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Abstract

Let Ω ⊂ RN is a bounded domain with C2,α boundary ∂Ω for α ∈ (0, 1). In the Thesis we
consider the problem {

−∆pu = h (µ; x, u,∇u) in Ω ,
u = 0 on ∂Ω

(1)

for an unknown function u ∈W 1,p
0 (Ω) and p > 1. Here the p-Laplace operator ∆p is defined by

∆p u
def
= div

(
|∇u|p−2∇u

)
, parameter µ ∈ R and h : R×Ω×R×RN → R is given Carathéodory

function. We suppose that the reaction term h can be decompose into the (p−1)-homogeneous
part µ|u|p−2u and a bounded perturbation g(µ; x, u,∇u), where g : R× Ω× R× RN → R.

At first we prove Krasnoselskii type necessary condition for (1) under the assumptions
that µ is in the neighborhood of the first eigenvalue λ1 and g(µ; x, s1, s2) ∈ Lr

′
(Ω), where

1
r + 1

r′ = 1, r ∈ (p, p∗) and

p∗
def
=

{
Np
N−p if p < N ,

+∞ if p ≥ N .

Then we assume one-dimensional case of (1) and g(µ; x, s1, s2) ∈ L∞(Ω) and we prove the key
estimate for the proof of the analogy of Dancer’s Theorem. Let us note that the originality
of the work consists in including the gradient (the first derivative) of an unknown function
to the source term h. The rest of the Thesis is devoted to briefs comments of my papers
written in cooperation with my mentor P. Girg. The first paper is focused on the continuity
of sinp(x), which is the first eigenfunction of −∆p. Moreover we discuss the possibility of the
expression of sinp(x) as the convergent Maclaurin series on some neighborhood of the origin.
In the second paper we generalize sinp(x) to complex domain for p be an even integer. Please
find these papers included in Appendix A1 and Appendix A2 for more details.

Keywords

p-Laplacian, bifurcations, Krasnoselskii type necessary condition, p-trigonometric functions,
differentiability, continuity, complex domain
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List of notation

u an unknown function in an equation, usually u ∈W 1,p
0 (Ω)

(a, b) open interval
[a, b] closed interval
Ω bounded domain in RN
∂Ω boundary of domain Ω
Ω̄ closure of the domain Ω
λ1, λ2, λ3, . . . eigenvalues of −∆p

∇u gradient of u
div s divergence of vector function s
∆p u p-Laplace operator ∆p u = div

(
|∇u|p−2∇u

)
Lp(Ω) Lebesgue space with 1 ≤ p ≤ +∞
‖u‖Lp(Ω) norm of Lebesgue space

W 1,p
0 (Ω) Sobolev space with 1 ≤ p ≤ +∞
‖u‖

W 1,p
0 (Ω)

norm of Sobolev space

C(Ω) space of continuous functions
Ck,α(Ω̄) Hölder space for k ∈ N \ {0} and α ∈ (0, 1)
C1

0 [a, b] space of continuously differentiable functions u with u(a) = 0 = u(b)
→ strong convergence
⇀ weak convergence
X abstract space
X ↪→ Y continuous embedding of X into Y

X
c
↪→ Y compact embedding of X into Y

ν measure
S σ-algebra
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Chapter 1

Introduction

For p > 1, the following problem{
−∆pu = h (µ; x, u,∇u) in Ω ,

u = 0 on ∂Ω
(1.1)

is considered for an unknown function u = u (x) in a bounded domain Ω ⊂ RN with C2,α 1

boundary ∂Ω, where α ∈ (0, 1). Operator ∆p stands for the p-Laplace operator defined by

∆pu
def
= div

(
|∇u|p−2∇u

)
and h : R×Ω×R×RN → R is a given Carathéodory function (for

exact definition for vector function u see Definition 2.1.9). In one dimension, the p-Laplace

operator is reduced to ϕp(u
′), where ϕp(s)

def
= |s|p−2s. The dependence of ϕp on u′ is shown

on the Figure 1.1 for p = 30 and p = 30
29 .

-1.0 -0.5 0.5 1.0

-6

-4

-2
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s

ϕp(s) = |s|p−2 s

Figure 1.1: Function ϕp(s) = |s|p−2s for p = 30 (dashed line) and p = 30
29 (continuous line).

Problem (1.1) can be interpreted as the equation of the steady state of a diffusion equation.
Indeed, let u stand for a state variable (e.g. density, concentration, temperature), j = j(x) for
the diffusion flux, and h for a source term. Then the steady state conservation law has the
divergence form

div j = h (µ; x, u,∇u) . (1.2)

1We say that the boundary is C2,α if it can be decomposed in finite number of parts, such that each can
be expressed as a C2,α function in suitable rotated local coordinates. By C2,α function we mean the following.

Let M ⊂ RN−1 and f ∈ C(M̄). Assume x = (x1, x2, x3, . . . , xN−1) ∈ M̄ and denote fd(x) = ∂2f
∂xi∂xj

(x) for

i, j = 1, 2, 3, . . . , N − 1. We say that f ∈ C2,α(M̄) in the case that sup
x,y ∈ M̄
x 6= y

|fd(x)− fd(y)|
|x− y|α < +∞.
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The constitutive relation for diffusion processes (Fick’s law) states

j = −D∇u , (1.3)

where D = D(x) is the diffusion coefficient, which depends on the diffusing material (see
Drábek-Holubová [20] for more details). In some circumstances the diffusion coefficient

depends also on u and/or ∇u. In this thesis we suppose that D(x, u,∇u)
def
= |∇u|p−2 (see

Figure 1.2 and compare with Figure 1.1), which appears in many practical situations (see e.g.
Aronsson-Evans-Wu [4] or Wu-Zhao-Yin-Li [55]).

-1.0 -0.5 0.0 0.5 1.0
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|∇u|

D(x, u,∇u) = |∇u|p−2

Figure 1.2: Diffusion coefficient D(x, u,∇u) = |∇u|p−2 restricted to the plain |∇u| × D for
p = 30 (dashed line) and p = 30

29 (continuous line).

Combining (1.2) and (1.3) and considering Dirichlet boundary condition, we get the prob-
lem (1.1). Let us note that (1.2) is stated in a divergence form as it would be for classical
solution u ∈ C2(Ω) under the assumption that u has continuous partial derivatives. However,
the existence of classical solution is extremely difficult to establish. Thus (1.1) is understood
in the weak sense. Hence by a solution to (1.1) we mean a function u ∈W 1,p

0 (Ω) such that∫
Ω
|∇u|p−2∇u · ∇ϕdx =

∫
Ω
h(µ; x, u,∇u)ϕdx ∀ϕ ∈W 1,p

0 (Ω) .

Papers [4] and/or Evans-Feldman-Gariepy [25] are concerned with growing of sand-
piles. In a non-stationary case of (1.1), i.e.{

∂u
∂t −∆pu = f(x, t) in RN × (0,+∞) ,

u = ū on RN × {t = 0} , (1.4)

they interpret u(x, t) as a height of sandpile. Hence ∇u corresponds to the slope of the
sandpile. Assume p → +∞. Then D → 0 within the region |∇u| < 1 − δ and D → +∞ for
|∇u| > 1 + δ for any small δ > 0 (see Figure 1.2). It follows that there is no diffusion until the
time, when the slope reaches critical value 1. Then the pile collapses and the slope decreases.
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On the other hand, the article by Kuijper [35] is concerned with image processing using
nonlinear diffusion. Here the domain Ω ⊂ R2 (two-dimensional image - e.g. photograph) and
u(x, t) is interpreted as a value on a gray scale at a point x ∈ Ω. It turns out that the equation
(1.4) for p→ 1+ preserves edges of the image. This is due to the fact that D → 0 within the
region |∇u| > 1− δ and D → +∞ for |∇u| < 1 + δ for any small δ > 0 (see Figure 1.2). Note
that |∇u| is large on the edges.

