, unlike for H = 0.6 or

H = 0.8. Sample variance of GPH estimates was higher than variances of the other

approaches. More detailed analysis and discussion on LRD estimation can be found in

the article by Rea et al [50].

4.3 Estimation on realized volatilities

In this section, we estimate the Hurst exponent for 30, 60 and 90 day realized volatilities

of the FTSE 100 Index 21. The data set consists of 2527 daily observations from 2nd

January 2004 to 31st December 2013.

21The underlying of our option price surface, see the following chapters.
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Figure 4.3: Quotes of FTSE 100 Index and its realized volatilities.
[source: Bloomberg terminal, 24th March 2014 ]

Using the same methods as in the previous section, we obtained results summarized

in Table 4.4. For 60 and 90 day volatility, all applied estimators suggested long-range

dependence Ĥ > 0.5. Apart from the GPH estimator and Periodogram analysis, all

methods used a linear regression with statistically significant parameters 22. A coeffi-

cient of determination R2, which describes the relative amount of data variation that is

explained by the regression, exceeds 88% all methods, except for GPH and Per estima-

tors.

For GPH and Per methods 23, we failed to explain the transformed data by a linear

regression and hence we conclude that these methods are not well suited for estimation

of the Hurst exponent with respect to the realized volatility data that we have used. We

illustrated the quality of regression lines (which effects the quality of Hurst parameter

estimates) for Aggregate Variance, Higuchi, Rescaled-Range and GPH methods by Fig-

ures 4.5 - 4.8. The left top plot of each sub figure describes the underlying regression,

where the transformed data are represented by blue dots. In case of Aggvar and R/S

graphs, we also included a blue line that would correspond to Ĥ = 0.5. The bottom

right plot depicts a decay in auto-correlation for increasing lag.

Each figure can be reconstructed by the attached function T Hestimator.m:

22We tested both adjoint (F-test) and individual statistical significance (T-test).
23In fact, both methods are similar and based on so-called periodograms, see [24].
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1 load(’Vol_data2013.mat’);

2 [H,conf , stats]= T_Hestimator(I60D ,’higuchi ’);

Figure 4.4: The Hurst parameter estimation for 60 day realized volatility by the
Higuchi method (using higuchi.m).

Table 4.4: Estimates of Hurst exponents.

Time series Aggvar GPH Higuchi Peng Per R/S

30d Vol. 0.6586 (0.3440) 0.6559 0.8472 (0.7462) 0.6569

60d Vol. 0.7837 (0.9142) 0.8090 0.9674 (0.8636) 0.8003

90d Vol. 0.8246 (0.8334) 0.8457 0.9422 (0.8919) 0.8160

The results in this chapter are in-line with those in [43] (for S&P 500 realized volatil-

ities) or [7] and provide us with a motivation for the fractional volatility models as

introduced in Chapter 2.
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Figure 4.5: Long-memory estimation using the Aggregate Variance method.
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Figure 4.6: Long-memory estimation using the Higuchi method.
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Figure 4.7: Long-memory estimation using the R/S method.
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Figure 4.8: Long-memory estimation using the GPH estimator.



Chapter 5

Option pricing and market

calibration

In this chapter we introduce the simplest financial derivatives with a non-linear pay-off

function. These contracts are called options and later in the chapter we give some insight

on how to calibrate pricing models from the real option markets.

5.1 Options

Before defining options, we will look at a generic financial derivative.

Definition 5.1 (Financial derivatives). A financial contract between two parties (i.e.

buyer and seller) with a value derived from another entity quote is called a (financial)

derivative. As such entity one may consider assets (i.e. stocks), indices, interest rates

or even different derivatives 24. In literature, the entity is referred to as the underlying.

Further definition of a specific contract includes time and value of derived payments

between involved parties. A set of all settlement dates is referred to as the exercise

dates. In case the set consists of a single date, it is called the maturity of the contract.

Definition 5.2 (European call option). A European call option is a derivative that

gives the buyer a right, not an obligation, to buy the underlying for a fixed price K

at the maturity T > 0. The seller grants the right for an option premium (i.e. option

price).

24The most common example of this would be a swaption which is an option on entering the underlying
swap.