It is natural to ask about the number of solutions of (1.1) for the given source function h.
The answer depends on the asymptotic properties of the function h and on properties of the
eigenvalue problem (see e.g. Anane [1], Anane-Tsouli [2], Čepička-Drábek-Girg [13],
Elbert [23] and references therein){

−∆pu = λ |u|p−2 u in Ω ,
u = 0 on ∂Ω ,

(1.5)

where λ ∈ R is an eigenvalue of (1.5) if there is a nonzero function u which satisfies (1.5).
Such function is called eigenfunction. In one-dimensional case there is λk = kp(p− 1) for any
k ∈ N and corresponding normalized eigenfunction is sinp(kx). Elbert showed in [23] that
sinp(x) is the unique solution of the problem

−
(
|u′|p−2 u′

)′
= λ |u|p−2 u in (0, πp) ,

u(0) = 0 ,
u′(0) = 1

and

πp = 2

∫ 1

0

1

(1− sp)1/p
ds =

2π

p sin(π/p)
.

In higher dimension, the structure of the spectrum of (1.5) is not fully understood yet, but as
Anane [1] prove there is the first eigenvalue λ1 > 0, which is isolated and the corresponding
normalized eigenfunction is positive in Ω. Hence the question about the number of solution
of (1.1) is a difficult problem in general and for simplicity, we add some assumptions. Firstly,
we consider the one-dimensional case (except Section 3.1). Secondly, suppose that the reac-
tion term h can be decomposed into the (p − 1)-homogeneous part µ|u|p−2u and a bounded
perturbation g(µ; x, u,∇u). It means that

h (µ; x, u,∇u) = µ|u|p−2u+ g (µ; x, u,∇u) , (1.6)

where g : R × Ω × R × RN 7→ R satisfies Carathéodory condition and there is a(x) ∈ Lr′(Ω)
such that

|g (µ; x, s1, s2)| ≤ a . (1.7)

The allowable values of parameter r′ will be specified below. Thirdly, we focus only on such
values of the parameters µ which are in the small neighborhood of the first eigenvalue λ1.

Under this assumptions, we search for the number of solutions using bifurcation theory.
There are some papers devoted to this problem where the source term does not depend
on ∇u. In del Pino-Manásevich [21] authors deal with the bifurcations from zero. They
consider the source term h = h(µ; x, u) satisfies (1.6) with g = g(µ; x, u). Function g fulfills
Carathéodory condition in x and u,

g(µ; x, s) = o
(
|s|p−1

)
4



near s = 0, uniformly a.e. in Ω and uniformly with respect to µ on bounded sets. Furthermore,
g satisfies the growth condition

lim
|s|→+∞

|g(µ; x, s)|
|s|q−1

= 0

uniformly with respect to µ on bounded sets for any 1 < q < p∗, where p∗ depends on p and
dimension N as follows:

p∗
def
=

{
Np
N−p if p < N ,

+∞ if p ≥ N .

Also in Girg-Takáč [31], the bifurcations from zero and/or from infinity are studied. In this
case, the source term h = h(µ; x, u) satisfies (1.6) again. In [31], the function g : R×Ω×R→ R
is a Carathéodory function moreover there is a constant C ∈ (0,+∞) such as in the case of
the bifurcation from zero

|g(µ; x, s)| ≤ C|s|p−1

and in the case of the bifurcation from infinity

|g(µ; x, s)| ≤ C
(
1 + |s|p−1

)
in both cases for a.e. x ∈ Ω and for all pairs (µ, s) ∈ R× R, and

g(µ; x, s)

|s|p−1 → 0 as |s| → 0 and
g(µ; x, s)

|s|p−1 → 0 as |s| → +∞

uniformly for a.e. x ∈ Ω and in µ from bounded intervals in R, respectively. Note that our
assumptions for the function g are far more strict, but we work with the function g depending
also on ∇u. Let us mention that [31] continues the paper by Drábek-Girg-Takáč-Ulm [19],
where g = g(x) is considered.

This thesis is organized as follows. In Chapter 2 we introduce some useful definitions and
we define Carathéodory function. In Chapter 3 we show that the bifurcation point from infinity
of the problem (1.1) is also the eigenvalue of (1.5). Here we consider the assumptions (1.6) and
(1.7), where a ∈ Lr′(Ω). In this case, parameter r′ satisfies 1

r + 1
r′ = 1 and r ∈ (p, p∗). Then we

suppose one-dimensional case of (1.1) and we prove the key estimate for the proof of theorem
analogous to Dancer’s Theorem under the assumptions (1.6) and (1.7), where a ∈ L∞(Ω).
Chapters 4 and 5 are devoted to brief commentary of my papers ”Differentiability properties
of p-trigonometric functions” and ”Generalized trigonometric functions in complex domain”.
Both papers were written in collaboration with my mentor P. Girg. In these chapters you
can find sections where my contribution is specified. The articles were attached in Appendix
A1 and Appendix A2, respectively.
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Chapter 2

Preliminaries

The results of this chapter are well known. We include them here for the sake of completeness
of the presentation since results are scattered in the literature.

2.1 Measure theoretic preliminaries

Here we introduce some useful well (and/or less) known facts from the measure theory, see
e.g. Ambrosetti-Prodi [3], Folland [26], and/or Malý [41]. We assume that the reader
is familiar with definitions of sigma algebra, measure space, measure, complete measure, Borel
set, etc. Through out the section we suppose the measure space (X,S, ν) with sigma algebra
S ⊂ 2X and a complete measure ν. We also define R = R ∪ {±∞} such that for any b ∈ R
holds −∞ < b < +∞.

2.1.1 Basic definitions

Definition 2.1.2 (see, [41], 3.3 Definition, p. 5 ). Let D ∈ S. We say that function f : D → R
is S-measurable if for any Borel set B ⊂ 2R is f−1(B) ∈ S.

In case no confusion may arise, we use the term measurable function instead of the term
S-measurable function.

2.1.3 Convergence theorems

Let us introduce the space L+. It contains all measurable functions that maps from X to
[0,+∞]. In other words it is the space of the non-negative measurable functions.

Proposition 2.1.4 (see [26], 2.14 The Levi Monotone Convergence Theorem, p. 50). If
{fn}+∞n=1 is a sequence in L+ such that fj ≤ fj+1 for all j ∈ N, and

f = lim
n→+∞

fn(= sup
n∈N

fn) ,

then ∫
X
f = lim

n→+∞

∫
X
fn .

Proposition 2.1.5 (see [26], Fatou’s Lemma 2.18, p. 52 ). If {fn}+∞n=1 is any sequence in L+,
then ∫

X

(
lim inf
n→+∞

fn

)
≤ lim inf

n→+∞

∫
X
fn .

Corollary 2.1.6. Let {fn}+∞n=1 be a sequence of measurable functions. Assume that there
exists h ∈ L1(X) such that fn ≤ h. Then

lim sup
n→+∞

∫
X
fn ≤

∫
X

lim sup
n→+∞

fn

6



Proof. Choose any h ∈ L+ such that h−fn ≥ 0 for all n ∈ N. Hence the sequence {h−fn}+∞n=1

belongs to L+ and by Proposition 2.1.5

lim inf
n→+∞

∫
X

(h− fn) ≥
∫
X

lim inf
n→+∞

(h− fn).

Since Lebesgue’s integral is additive and h does not depend on n we obtain∫
X
h− lim sup

n→+∞

∫
fn ≥

∫
X
h−

∫
lim sup
n→+∞

fn ,

which follows

lim sup
n→+∞

∫
X
fn ≤

∫
X

lim sup
n→+∞

fn .

�

Let us recall classical Lebesgue Dominated Convergence Theorem. For more detail see e.g.
[41] and/or [26].