48
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Using the standard notation, K will be called the strike and St refers to a price of the

underlying at t ≥ 0. Similarly, we are able to define a European put option as a right

to sell. If the strike price appears not to be in favour of the buyer at the maturity 25,

the right is not exercised. Thus we are able to deduce a pay-off function as

Fcall = (ST −K)+ , (5.1)

for a call option and accordingly,

Fput = (K − ST )+ , (5.2)

for a put. The main interest throughout the thesis will be laid on European calls, hence

we only briefly describe some other types of financial options.
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Figure 5.1: European option pay-offs.

American options. A contract with similar pay-off function as a corresponding Eu-

ropean option. The right can be, however, exercised any time before the maturity.

American options are popular for over-the-counter trades.

Asian (average) options. Instead of a plain price of the underlying, a pay-off de-

pends on the average price over some fixed period of time.

Barrier options. The pay-off is conditional on the underlying hitting a certain pre-set

price level which is commonly known as the barrier. Either the right is extinguished by

hitting the barrier or conversely the right springs into existence.

25For a call option it would mean that the strike is above the underlying price at T .
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Bermuda options. The contract has a similar terminal payments as American op-

tions, but it can be executed only at a finite set of times that are specified by the contract

agreement.

Binary (digital) options. The option pays off either a fixed amount K or nothing,

based on the terminal level of the underlying.

Lookback options. Owner of the option has a right to buy (or sell) the underlying

for the lowest (highest) quoted price that was observed at a defined time period.

Option markets

First trades of option contracts are assumed to appear in ancient Greece [49]. However,

it was not until 16th century when options became well defined and thus trades on the

contracts started at market fairs and later at regular bourses. The first contracts were

originally written on commodities such as wheat or sugar [10].

Nowadays, options in Europe are traded both over-the-counter and on exchanges.

NYSE Euronext 26 became a pan-European trading place for futures and options after

an acquisition of London International Financial Futures and Options Exchange (LIFFE)

in 2002 [40]. Options on stocks and indices are quoted at Euronext exchanges in Am-

sterdam, Brussels and Paris. LIFFE offers also currency and commodity options 27.

European options on British stock index FTSE 100 traded on LIFFE, will be consider

in the next chapter for tasks of real market calibration.

The biggest option marketplace in the USA is the Chicago Mercantile Exchange

(CME) 28. The exchange was founded in 1898 as an agriculture commodity trading

place. Even now, one can buy at the CME agriculture derivatives alongside commodity,

currency, index, equity and US Treasury options 29.

Most of the option trading, however, is done over-the-counter (OTC). The contract

is closed directly between the two trading parties which agreed on both premium and

strike values. The price of an OTC option is typically not disclosed in public, but it

should be in accordance with the known market prices to rule out arbitrages.

26https://nyse.nyx.com
27Source: [20], March 2014
28http://www.cmegroup.com
29According to http://www.cmegroup.com/education/options.html, retrieved on 14th April 2014.

https://nyse.nyx.com
http://www.cmegroup.com
http://www.cmegroup.com/education/options.html
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Market option prices

Market makers provide Ask and Bid quotes for each derivative. The Ask quote is a price

for which they are prepared to sell the contract and, conversely, the Bid represents the

amount of funds they are willing to pay for buying the contract. Having a set of N

options, indexed by i ≤ N , a Mid price of a ith call is obtained as

Ci =
Caski + Cbidi

2
.

Alternatively one can quote market prices using the Black-Scholes formula. The pre-

mium is then expressed in terms of the (Black-Scholes) implied volatility which was

described by Rebonato in [51] as:

”The wrong number put in the wrong formula to obtain the right price.”

To get the implied volatility we solve the following equation for vi

BS(vi) = Ci;

where BS() stands for the Black-Scholes formula (as in the original paper [5], also dis-

played in the Appendix B). The root of the previous equation is denoted by vimpi and

we refer to it as the implied volatility of the ith call option. To find vimpi , one can use,

for instance, a standard Newton root-finding algorithm.

In the text we also use a classification of options with respect to suitability of exercising

the right.

• In The Money (ITM) option - The option right is worth exercising at the current

time, i.e. for a call K < St, conversely for a put K > St at the current time t.

• At The Money (ATM) option - The strike equals to the underlying price at t 30.

• Out of The Money (OTM) option - The exercise right would not be used, i.e. for

a call K > St, conversely for a put K < St.

30Or more commonly, the strike is close to the underlying price at t, K ≈ St.
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Figure 5.2: The implied volatility surface of FTSE 100 index call options from 8th Jan-
uary 2014, [source: Bloomberg option monitor ].

5.2 Calibration from the option market

A task of finding a set of model parameters that can, to a certain degree, explain observed

market prices is commonly referred to as the model calibration. More precisely, we

consider an option pricing model with set of parameters Θ ∈ A where A is a space of all

admissible model parameters. We also consider a financial market with N quoted prices

of European call options. In this text we try to derive a set of model parameters Θ?

such that

Θ? = arg inf
Θ∈A

G(Θ); (5.3)

G(Θ) =
N∑
i=1

wi

∣∣∣C(S0,Ki, Ti, r)− Cmodel(S0,Ki, Ti, r,Θ)
∣∣∣p . (5.4)

Intuitive choices of wi = 1/N, for i = 1, 2, ..., N and p = 1, might lead to unsatisfac-

tory results. For p = 2, we get a classical problem of finding ”least squares” between the

observed and modelled prices. Again, this approach commonly does not provide very

good results for the real option market calibration (see [46] and [45] ). On this note,

we comment that a well suited choice of the utility function G(Θ) is vital for obtaining

calibrated parameters Θ?.

In practise, it is important to fit prices of liquid contracts more precisely than the deep-

out-of-the money counterparts. Having this in our mind, we set weights as a function
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of the price spread 31. For synthetic data we minimised the criteria using the following

weight functions:

w
(A)
i =

1

|Caski − Cbidi |
, (5.5)

w
(B)
i =

1√
|Caski − Cbidi |

, (5.6)

w
(C)
i =

1

|Caski − Cbidi |2
, (5.7)

where Caski , Cbidi denote the ask price of the ith call option and its bid price respectively.

We employed all weights in synthetic data test, for the real market calibration, we chose

w
(B)
i for all approaches.

Because of non-convexity of the optimisation problem (5.3), there might be more sets

of parameters that can describe market data equally well. Also the structure of G(Θ)

is highly non-linear (and model dependent). Hence, using traditional local optimisation

methods without a good initial starting point might be useless (the method might end

up in the nearest local minimum). To retrieve the initial guess, we employed a genetic

algorithm and simulated annealing method from the Global optimisation toolbox in

Matlab.

5.3 Global optimisation procedures

Genetic algorithm

The Genetic algorithm solver in Matlab is suitable for mixed-integer and for continuous

variable optimisation. The latter will be of our main interest in the thesis. Also one can

solve both constrained and unconstrained minimisation problems. For our purpose, a

simple bound constraint is used, i.e. we set up the upper and lower thresholds for each

model parameter. According to the Matlab documentation 32 :

”You can apply the genetic algorithm to solve a variety of optimization problems that

are not well suited for standard optimization algorithms, including problems in which

the objective function is discontinuous, nondifferentiable, stochastic, or highly nonlin-

ear. The genetic algorithm can address problems of mixed integer programming, where

31Option spread is a distance between quoted ask and bid price. The closer both quotes are, the more
efficiently is the given contract priced.

32See http://www.mathworks.co.uk/help/gads/what-is-the-genetic-algorithm.html.

http://www.mathworks.co.uk/help/gads/what-is-the-genetic-algorithm.html
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some components are restricted to be integer-valued.”

The optimisation procedure was fine-tuned for market calibration using gaoptimset

function, as displayed in Figure 5.3.

1 function [params ,fval ,exitflag] = T_FSV_calib_ga(s0,C,K,T,A,B,r,eps)

2 % parameters: [v0 kappa vmean xi rho lambda alphaJ gammaJ H]

3 % lower bound for the optimisation

4 lower=[0, 0, 0, 0, -0.99 0 -10 0 0.51];

5 % upper bound for the optimisation

6 upper =[1,100,1,1, 0.99 10 10 10 0.99];

7 options = gaoptimset(’Generations ’ ,500,’PopulationSize ’,60,’TolFun ’,1e-10 ,...