Proposition 2.1.7 (see [41], 6.2 Lebesgue Dominated Convergence Theorem, p. 15). Let
D ∈ S and f , fj, j ∈ N, are measurable functions on D. Let {fj}+∞j=1 converge to f a.e. in
D. Let there exist integrable function such that for every j ∈ N,

|fj(x)| ≤ g(x), for x ∈ D.

Then ∫
D
f = lim

j→+∞

∫
D
fj .

2.1.8 Carathéodory condition

Definition 2.1.9. Let g : R× Ω× R× RN → R, Ω ⊂ RN , satisfies

(i) g(µ; · , u,v) : Ω→ R is measurable for all µ, u ∈ R and v ∈ RN .

(ii) g(· ;x, · , · ) : R× R× RN → R is continuous for x a.e. in Ω

Then we say that h satisfies Carathéodory condition.

Our aim is to show that Carathéodory condition is sufficient for measurability of function
g. It is well known fact, but its proof is difficult to find in the literature. For that reason, we
present a proof in one dimension, which can be easily generalized to higher dimension. Before
we introduce the proof, we state two useful propositions from [26] and prove a lemma from
[41]. Since [41] refers to lecture notes in Czech, the proof is presented below.

Proposition 2.1.10 (see [26], 2.7 Proposition, p. 45). If {fj}+∞j=1 is a sequence of R-valued
measurable functions on (X,S), then the functions

g1(x) = sup
j∈N

fj(x), g3(x) = lim sup
j→+∞

fj(x),

g2(x) = inf
j∈N

fj(x), g4(x) = lim inf
j→+∞

fj(x)

are all measurable. If f(x) = limj→+∞ fj(x) exists for every x ∈ X, then f is measurable.

7



Proposition 2.1.11 (see [26], 2.10 Theorem, p. 47). Let (X,S) be a measure space. If
f : X → C is measurable, there is a sequence {φn}+∞n=1 of simple functions such that 0 ≤
|φ1| ≤ |φ2| ≤ . . . ≤ |f |, φn → f pointwise, and φn → f uniformly on any set on which f is
bounded.

Lemma 2.1.12 (see [41] (in Czech), 3.10 Theorem (d), p. 6). Let functions fj(x) be mea-
surable on D ∈ S for all j ∈ N. Then the set D′ of all points, where the limit limj→+∞ fj(x)
exists, is measurable and limj→+∞ fj(x) is measurable on D′.

Proof. Denote D′ set of all points where limj→+∞ fj(x) exists, i.e., lim supj→+∞ fj(x) =
lim infj→+∞ fj(x). It is easily seen that

D′ = D \

⋃
r∈Q

{
x ∈ D : lim inf

j→+∞
fj(x) < r < lim sup

j→+∞
fj(x)

} .

Since D is measurable, the difference of two measurable sets is a measurable set and countable
unification of measurable sets is a measurable set, we get that D′ is measurable if we show
that the set {

x ∈ D : lim inf
j→+∞

fj(x) < r < lim sup
j→+∞

fj(x)

}
(2.1)

is measurable for all r ∈ Q. At first we justify that {x ∈ D : lim infj→+∞ fj(x) < r} and
{x ∈ D : r < lim supj→+∞ fj(x)} are measurable. Indeed, the functions lim infj→+∞ fj(x) and
lim supj→+∞ fj(x) are measurable functions by Proposition 2.1.10 and hence from Definition
2.1.2 of measurable function also the sets must be measurable. Since for given r ∈ Q the
set (2.1) is the intersection of sets {x ∈ D : lim infj→+∞ fj(x) < r} and {x ∈ D : r <
lim supj→+∞ fj(x)}, we get desired measurability of the set (2.1). �

Idea of the following proof is taken from Ambrosetti-Prodi [3].

Theorem 2.1.13. Let g : R × Ω × R × RN → R fulfill Carathéodory condition. Then
g(µ;x, u(x),v(x)) is measurable function for any measurable functions u : Ω → R and
v : Ω→ RN .

Proof. For simplicity N = 1. The idea of proof in higher dimension (N ≥ 2) is analogous, but
it is more technical and it produces lengthly formulas.

Since u and v are measurable there exist nondecreasing sequences u+
k ↗ u+, u−k ↗ u−,

v+
k ↗ v+ and v−k ↗ v− of simple functions such that

u±k =

k±∑
j=1

α±j χE±j
and v±k =

k̄±∑
j=1

β±j χĒ±j
. (2.2)

for almost all x ∈ Ω. It follows from Proposition 2.1.11. Hence sequences uk = u+
k − u

−
k and

vk̄ = v+
k̄
− v−

k̄
converge to u and v, respectively. For any k, k̄ ∈ N the sums (2.2) are finite and

hence

uk =

l(k)∑
j=1

αjχEj and vk =

l̄(k̄)∑
j=1

βjχĒj .

8



We claim that g(µ;x, uk, vk̄) is measurable function. To prove this we show that set

{x ∈ Ω : g(µ;x, uk, vk̄) > t} (2.3)

is measurable for all t ∈ Q. We can divide the set (2.3) as follows:

{x ∈ Ω : g(µ;x, uk, vk̄) > t} =
(⋃l

j=1

⋃l̄
m=1 {x ∈ Ω : g(µ;x, αj , βm) > t }∩Ej ∩ Ēm

)
∪. . .

. . . ∪
(
{x ∈ Ω : g(µ;x, t, t)>t}∩

(
Ω\
(⋃l

j=1Ej ∪
⋃l̄
m=1 Ēm

)))
and the problem of measurability of g is falling to the problem of measurability of Ej , Ēm,
{x ∈ Ω : g(µ;x, αj , βm) > t }, and {x ∈ Ω : g(µ;x, t, t) > t} .

Since uk =
∑l

j=1 αjχEj and vk̄ =
∑l̄

j=1 βjχĒj are measurable function, the sets Ej and

Ēm are measurable as well.
From the Carathéodory condition (see Definition 2.1.9, (i)) the function g(µ; · , u, v) is mea-

surable and using Definition 2.1.2 we get measurability of the sets {x ∈ Ω : g(µ;x, αj , βm)>t}
and {x ∈ Ω : g(µ;x, t, t) > t}.

Due to the continuity of g(· ;x, · , ·) (see Definition 2.1.9, (ii)), uk(x)→ u(x), and vk̄(x)→
v(x) for x a.e. in Ω we have g(µ;x, uk, vk̄) → g(µ;x, u, v) for any µ ∈ R. Let us denote
E = {x ∈ Ω : limk→+∞ uk(x) = u(x) ∧ limk→+∞ vk̄(x) = v(x)}. The measure µ(E) = µ(Ω)
since uk and vk̄ converge for x a.e. in Ω and so µ(Ω\E) = 0. Limit function g of the sequence
of measurable functions which converge on measurable set D′ is also measurable on D′ in the
sense of Lemma 2.1.12. �

2.2 Abstract preliminaries

In this section we introduce some properties of the inverse operator to the p-Laplacian. We
assume that the reader has basic knowledge of functional analysis. More precisely he/she is
familiar with definitions of compact operator, compact set, continuous operator, functional,
strong and weak convergence etc. At first let us define some function spaces and the norms
on these spaces. More details can be found in Benedikt-Girg [5] or [41].

Definition 2.2.1. Let Ω ⊂ RN is domain. The symbol Ck(Ω) denotes the space of continu-
ously differentiable functions on Ω up to the order k ∈ N∪{0}. Moreover C∞(Ω) denotes the
space of infinitely continuously differentiable functions on Ω.

Let us note for k = 0, we write C(Ω) instead of C0(Ω). Let us also define the support of
function f : Ω→ R , Ω ⊂ RN as the set

supp f
def
= {x ∈ Ω : f(x) = 0} ,

where the closure is considered in euclidean metric.