8 ’UseParallel ’,’always ’,’StallGenLimit ’ ,100);

9 [params ,fval ,exitflag] =ga(@(params) cost_fun(params ,s0,C,K,T,...

10 A,B,r) ,9,[],[],[],[],lower ,upper ,[], options);

11 end

Figure 5.3: Calibration of the FSV model using Genetic algorithm routine ga.

Simulated annealing

Simulated annealing routine can be used for various optimisation problems. However,

only bound constraints are allowed and neither integer nor mixed-integer variables are

supported. These restrictions do not affect our calibration process. As constraints we

use upper and lower bounds and parameters of models can take arbitrary values within

the bounds. The algorithm is inspired by the annealing process in metallurgy and, in a

nutshell, it can be described as follows:

”At each iteration of the simulated annealing algorithm, a new point is randomly gen-

erated. The distance of the new point from the current point, or the extent of the search,

is based on a probability distribution with a scale proportional to the temperature. The

algorithm accepts all new points that lower the objective, but also, with a certain prob-

ability, points that raise the objective. By accepting points that raise the objective, the

algorithm avoids being trapped in local minima, and is able to explore globally for more

possible solutions. An annealing schedule is selected to systematically decrease the tem-

perature as the algorithm proceeds. As the temperature decreases, the algorithm reduces

the extent of its search to converge to a minimum.” 33

After the global optimisation was performed, we also used a traditional local search

method to improve obtained results. The reason why not to employ a local method

33Sourcing Matlab documentation - http://www.mathworks.co.uk/help/gads/

what-is-simulated-annealing.html.

http://www.mathworks.co.uk/help/gads/what-is-simulated-annealing.html
http://www.mathworks.co.uk/help/gads/what-is-simulated-annealing.html
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1 function [params ,fval ,exitflag ,info] = T_Bates_calib_sa(s0,C,K,T,A,B,r,

init_param)

2 % parameters: [v0 kappa vmean xi rho lambda alphaJ gammaJ]

3 % lower bound for the least square optimisation

4 lower =[0 0 0 0 -0.99 0 -10 0];

5 % upper bound for the least square optimisation

6 upper =[1 100 1 1 0.99 10 10 10];

7

8 options = saoptimset(’PlotFcns ’,{@saplotbestx , @saplotbestf , ...

9 @saplotstopping , @saplottemperature},’MaxFunEvals ’ ,100000);

10 [params ,fval ,exitflag ,info]= simulannealbnd(@(params) cost_fun(params ,s0,C,K,T,...

11 A,B,r),init_param ,lower ,upper ,options);

12

13 end

Figure 5.4: Calibration of the Bates model using Simulated annealing.

beforehand is caused by the nature of our optimisation problem (5.3) together with

non-linearity of considered models. The optimisation problem is not convex and has

many local minima. To improve calibration by a local search method, we also reset the

weights: wi = 1, for all i. This helps us enhance non-weighted error measures, provided

we obtained a good starting point from the weighted and globally optimised criteria.



Chapter 6

Numerical experiments

In this chapter we comment on several issues that are related to the process of model

implementation. As previously, we developed all codes in the MATLAB environment.

After data sets are introduced, we compare results of the standard stochastic volatility

models and the FSV model.

6.1 On implementation of the pricing models

As we have already established in previous chapters, to obtain the price of a European

call contract under one of the introduced models, it is sufficient to compute inverse

Fourier transform (3.20) with appropriate characteristic functions and input P1, P2 into

(3.17). The transform integral, however, needs to be numerically computed. For this

purpose, we employ a MATLAB function integral() that uses an adaptive Simpson’s

rule. As shown by Kahl in [39] and Kilin in [38], the integrand of the Heston model

decays exponentially and when considering alternative form of characteristic functions

(see Appendix A.1) the integrand is continuous in τ . In case of the FSV model, we

have to set the approximation factor ε beforehand. Since the derivation of the standard

stochastic volatility dynamics poses no restriction on how small ε should be, we tried

several choices, namely ε1 = 1/100, ε2 = 1/1000 and a higher order one ε3 = 10−10.