Definition 2.2.2. Let Ω ⊂ RN is domain. By C∞0 (Ω) we denote the space of all functions
f ∈ C∞(Ω) for which

supp f ⊂ Ω

and supp f is compact set.
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Definition 2.2.3. Let [a, b] ⊂ R is closed interval. The symbol C0[a, b] (resp. C1
0 [a, b]) denotes

the space of functions f ∈ C(a, b) (resp. f ∈ C1(a, b)) such that f(a) = 0 = f(b).

Definition 2.2.4 (see [41] 17.2 Definition (Lp-norms), p. 37). Let (X,S, ν) is a space with
a measure. If f is a measurable function on X and 1 ≤ p < +∞ is real parameter, then we
define

‖f‖p
def
=

(∫
X
|f |p dν

) 1
p

.

Moreover we define

‖f‖∞
def
= inf {C ≥ 0 : |f | ≤ C almost everywhere} .

Definition 2.2.5 (see [41], Lebesgue space, p. 37). Let (X,S, ν) is space with measure. Define
Lp(X) as the space of ν-measurable functions f on X such that ‖f‖p is finite. Moreover we
define

‖f‖Lp(X)
def
= ‖f‖p .

Let us mention that mapping ‖ · ‖p is seminorm on the space Lp(Ω). For the correct
definition of norm ‖ · ‖Lp(X) we have to assume that if f1 = f2 almost everywhere in X, then
f1 and f2 are the same element of Lp(X). It is realized by the concept of equivalence classes
of Lebesgue measurable functions. See [5] and/or [41] for more details.

Definition 2.2.6 (see [5] Definition 3.1, p. 94). Let Ω ⊂ RN is domain and 1 < p < +∞.
Sobolev space W 1,p(Ω) is space of all functions f ∈ Lp(Ω) such that for i = 1, 2, . . . , N , there
exists function gi ∈ Lp(Ω) satisfying∫

Ω
f
∂φ

∂xi
dx = −

∫
Ω
gi φ dx

for all φ from the space of test function C∞0 (Ω). Function gi is called weak partial derivative
of the function f with respect to xi.

Definition 2.2.7 (see [5], Definition 3.9 and Theorem 3.10, p. 95). For 1 < p < +∞ we
define the norm ‖ · ‖W 1,p(Ω) : W 1,p(Ω)→ [0,+∞) as

‖f‖W 1,p(Ω)
def
=

(
‖f‖pLp(Ω) +

N∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥p
Lp(Ω)

) 1
p

,

where ∂f
∂xi
∈ Lp(Ω) are weak derivatives of f .

Definition 2.2.8 (see [5], Definition 3.12, p. 95). Let Ω ⊂ RN is domain and 1 < p < +∞.
Sobolev space W 1,p

0 (Ω) is defined as closure of C∞0 (Ω) in W 1,p(Ω) with respect to the norm
‖ · ‖W 1,p(Ω).

Define p′
def
= p

p−1 and recall that p > 1 and

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.
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By Rellich-Kondrachov Compactness Theorem (see Evans [24, Theorem 1, p. 272]), the
Sobolev space W 1,p

0 (Ω) is compactly embedded to Lr(Ω) for 1 ≤ r < p∗. In particular for
p ≥ 2, we get the following chain of embeddings

W 1,p
0 (Ω)

c
↪→ Lr(Ω) ↪→ Lr

′
(Ω)

c
↪→W−1,p′(Ω) , (2.4)

where W−1,p′(Ω) denotes the dual space of W 1,p
0 (Ω) and 1

r + 1
r′ = 1. It is well known fact that

the problem
−∆pu = f in Ω,

u = 0 on ∂Ω
(2.5)

has the unique weak solution for each f ∈W−1,p′(Ω) by Zeidler [57, Theorem 26.A, p. 557].
In other words, there is the unique u ∈W 1,p

0 (Ω) which satisfies∫
Ω
|∇u|p−2∇u · ∇v dx = 〈h, v〉

for all v ∈W 1,p
0 (Ω). Note that 〈·, ·〉 denotes the duality pairing betweenW 1,p

0 (Ω) andW−1,p′(Ω).
We denote the unique solution of (2.5) by Rp(h), which is a continuous operator from

W−1,p′(Ω) to W 1,p
0 (Ω) for p ≥ 2 by [Zeidler, Theorem 26.A (d), p. 557]. By (2.4), the operator

Rp : Lr
′
(Ω) → W 1,p

0 (Ω) is compact. In the following section we prove the continuity and
compactness of Rp(h) for any p > 1, but only in one dimension.

2.2.9 Solution operator for one-dimensional case for p > 1

This subsection provides continuity and compactness of the solution operatorRp : Lr
′
(0, πp)→

C1
0 [0, πp], h 7→ u of one-dimensional boundary value problem

−
(
|u′|p−2 u′

)′
= h a.e. in (0, πp) ,

u(0) = u(πp) = 0 ,
(2.6)

for any p > 1. The equation is understood in the weak sense. By regularity (see e.g. Girg
[27], where the more general case of ϕ-Laplacian is considered) for weak solution, it can be
shown that u ∈ C1

0 [0, πp] and the equation is satisfied pointwise a.e. in (0, πp). Note that the
results of this section are known, see e.g. [43], and we provide them only for completeness of
the presentation. Since the solution u ∈ C1

0 [0, πp], the function u is absolutely continuous (see
e.g. del Pino [16]) and integrating (2.6) we get∣∣u′(t)∣∣p−2

u′(t)−
∣∣u′(0)

∣∣p−2
u′(0) = −

∫ t

0
h(s) ds . (2.7)

Let us define function

ϕp (ξ) =

{
|ξ|p−2 ξ ξ 6= 0,
0 ξ = 0,

(2.8)

which is increasing and continuous for any p > 1. It is not difficult to verify that its inverse
function is ϕp′ and hence it has the same properties as ϕp does. Using function ϕp we can
rewrite (2.7) as follows

ϕp
(
u′(t)

)
=
∣∣u′(0)

∣∣p−2
u′(0)−

∫ t

0
h(s) ds.
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Applying the monotone continuous function ϕ−1
p we obtain

u′(t) = ϕ−1
p

(∣∣u′(0)
∣∣p−2

u′(0)−
∫ t

0
h(s) ds

)
. (2.9)

Integrating (2.9) once more and using homogeneous Dirichlet boundary condition leads us to

u(x) =

∫ x

0
ϕ−1
p

(∣∣u′(0)
∣∣p−2

u′(0)−
∫ t

0
h(s) ds

)
dx (2.10)

and

0 = u(πp) =

∫ πp

0
ϕ−1
p

(∣∣u′(0)
∣∣p−2

u′(0)−
∫ t

0
h(s) ds

)
dx .

Denoting

a
def
=
∣∣u′(0)

∣∣p−2
u′(0) (2.11)

we get

0 =

∫ πp

0
ϕ−1
p

(
a−

∫ t

0
h(s) ds

)
dx . (2.12)

Lemma 2.2.10. Equation (2.12) has unique solution a ∈ R.

Proof. Let us define function F : a 7→
∫ πp

0 ϕ−1
p

(
a−

∫ t
0 h(s) ds

)
dx. Since the function ϕ−1

p (s) =

ϕp′(s) is continuous and
∫ t

0 h(s) ds is constant with respect to a we have continuity of F . Next
part of the proof naturally falls into two steps.
Step 1. - Existence. Fact that h ∈ Lr′(0, πp) implies

∃K > 0 :

∫ πp

0
|h(s)| ds ≤ K .

Choosing Ā > K we get ∀t ∈ [0, πp]

Ā−
∫ t

0
h(s) ds > 0 , (2.13)

and choosing A < −K we get ∀t ∈ [0, πp]

A−
∫ t

0
h(s) ds < 0 . (2.14)

Combining (2.13) and (2.14) with continuity of F we get that there is at least one solution
on (A, Ā) by definition of ϕp due to (2.8).
Step 2. - Uniqueness. We show that the function F is monotone which guarantees the unique-
ness of the solution of (2.12). Indeed, let a2 > a1. Then monotonicity of ϕ−1

p yields∫ πp
0 ϕ−1

p

(
a2 −

∫ t
0 h(s) ds

)
dx−

∫ πp
0 ϕ−1

p

(
a1 −

∫ t
0 h(s) ds

)
dx = . . .

. . . =
∫ πp

0

[
ϕ−1
p

(
a2 −

∫ t
0 h(s) ds

)
− ϕ−1

p

(
a1 −

∫ t
0 h(s) ds

)]
dx > 0

�
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Let us denote α : Lr
′
(0, πp) → R, which maps any h ∈ Lr′(0, π) to unique a such that a

solves the equation ∫ πp

0
ϕ−1
p

(
a−

∫ t

0
h(s) ds

)
dx = 0 . (2.15)

Lemma 2.2.11. Functional α maps any bounded set in Lr(0, πp) to the bounded set in R.

Proof. Let ‖h‖Lr′ (0,πp) ≤ K. Then |a| ≤ 2K since from (2.13) and (2.14) follows that a ∈
(A, Ā) for any A < −K and any Ā > K. �

Lemma 2.2.12. Functional α is continuous.

Proof. Let hn → h in Lr
′
(0, πp). Hence hn is bounded in Lr

′
(0, πp) and the real sequence

α (hn) is bounded by Lemma 2.2.11. Then there exists subsequence αhnk so it converges to
some point a0 ∈ R. If we prove∫ πp

0
ϕ−1
p

(
a0 −

∫ t

0
h(s) ds

)
dx = 0,

the statement of Lemma follows from uniqueness of solution of (2.12). Our current aim is to
show

0 = lim
k→+∞

∫ πp

0
ϕ−1
p

(
α (hnk)−

∫ t

0
hnk(s) ds

)
dx =

∫ πp

0
ϕ−1
p

(
a0 −

∫ t

0
h(s) ds

)
dx

The first equation follows easily from the definiton of α due to (2.15). The second one follows
Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem),

lim
k→+∞

∫ t

0
hnk(s) ds = lim

k→+∞

∫ πp

0
hnk(s)χ[0,t](s) ds =

∫ πp

0
h(s)χ[0,t](s) ds =

∫ t

0
h(s) ds

(2.16)
using the boundedness of hnk and fact that hnk → h. The function χA is characteristic function
of set A which is defined as

χA(ξ)
def
=

{
1 ξ ∈ A ,
0 otherwise.

Since ϕ−1
p is defined for any ξ ∈ R and it is continuous, boundedness of argument implies

boundedness of ϕ−1
p . Due to the continuity of ϕ−1

p , the fact that α (hnk)→ a0, and (2.16), we
find

lim
k→+∞

∫ πp

0
ϕ−1
p

(
a (hnk)−

∫ t

0
hnk(s) ds

)
dx =

∫ πp

0
ϕ−1
p

(
a0 −

∫ t

0
h(s) ds

)
dx

by Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem) again.
Hence

0 =

∫ πp

0
ϕ−1
p

(
a0 −

∫ t

0
h(s) ds

)
dx ,

which implies a0 = α(h) because α(h) is the unique solution of (2.12) by Lemma 2.2.10. �

Proposition 2.2.13 (see Yosida [56], Theorem (Eberlein-Shmulyan), p. 141). A Banach
space X is reflexive if and only if it is locally sequentialy weakly compact; that is, X is
reflexive if and only if every strongly bounded sequence of X contains a subsequence which
converge weakly to an element of X.
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Let us summarize the knowledge of the solution of the problem (2.6). From (2.10) we have

u(x) =

∫ x

0

(
a(h)−

∫ t

0
h(s) ds

)
dx ,

where α : Lr
′
(0, πp) → R is continuous and it maps a bounded domain in Lr

′
(0, πp) to

a bounded domain in R. Let us consider the mapping Rp : Lr
′
(0, πp) → C1

0 [0, πp], which
assigns solution u to every function h ∈ Lr′ (0, πp).

Theorem 2.2.14. Operator Rp : Lr
′
(0, πp)→ C1

0 [0, πp] is continuous and compact.

Proof. Step 1. - Continuity. Let hn → h in Lr
′
(0, πp). If we prove that

ϕ−1
p

(
α(hn)−

∫ t

0
hn(s) ds

)
→ ϕ−1

p

(
α(h)−

∫ t

0
h(s) ds

)
(2.17)

the proof follows from Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem). The
convergence hn → h implies the boundedness of hn in Lr(0, πp). Hence we get the boundedness
of

ϕ−1
p

(
α(hn)−

∫ t

0
hn(s) ds

)
and

ϕ−1
p

(
α(h)−

∫ t

0
h(s) ds

)
by Lemma 2.2.11 and by the continuity of ϕ−1

p on R.
It remains to show (2.17). Since α is continuous by Lemma 2.2.12, we get

α(hn)→ α(h) . (2.18)

Moreover ∫ t

0
hn(s) ds→

∫ t

0
h(s) ds (2.19)

by Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem) due to the boundedness
of hn and the convergence hn → h. Since ϕ−1

p is continuous, the convergence (2.17) follows
from (2.18) and (2.19).
Step 2. - Compactness. Let B is bounded set in Lr

′
(0, πp) which is reflexive Banach space (we

have 1 < r < +∞). Then there is K > 0 such that ‖hn‖Lr;(0,πp) ≤ K for any hn ∈ B and

there exists a subsequence hnk ⇀ h ∈ Lr′(0, πp) by Proposition 2.2.13 (Eberlein-Shmulyan
Theorem).

If we show, that

ϕ−1
p

(
α(hnk)−

∫ t

0
hnk(s) ds

)
→ ϕ−1

p

(
α(h)−

∫ t

0
h(s) ds

)
(2.20)

then

u′n(t) = ϕ−1
p

(
α(hnk)−

∫ t

0
hnk(s) ds

)
→ ϕ−1

p

(
α(h)−

∫ t

0
h(s) ds

)
= u′(t). (2.21)
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by (2.9). Integrating (2.21) we obtain

un(x) =

∫ x

0
ϕ−1
p

(
α(hnk)−

∫ t

0
hnk(s) ds

)
dx→

∫ x

0
ϕ−1
p

(
α(h)−

∫ t

0
h(s) ds

)
dx

and u(x) is solution of (2.6) by (2.10), definition of a due to (2.11) and α due to (2.15). Hence
u(x) ∈ C1

0 [0, πp] and Rp is compact operator.
It remains to obtain (2.20). Due to Lemma 2.2.11 and boundedness of hnk , there is subse-

quence of hnk (still denoted by hnk for simplicity) such that α(hnk) converges to some α0 ∈ R.
It follows from the weak convergence of hnk that∫ πp

0
hnk(x)φ dx→

∫ πp

0
h(x)φ dx ∀φ ∈ Lr′(0, πp) .

Choosing χ[0,t] ∈ L∞(0, πp) ↪→ Lr
′
(0, πp) for all 1 ≤ r′ ≤ +∞, we obtain∫ t

0
hnk(s) ds→

∫ t

0
h(s) ds

using the fact that ∫ πp

0
h(s)χ[0,t](s) ds =

∫ t

0
h(s) ds .

Hence ∫ t

0
hnk(s) ds =

∫ πp

0
hnk(s)χ[0,t](s) ds→

∫ πp

0
h(s)χ[0,t](s) ds

and

lim
k→+∞

∫ πp

0
ϕ−1
p

(
α(hnk)−

∫ t

0
hnk(s) ds

)
dx =

∫ πp

0
ϕ−1
p

(
α0 −

∫ t

0
h(s) ds

)
dx (2.22)

by Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem) and the continuity of ϕ−1
p .