In fact, we were able to calibrate the model in a similar way for all three choices and

only ε3 might effect stability of the price computation for several parameter sets 34. All

presented result are computed for a safe choice ε1. Integrands with respect to the FSV

model have not yet been analysed, but for all obtained sets of parameters (in both real

and synthetic calibrations) we did not encounter any integration problem for a wide

range of strikes and maturities.

34We divide by ε in C(τ, φ).

56
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Figure 6.1: Option prices in terms of implied volatilities for the synthetic data test.

6.2 Data sets

As the calibration data, we used both market and artificially generated option prices.

Using Bloomberg’s Option Monitor, we obtained 82 contracts traded on 8th January

2014. The strikes, maturities and ask, bid, mid prices are stored in the MATLAB MAT-

file FTSE EUc8-1-2014.mat which is included in the thesis attachment.

For a synthetic data generation, we used the Bates model with the following set of

parameters:

v0 kappa vmean xi rho lambda alphaJ gammaJ

0.0060 4.6772 0.0387 0.1214 0.9900 0.6622 −0.3871 0.4062

The parameters were set to create the implied volatility surface (Figure 6.1) that

is consistent with the known market data, only for a more dense and regular set of

options. The data includes 100 options and it is used for testing different approaches

to calibrate each model. In the next section we will see if we are able to calibrate the

Bates model perfectly 35, i.e. if we obtain the set of previously displayed parameters by

any optimisation routine.

35The data was created using the Bates model with a known set of parameters, hence we have at our
disposal a global minimum of the calibration problem with respect to the model. In the tests, however,
we will act as if we did not know the right values of model parameters.
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6.3 Measured errors

We evaluate these calibration errors:

AAE(Θ) =
1

N

N∑
i=1

∣∣∣Ci − Cmodel(Θ)
∣∣∣ ; (6.1)

AARE(Θ) =
1

N

N∑
i=1

∣∣Ci − Cmodel(Θ)
∣∣

Ci
; (6.2)

MAE(Θ) = max
i=1,2,...,N

∣∣∣Ci − Cmodel(Θ)
∣∣∣ . (6.3)

Both the synthetic and real market data are of varying price levels (i.e. they consist

of ITM, ATM and OTM options) - the FTSE call option premia in our data sample

range from £17.5 to £514.5. Hence, as the most interesting error measure we consider

AARE(Θ) which reflects the average with respect to the absolute values of relative

errors. We also might want to fit the calibrated surface with errors that are lower than

a pre-set level for any option. The minimal level that will do for each calibration trial

is represented by MAE(Θ).

6.4 Calibration from synthetic data

Firstly, we recall the calibration process - we have at our disposal two (heuristic) global

optimisers and we combine each with a local search method (denoted by LSQ) 36. Fur-

thermore, we perform these trials for different calibration weights; w(A) defined by (5.5),

w(B) as in (5.6) and respectively w(C) as in (5.7).

The calibration results on synthetic data are presented in Table 6.1. According to

the most of our numerical trials, it is worth using local search methods on top of the

global optimisation routines. When combining the Genetic algorithm (GA) alongside

LSQ, we were able to ”perfectly” fit the surface by the Bates model for weights w(B)

and w(C). Of course, the quotation marks are in place here, due to the numerical evalu-

ation of the prices, the residual sums of (unweighted) squares are of the order 10−7 (for

both weights). The Genetic algorithm, in several experiments, provided us with inferior

results compared to the other approaches, but the set of likewise obtained parameters

was either close to the global minimum or close to a very suitable local minimum. On

that note, we comment that combination of GA and LSQ proved to be very useful for

36This is done using MATLAB’s lsqnonlin() routine that employs either Trust-Region-Reflective or
Levenberg-Marquardt method with initial parameter λLM = 0.01. For more details see http://www.

mathworks.co.uk/help/optim/ug/lsqnonlin.html .

http://www.mathworks.co.uk/help/optim/ug/lsqnonlin.html
http://www.mathworks.co.uk/help/optim/ug/lsqnonlin.html
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Table 6.1: Calibration results for synthetic data. Best values of error measures for
each weight are typed in bold.

weights Model Error meas. GA GA+LSQ SA SA+LSQ

w(A)