Due to the fact that ∫ πp

0
ϕ−1
p

(
α(hnk)−

∫ t

0
hnk(s) ds

)
dx = 0

for all k ∈ N by the definition (2.15) of α, we have∫ πp

0
ϕ−1
p

(
α0 −

∫ t

0
h(s) ds

)
dx = 0

from (2.22). It follows that α0 = α(h) by the uniqueness of the solution (see Lemma 2.2.10).
Hence the limit (2.20) holds. �
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Chapter 3

Bifurcations from infinity

3.1 Krasnoselskii type necessary condition

In this section we consider the problem

−∆pu = µ |u|p−2 u+ g(µ;x, u,∇u) in Ω,
u = 0 on ∂Ω,

(3.1)

(in the weak sense) where µ ∈ R, ∆p
def
= div

(
|∇u|p−2∇u

)
denotes p-Laplace operator,

the domain Ω ∈ RN is bounded with C2,α-boundary for some α ∈ (0, 1). Let us note that
by Section 2.2 , the inverse of p-Laplace operator Rp : Lr

′
(Ω) → W 1,p

0 (Ω) is continuous
and compact for p > 1 in the case N = 1 and/or for p ≥ 2 in the case N ≥ 2. Let g :
R×Ω×R×Rn → R satisfy Carathéodory condition (see Definition 2.1.9) and the following
growth condition:

g(µ;x, u, v) ≤ a(x) (3.2)

for some a(x) ∈ Lr′(Ω). The parameter r′ satisfies 1
r + 1

r′ = 1 and r ∈ (p, p∗). Our aim is to
formulate necessary condition for the bifurcation of solutions from infinity.

Definition 3.1.1. We say that λ̄ ∈ R is a bifurcation point from infinity of the problem
(3.1), if there exists a sequence {(µn, un)}∞n=1 ∈ R×W 1,p

0 (Ω) of weak solutions to

−∆pun = µn |un|p−2 un + g(µn;x, un,∇un) in Ω,
un = 0 on ∂Ω,

(3.3)

such that µn → λ̄ and ‖un‖W 1,p
0 (Ω)

→ +∞

Next Proposition is a slightly modified version of Proposition 2.1 from [21], where the
bifurcation is considered from zero and the function on right hand side does not depend on
∇u.

Proposition 3.1.2. Let p ≥ 2 for N > 1 or p > 1 for N = 1. We assume that λ̄ is a
bifurcation point from infinity of the problem (3.1). Moreover there is δ > 0 such that the
sequence µn from Definition 3.1.1 satisfies |λ2 − λ1| > δ > |µn − λ1| the sequence form
Definition 3.1.1. Then λ̄ is an eigenvalue of (1.5).

Proof. We perform the proof for p ≥ 2 and N > 1; the other case is analogous. Assume that
the sequence (µn, un) ∈ R×W 1,p

0 (Ω) satisfies (3.3), i.e.,

−div
(
|∇un|p−2∇un

)
= µn |un|p−2 un + g(µn;x, un,∇un), (3.4)

and µn → λ̄, ‖un‖W 1,p
0 (Ω)

→ +∞ as n→ +∞. Dividing (3.4) by ‖un‖p−1

W 1,p
0 (Ω)

and substituting

wn =
un

‖un‖W 1,p
0 (Ω)
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into (3.4) we get

−div
(
|∇wn|p−2∇wn

)
= µn |wn|p−2wn +

g(µn;x, un,∇un)

‖un‖W 1,p
0 (Ω)

.

Hence using the inverse operator Rp : Lr
′
(Ω)→W 1,p

0 (Ω) of p-Laplacian, we obtain

wn = Rp

(
µn |wn|p−2wn +

g(µn;x, un,∇un)

‖un‖W 1,p
0 (Ω)

)
.

Now we show that there is K > 0 such that for all n ∈ N holds∥∥∥∥∥µn |wn|p−2wn +
g(µn;x, un,∇un)

‖un‖W 1,p
0 (Ω)

∥∥∥∥∥
Lr′ (Ω)

≤ K. (3.5)

Recall that W 1,p
0 (Ω) ↪→ Lq(Ω) for q ∈

[
1, Np

N−p

]
with p < N and for any q ≥ 1 with N = p.

In the case p > N holds W 1,p
0 (Ω) ↪→ C

0,1−N
p (Ω̄). Thus W 1,p (Ω) ↪→ Lr (Ω) for r ∈ (p, p∗).

It is also well known that Lp (Ω) ↪→ Lq (Ω) for p > q on bounded domain Ω. With this in
hand, we claim that ‖wn‖W 1,p

0 (Ω)
= 1 implies ‖|wn|p−1‖Lr′ (Ω) < c′. Indeed from embeddings

W 1,p
0 (Ω) ↪→ Lr (Ω) we get that ‖wn‖Lr(Ω) ≤ c.

Hence

cr ≥
∫

Ω
|wn|r dx ≥

∫
Ω

(
|wn|p−1

) r
p−1 dx

and (∫
Ω

(
|wn|p−1

) r
p−1 dx

) p−1
r

≤ cr
p−1
r .

It follows that ‖|wn|p−1‖
L

r
p−1 (Ω)

≤ cp−1. Since for r ∈ (p, p∗) we have L
r
p−1 (Ω) ↪→ Lr

′
(Ω) and

there exist c′ ∈ R such that
‖|wn|p−1‖Lr′ (Ω) ≤ c

′.

Moreover the function g(µ;x, u, v) is bounded by assumption (3.2) and so inequality (3.5)
holds. It follows that there is a subsequence of wn (still denoted wn) such that wn ⇀ w
weakly in W 1,p

0 (Ω). Hence
w = Rp(λ̄|w|p−2w),

with ‖w‖
W 1,p

0 (Ω)
= 1 and so λ̄ is an eigenvalue of (1.5). �

3.2 The key estimate for the proof of an analogy of Dancer’s
Theorem

In this section our aim is to prove the key estimate, which will be used to prove an analogy
of Dancer’s Theorem (see [15], Theorem 2., p. 1071) for the equation (1.1) in one dimension
and the bifurcation from infinity. The bifurcations of the positive and negative solutions will
be studied in detail in the prepared paper [30]. The process of the proof is identical with the
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proof given in Dancer [15]. The first fundamental part is to prove that there is the jump in
the Leray-Schauder degree. This is done in del Pino-Manasevich [21]. Let us define

Tµp : W 1,p
0 (Ω)→W 1,p

0 (Ω)

such that Tµp
def
= Rp(µϕp(u)).

Proposition 3.2.1 (see [21] Proposition 2.2, p. 231). Let r > 0, p > 1, B(0, r) is the ball in
W 1,p

0 (Ω) centered at origin and µ ∈ R. Then

deg
W 1,p

0 (Ω)
(I − Tµp , B(0, r), 0) =

{
1 if µ < λ1

−1 if λ1 < µ < λ2 .

Using this proposition we can follow the proof of Dancer up to Lemma 2. The main
difficulty is to prove analogy of Lemma 3. It is the aim of this section. More precisely, we
consider the pairs (µn, un) ∈ R×W 1,p

0 (0, πp) satisfying problem (3.1) in one dimension, i.e.{
−
(
|u′n|p−2u′n

)′ − µn|un|p−2un = g (µn;x, un, u
′
n) on (0, πp)

un(0) = un(πp) = 0 ,
(3.6)

with g(µn;x, un, u
′
n) ≤ K and we show that following Theorem holds.

Theorem 3.2.2. Let (µn, un) ∈ R ×W 1,p
0 (0, πp) is sequence of solution of (3.6) such that

‖un‖W 1,p
0 (0,πp)

→ +∞. Moreover let there is δ ∈ R such that |λ2 − λ1| > δ > |µn − λ1| for all

n ∈ N. Then µn → λ1 as n → +∞ and there is n0 ∈ N such that µn does not change a sign
for all n > n0.

We state some auxiliary facts first. The weak formulation of (3.6) leads us to∫ πp

0
|u′n|p−2u′nφ

′ dx− µn
∫ πp

0
|un|p−2unφ dx =

∫ πp

0
g(µn;x, un, u

′
n)φ dx (3.7)

for all φ ∈W 1,p
0 . Choosing φ = un in (3.7) we obtain∫ πp

0
|u′n|p dx− µn

∫ πp

0
|un|p dx =

∫ πp

0
g(µn;x, un, u

′
n)un dx . (3.8)

Let us recall the variational characterization of the first eigenvalue of p-Laplacian, e.g.

λ1 = inf
w∈W 1,p

0

∫ πp
0 |w

′|p dx∫ πp
0 |w|p dx

and hence

λ1 ≤
∫ πp

0 |w
′|p dx∫ πp

0 |w|p dx
(3.9)

for all w ∈W 1,p
0 . It follows that

0 ≤
∫ πp

0
|w′|p dx− λ1

∫ πp

0
|w|p dx . (3.10)
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From (3.8) we obtain∫ πp

0
g(µn;x, un, u

′
n)un dx =

∫ πp

0
|u′n|p dx− λ1

∫ πp

0
|un|p dx+ λ1

∫ πp

0
|un|p dx− µn

∫ πp

0
|un|p dx

and using (3.10) we get∫ πp

0
|u′n|p dx− λ1

∫ πp

0
|un|p dx+ λ1

∫ πp

0
|un|p dx− µn

∫ πp

0
|un|p dx ≥ (λ1 − µn)

∫ πp

0
|un|p dx .

Hence ∫ πp
0 g(µn;x, un, u

′
n)un dx∫ πp

0 |un|p dx
≥ λ1 − µn . (3.11)

Lemma 3.2.3. Let {wn}+∞n=1 satisfies (3.8) with g(µn;x,wn, w
′
n) ∈ L∞(0, πp) for all n ∈ N.

Moreover let there is δ ∈ R such that |λ2 − λ1| > δ > |µn − λ1| for all n ∈ N. Then
‖wn‖W 1,p

0 (0,πp)
is bounded if and only if ‖wn‖Lp(0,πp) is bounded.

Proof. The fact that there exists K ≥ 0 such that ‖wn‖Lp(0,πp) ≤ K‖wn‖W 1,p
0 (0,πp)

follows

from W 1,p
0 (0, πp) ↪→ Lp(0, πp).

Conversely assume that ‖wn‖Lp(0,πp) is bounded sequence and there is a ≥ 0 such that
g(µn;x,wn, w

′
n) ≤ a by the assumption of the Thesis. Then from (3.8) it follows∫ πp

0
|w′n|p dx = µn

∫ πp

0
|wn|p dx+

∫ πp

0
g(µn;x,wn, w

′
n)wn dx ≤ µn‖wn‖pLp(0,πp)+a

∫ πp

0
|wn|dx .

Since p > 1 we obtain

µn‖wn‖pLp(0,πp) + a

∫ πp

0
|wn|dx ≤ µn‖wn‖pLp(0,πp) + a

∫ πp

0
|wn|p dx

and hence ∫ πp

0
|w′n|p dx ≤ (µn + a)‖wn‖p .

Since µn is bounded by assumption, the statement of Lemma 3.2.3 follows. �

Lemma 3.2.4. Let (µn, wn) ∈ R×W 1,p
0 (0, πp) fulfills (3.8), ‖wn‖W 1,p

0 (0,πp)
→∞ as n→ +∞,

and there is δ > 0 such that |λ2 − λ1| > δ > |µn − λ1| for all n ∈ N. Then µn → λ1.

Proof. Applying Hölder’s inequality we can rewrite (3.11) as

λ1 − µn ≤

(∫ πp
0 |g(µn, x, un, u

′
n)|p′ dx

)1/p′ (∫ πp
0 |un|

p dx
)1/p∫ πp

0 |un|p dx
=
‖g(µn, x, un, u

′
n)‖Lp′ (0,πp)

‖un‖p−1
Lp(0,πp)

.

Since L∞(0, πp) ↪→ Lp
′
(0, πp) for all p′ ∈ [1,+∞] and g(µn, x, un, u

′
n) ∈ L∞(0, πp), there is

0 < C < +∞ such that ‖g(µn, x, un, u
′
n)‖Lp′ (0,πp) ≤ C. Moreover ‖un‖Lp(0,πp) → +∞ by

Lemma 3.2.3 and hence
lim

n→+∞
(λ1 − µn) ≤ 0 .

It remains to prove that there is no λ > 0 such that µn → λ. On the contrary, suppose
that there is such λ. Hence λ is a bifurcation point from infinity by Definition 3.1.1. Since
λ1 < limn→+∞ µn < λ2−δ, we get a contradiction with Proposition 3.1.2. The same argument
follows that any subsequence of µn converge to λ1 and thus limn→+∞ µn = λ1. �
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Proof of Theorem 3.2.2. The proof is based on the following substitution

un = t−1
n (ϕ1 + v>n ), (3.12)

where tn ∈ R \ {0} and v>n ∈ W
1,p
0 (0, πp) such that scalar product (ϕ1, v

>
n )

W 1,p
0 (0,πp)

= 0. We

have also v>n → 0. Indeed, µn → λ1 by Lemma 3.2.4 and all eigenfunctions correspond-
ing to the first eigenvalue has form κϕ1 for any κ ∈ R. Therefore, the case that there
is limn→+∞ v

>
n 6= 0 contradicts that λ1 is the first eigenvalue. Hence v>n → 0 and since

‖un‖W 1,p
0 (0,πp)

→ +∞, it is obvious that tn → 0.

Substituting (3.12) into (3.11) gives

λ1 − µn ≤
∫ πp

0 g(µn, x, un, u
′
n)t−1

n (ϕ1 + v>n ) dx∫ πp
0

∣∣t−1
n (ϕ1 + v>n )

∣∣p dx
=

t−1
n

|tn|−p

∫ πp
0 g(µn, x, un, u

′
n)(ϕ1 + v>n ) dx∫ πp

0 |(ϕ1 + v>n )|p dx

and thus ∫ πp
0 g(µn, x, un, u

′
n)(ϕ1 + v>n ) dx∫ πp

0 |(ϕ1 + v>n )|p dx
≥ λ1 − µn
|tn|p−2 tn

. (3.13)

Due to the fact that v>n → 0 as n → +∞, there is n0 such that for all n > n0 holds
ϕ1 + v>n > 1

2ϕ. Furthermore in one dimension ϕ1 = sinp(x), which is positive function on the
open interval (0, πp). Consequently

ϕ1 + v>n > 0 (3.14)

for any n > n0 here.
Our goal is to show that λ1−µn does not change a sign for t→ 0+ and t→ 0−, respectively.

We give the proof only for t → 0+, because the second case is similar. In this case we are
proving λ1 − µn < 0 for all n > n0. Combining (3.13) with (3.14) we find that it is sufficient
to obtain ∫ πp

0
g(µn, x, un, u

′
n)(ϕ1 + v>n ) dx < 0 . (3.15)

For this purpose let us introduce the sequence of functions

g(µn, x, un, u
′
n)(ϕ1 + v>n )− Pm

(
t−1
n

)
ϕp−1

1 (x) , (3.16)

where

Pm(s) =


0 0 ≤ s ≤ m,
Ck
m s− Ck m < 2 < 2m,
Ck 2m ≤ s < +∞

with Ck > 0, which will be specified below. Replacing g(µn, x, un, u
′
n) in (3.15) by (3.16) we

get for fixed m ∈ N in the limit case

lim
k→+∞

sup
n≥k

∫ πp

0

[
g(µn, x, un, u

′
n)− Pm

(
t−1
n

)
ϕp−1

1

]
(ϕ1 + v>n ) dx .