Bates model
AARE [%] 4.36 1.58 3.59 3.28
AAE [£] 7.53 1.81 6.34 5.77
MAE [£] 32.92 8.09 20.10 18.04

Heston model
AARE [%] 2.95 2.99 4.74 4.76
AAE [£] 5.00 4.98 7.79 7.75
MAE [£] 14.87 14.05 24.18 24.39

FSV model
AARE [%] 4.32 1.72 1.99 0.93
AAE [£] 6.57 2.00 2.89 1.35
MAE [£] 21.72 9.69 6.85 4.94

w(B)



Bates model
AARE [%] 4.68 3.2× 10-5 3.51 2.99
AAE [£] 5.70 3.5× 10-5 6.46 4.98
MAE [£] 17.90 1.8× 10-4 21.43 14.05

Heston model
AARE [%] 3.51 2.99 3.42 3.36
AAE [£] 5.77 4.98 6.37 6.36
MAE [£] 17.48 14.04 23.91 24.06

FSV model
AARE [%] 4.51 1.58 6.95 6.95
AAE [£] 7.12 1.81 11.56 11.56
MAE [£] 23.49 8.13 34.22 34.22

w(C)



Bates model
AARE [%] 6.25 4.4× 10-5 3.19 1.12
AAE [£] 6.44 4.9× 10-5 6.18 1.68
MAE [£] 26.19 2.5× 10-4 22.43 6.76

Heston model
AARE [%] 3.12 3.41 3.10 2.99
AAE [£] 5.83 5.27 5.86 4.98
MAE [£] 18.96 15.42 20.94 14.04

FSV model
AARE [%] 8.54 1.58 11.46 2.65
AAE [£] 13.49 1.81 10.67 4.04
MAE [£] 47.81 8.10 34.09 12.14

the synthetic data tests for all models.

We also managed to calibrate the FSV model from the data, in most of the trials, with

slightly lower error measures than in case of the Heston model. For w(A) we obtained

the best fit (in terms of all measured errors) for the FSV model 37, which we did not

expect considering the origin of the synthetic data. The choice of a specific calibration

procedure is a complex problem and might depend on which data we would like to mimic

in a better way. To observe absolute relative errors for different options, see Figures 6.2

- 6.4.

37Using the Simulated annealing alongside LSQ.
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Figure 6.2: Calibration from synthetic data using SA + LSQ and weights w
(A)
i .
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Figure 6.3: Calibration from synthetic data using GA + LSQ and weights w
(B)
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Figure 6.4: Calibration from synthetic data using SA + LSQ and weights w
(B)
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Figure 6.5: Calibration from synthetic data using GA + LSQ and weights w
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6.5 Calibration from the real market data

To calibrate models from the FTSE 100 option market, we utilise weights w(B) only.

The best calibration result, with respect to all measures, was obtained from the Bates

model and SA+LSQ calibration routine. The following parameters were found:

Table 6.2: Calibrated parameters of the Bates model. Calibrated using SA + LSQ.

v0 kappa vmean xi rho lambda alphaJ gammaJ

0.0067 4.4171 0.0355 0.0753 0.9899 0.6181 −0.3881 0.3715

The second best result is due to the newly proposed FSV model. The average absolute

relative errors for both GA+LSQ and SA+LSQ routines read still very acceptable 2.34%.

Table 6.3: Calibrated parameters of the FSV model. Calibrated using GA + LSQ
(the first line), SA + LSQ respectively.

v0 kappa vmean xi rho lambda alphaJ gammaJ H

0.0091 0.8570 0.1546 −1.7539 0.9900 0.2190 1.3661 0.0000 0.5935
0.0091 0.8571 0.1546 −2.4423 0.9900 0.2190 1.3661 0.0000 0.6654

Both sets of parameters are almost equally good in terms of all measured calibration

errors. The second set, however, includes higher value of H and thus the model cali-

brated with these parameters should attain stronger correlation in the variance process.

We did not manage to fit the market data with Heston model such that we would ob-

serve better error measures. This follows our intuition; the Heston model is the simplest

out of the three, having the least degrees of freedom to fit the data. On the other hand,

the calibration process took the least amount of time compared with other models for

all calibration routines. Relative errors of the models are displayed in Figures 6.7 - 6.10.

Table 6.4: Calibrated parameters of the Heston model. Calibrated using the Genetic
algorithm.

v0 kappa vmean xi rho

0.0074 0.0463 0.0387 0.0718 0.9899
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Table 6.5: Calibration from the real market data.

Model Error meas. GA GA+LSQ SA SA+LSQ

Bates model
AARE [%] 2.04 2.34 1.81 1.51
AAE [£] 3.94 3.27 2.68 2.44
MAE [£] 23.36 17.13 11.01 11.70

Heston model
AARE [%] 3.10 3.35 3.78 3.52
AAE [£] 6.05 5.85 6.68 5.90
MAE [£] 30.84 30.69 31.09 30.68

FSV model
AARE [%] 4.61 2.34 3.01 2.34
AAE [£] 7.57 3.27 5.04 3.27
MAE [£] 35.74 17.13 25.84 17.13

6.6 Option price & the Hurst exponent

Inspired by having a very similar market fit for two different values of the Hurst exponent,

we illustrate how value of H effects a modelled European call price.

In Figure 6.6 we compared modelled prices of ITM, nearly ATM and OTM options

with the real market prices. For the illustration, parameters obtained by GA+LSQ

(except for H) are used. When employing the second set of well calibrated parameters

and also pricing different market options, we observed that the value of H, needed to

precisely fit a given market option, is higher for the In-The-Money contracts than for

ATM and OTM options. However, this is just an observation which has to be more

thoroughly analysed. The analysis does not fit into the scope of this thesis.
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Figure 6.6: FSV model option prices for different values of H.
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Figure 6.7: Calibration from FTSE 100 call option market using GA - 8th Jan-
uary 2014 [Data source: Bloomberg terminal ].
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Figure 6.8: Calibration from FTSE 100 call option market using GA + LSQ - 8th Jan-
uary 2014 [Data source: Bloomberg terminal ].
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Figure 6.9: Calibration from FTSE 100 call option market using SA - 8th January 2014
[Data source: Bloomberg terminal ].
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Figure 6.10: Calibration from FTSE 100 call option market using SA + LSQ - 8th Jan-
uary 2014 [Data source: Bloomberg terminal ].



Chapter 7

Conclusion

After we presented an up-to-date overview of standard and fractional stochastic volatility

models (Chapter 2), we showed several arguments on so-called approximative fractional

approach. Using this approach, we implemented the FSV model, firstly proposed by In-

tarasit and Sattayatham in 2011 [35]. Theoretical part of the implementation involved

derivation of an explicit formula for pricing European call options (Chapter 3). As a

motivation for the FSV model, we presented an empirical evidence that realized volatil-

ity of financial returns might be long-range dependent.

Due to the existence of a semi-closed form option pricing solution, the FSV model

should be tractable for market calibration. This hypothesis has not been verified in any

previous work that is known to us38. To asses the issue, we employed both synthetic

data and European call options on FTSE 100 index. We also included a comparison

with popular standard stochastic volatility models, namely the Heston and Bates model.

The calibration process can be understood as an optimisation problem of minimising

model discrepancies. The problem, however, is a rather complex one and hence a suit-

able choice of utility functions and optimisation procedures is vital for obtaining a good

market fit. For the synthetic data tests (option prices simulated using the Bates model),

we compared different approaches of model calibration. We suggest, backed up by the

synthetic data results (Chapter 6), that a combination of global and local optimisation

routines can provide reasonable calibration errors.

38This is to our best knowledge on 22nd May 2014.
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The best results of each model were compared in the second part of Chapter 6. Market

fit obtained by the Bates model was superior to the others (AARE(Θ) = 1.51%), closely

followed by the results from the newly proposed FSV model (AARE(Θ) = 2.34%). The

simplest, but widely popular, Heston’s approach was able to fit market option prices

with the average absolute relative error reading 3.10%.

Hence we conclude that the FSV model is suitable for calibration tasks, however,

before it can be used in practise, it should be more thoroughly analysed. At the mo-

ment, it lacks a rigours analysis of the hedging performance, economic interpretation of

calibrated parameters and analysis of the Hurst exponent effect with respect to option

prices and hedging ratios. The optimal choice of ε was left for further research, we only

discussed that for several values of ε, the model can fit the market data in the presented

fashion.



Appendix A

Characteristic functions

A.1 Characteristic functions of the Heston model

f
(Heston)
j (τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx} ,

where for j = 1, 2:

Cj(τ, φ) = rφiτ +
θ

ξ2

[
(bj − ρξφi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]
,

Dj(τ, φ) =
bj − ρξφi+ dj

ξ2

(
1− edjτ

1− gjedjτ

)
,

gj =
bj − ρξφi+ dj
bj − ρξφi− dj

,

dj =
√

(ρξφi− bj)2 − ξ2(2ujφi− φ2),

u1 = 1/2, u2 = −1/2, θ = κv̄, b1 = κ− ρξ, b2 = κ.

Notation as in Chapter 2 and Chapter 3.
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A.2 Characteristic functions of the Bates model

f
(Bates)
j (τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx+ ψ(φ)τ} ,

where for j = 1, 2:

Cj(τ, φ) = rφiτ +
θ

ξ2

[
(bj − ρξφi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]
,

Dj(τ, φ) =
bj − ρξφi+ dj

ξ2

(
1− edjτ

1− gjedjτ

)
,

ψ = −λiφ
(
eα+γ2/2 − 1

)
+ λ

(
eiφα−φ

2γ2/2 − 1
)

gj =
bj − ρξφi+ dj
bj − ρξφi− dj

,

dj =
√

(ρξφi− bj)2 − ξ2(2ujφi− φ2),

u1 = 1/2, u2 = −1/2, θ = κv̄, b1 = κ− ρξ, b2 = κ.

Notation as in Chapter 2 and Chapter 3 and λ is the intensity of a compensated, com-

pound Poisson process.

A.3 Characteristic functions of the FSV model

f
(FSV )
j (τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφx+ ψ(φ)τ} ,

where for j = 1, 2 and τ = T − t:

Cj(τ, φ) = rφiτ + θYjτ −
2θ

β2
ln

(
1− gjedjτ

1− gj

)
,

Dj(τ, φ) = Yj

(
1− edjτ

1− gjedjτ

)
,

ψ = −λiφ
(
eα+γ2/2 − 1

)
+ λ

(
eiφα−φ

2γ2/2 − 1
)

Yj =
bj − ρβφi+ dj

β2

gj =
bj − ρβφi+ dj
bj − ρβφi− dj

,

dj =
√

(ρβφi− bj)2 − β2(2ujφi− φ2),

β = ξεH−1/2√vt

u1 = 1/2, u2 = −1/2, θ = κv̄, b1 = κ− (H − 1/2)ξϕεt − ρβ, b2 = κ− (H − 1/2)ξϕεt .
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Notation as in Chapter 2 and Chapter 3 and λ is the intensity of a compensated, com-

pound Poisson process. Integral ϕεt is defined in Chapter 2.



Appendix B

The Black-Scholes formula

A European call option price C(K,T ) under the classical Black-Scholes model (BSM),

which assume a geometrical Brownian motion, is equal to [63]:

C(K,T ) = StN(d1)−Ke−r(T−t)N(d2), (B.1)

where N(x) is a cumulative normal distribution function and d1, d2 are defined as

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
ln(St/K) + (r − σ2/2)(T − t)

σ
√
T − t

where σ is the volatility parameter of the model. The notation as in Chapter 5. Since

we are using the formula to obtained implied volatility surface and we link the reader

to the original paper [5] and or to [63] for a complete definition of the model.
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Appendix C

Thesis attachment

On the attached CD we created a root file structure:

• Calibration/

• Data/

• LRD Estimation/

• readme.txt

• Sobotka DP 2014.pdf

The file Sobotka DP 2014.pdf is this thesis. In the folders Calibration/ and

LRD Estimation/ we included all .m and .mat files necessary for the market calibration

and the long-range dependency estimation respectively. A documentation of attached

MATLAB functions can be accessed by typing help function name.m in the MATLAB

console. In the folder Data we stored the data sets (in .mat format) used throughout

the thesis.
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