By the definition of limes superior we get

lim sup
k→+∞

∫ πp

0

[
g(µn, x, un, u

′
n)− Pm

(
t−1
n

)
ϕp−1

1

]
(ϕ1 + v>n ) dx (3.17)
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and by straightforward rearrangement we obtain that (3.17) is lower or equal to

lim sup
k→+∞

∫ πp

0
g(µn, x, un, u

′
n)(ϕ1 +v>n ) dx+lim sup

k→+∞

∫ πp

0

[
−Pm

(
t−1
n

)]
(ϕp1 +ϕp−1

1 v>n ) dx . (3.18)

Since
g(µn, x, un, u

′
n) ∈ L∞(0, πp) ,

| sinp(x)| ≤ 1 ,
Pm ≤ Ck ,
v>n → 0 ,

(3.19)

these functions are measurable and there is a function f ∈ L∞(0, πp) such that

|g(µn, x, un, u
′
n)(ϕ1 + v>n )| ≤ f and |Pm

(
t−1
n

)
(ϕp1 + ϕp−1

1 v>n )| ≤ f .

and we can apply Corollary 2.1.6 we obtain that∫ πp

0
lim sup
k→+∞

g(µn, x, un, u
′
n)(ϕ1 + v>n ) dx+

∫ πp

0
lim sup
k→+∞

[
−Pm

(
t−1
n

)]
(ϕp1 + ϕp−1

1 v>n ) dx

is greater or equal to (3.18). Using (3.19) again we have∫ πp

0
lim sup
k→+∞

g(µn, x, un, u
′
n)(ϕ1 + v>n ) dx ≤ K

∫ πp

0
ϕ1 dx

and ∫ πp

0
lim sup
k→+∞

[
−Pm

(
t−1
n

)]
(ϕp1 + ϕp−1

1 v>n ) dx ≤ −Ck
∫ πp

0
ϕp1 dx .

Hence there is n1 ∈ N such that∫ πp

0

[
g(µn, x, un, u

′
n)− Pm

(
t−1
)
ϕp−1

1

]
(ϕ1 + v>n ) dx < 0 (3.20)

for

Ck ≥ K
∫ πp

0 ϕ1 dx∫ πp
0 ϕp1 dx

,

any m ∈ N, and n > n1. Since

lim
m→+∞

[
g(µn, x, un, u

′
n)− Pm

(
t−1
n

)
ϕp−1

1

]
(ϕ1 + v>n ) = g(µn, x, un, u

′
n) ,

all function are bounded by (3.19) again, and there is integrable function f(x)=max{2K, 2Ck}
such that

|g(µn, x, un, u
′
n)(ϕ1 + v>n )| ≤ f and ∀m ∈ N : |g(µn, x, un, u

′
n)−Pm

(
t−1
n

)
(ϕp1 +ϕp−1

1 v>n )| ≤ f ,

for fixed n > max{n0, n1} holds that∫ πp

0
g(µn, x, un, u

′
n)(ϕ1 + v>n ) dx = lim

m→+∞

∫ πp

0

[
g(µn, x, un, u

′
n)− Pm

(
t−1
n

)
ϕp−1

1

]
(ϕ1 + v>n ) dx

by Proposition 2.1.7 (Lebesgue Dominated Convergence Theorem). Consequently∫ πp

0
g(µn, x, un, u

′
n)(ϕ1 + v>n ) dx < 0 .

�
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Chapter 4

Differentiability of sinp

4.1 Introduction

This chapter is a short summary of results obtained jointly with my mentor P. Girg in the
paper ”Differentiability properties of p-trigonometric functions” published in the proceedings
of Variational and Topological Methods: Theory, Applications, Numerical Simulations, and
Open Problems, see [28]. The published version of the paper [28] is included in the Appendix
A1. Since the paper was a joint work, I briefly comment on my personal contribution to the
paper in Section 4.3.

The p-trigonometric functions arise from the study of the eigenvalue problem for the one-
dimensional p-Laplacian. Recently, the p-trigonometric functions have attracted attention of
many researchers; see, e.g., [8, 10, 12, 13, 22, 23, 25, 36, 38, 39, 51], and references therein.
We assume p > 1 and say, that λ ∈ R is an eigenvalue of

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0, πp) ,

u(0) = u(πp) = 0 ,
(4.1)

if there is a nonzero function u ∈W 1,p
0 (0, πp) that satisfies (4.1) in a weak sense. Here

πp = 2

∫ 1

0

1

(1− sp)1/p
ds =

2π

p sin(π/p)
. (4.2)

Let us note, that the problem can be considered on any bounded open interval, but the choice
(0, πp) simplifies the calculations. The discreetness of the spectrum of this eigenvalue problem
was established by Nečas [47]. This eigenvalue problem was later studied by the means of
the initial-value problem

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0,∞) ,

u(0) = 0, u′(0) = 1 ;
(4.3)

see Elbert [23] for initial work in this direction. Later it was independently studied by del
Pino-Elgueta-Manasevich [17], Ôtani [48] and Lindqvist [37].

Let sinp(x) denote the solution of (4.3) with λ = (p− 1). It follows from [23] that sinp(x)
is positive on (0, πp) and satisfies an identity

| sinp(x)|p + | sin′p(x)|p = 1 ∀x ∈ R , (4.4)

which for p = 2 becomes the familiar identity for sine and cosine. This suggests the definition
cosp(x) := sin′p(x) and justifies the notation sinp(x) and cosp(x). The identity (4.4) is called
p-trigonometric identity. It also follows from [23] that the eigenvalues of (4.3) form a sequence
λk = kp(p − 1), k ∈ N and corresponding eigenfunctions are functions sinp(kx), k ∈ N. Thus
all the eigenfunctions are determined by the function sinp(x). It comes as no surprise that the
properties of the function sinp(x) were studied extensively in the previous 30 years. As was
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shown in [23] that sinp(x) can be expressed on [0, πp/2] (the p-trigonometric identity (4.4)
can be thought of as the first integral of (4.3)) as the inverse of

arcsinp(x) =

∫ x

0

1

(1− sp)1/p
ds , x ∈ [0, 1] , (4.5)

which is extended to [0, πp] by reflection sinp(x) = sinp(πp − x) and to [−πp, πp] as the odd
function. Finally, it is extended to R as the 2πp-periodic function. The function arcsinp(x)
from (4.5) is extended to [−1, 1] as an odd function. Then

sinp(arcsinp(x)) = x ∀x ∈ [−1, 1] . (4.6)

Note that for p = 2, we obtain classical arcsine and sine from this definition.
In our article [28] we focus on the differentiability and analyticity properties of p-trigono-

metric functions. One can immediately see from (4.2), (4.5), and (4.6) that sinp(0) = 0 and
sinp(πp/2) = 1 for all p > 1. From (4.4) and the definition of cosp(x), we obtain cosp(0) = 1
and cosp(πp/2) = 0. It follows from the results in [23, 38, 48] that the possible differentiability
issues are located at x = 0 and x = πp/2. There are several results concerning differentiability
and asymptotic behaviour of sinp(x) at x = 0 and x = πp/2 in Manásevich-Takáč [44] and
Benedikt-Girg-Takáč [6]. In Peetre [51], generalized formal Maclaurin series for sinp(x)
were studied and their convergence was conjectured on (−πp/2, πp/2). The local convergence of
the generalized Taylor series (and/or the generalized Maclaurin series) for sinp(x) follows from
Paredes-Uchiyama [50]. Taking into account that the point x = 0 is often considered as the
center for the Taylor (i.e. the Maclaurin) series or the generalized Taylor (i.e. the generalized
Maclaurin) series for sinp(x), we decided to provide a detailed study of the convergence of
these series towards sinp(x) on (−πp/2, πp/2). We were also motivated by work of Ôtani [49],
where he studies properties of the solutions of

(|u′|p−2u′)′ + |u|q−2u = 0 in (a, b) ,

u(a) = u(b) = 0 ,
(4.7)

for general exponents p, q ∈ (1,+∞) with p 6= q. Among other properties he proved that for
p = 2m+2

2m+1 ,m ∈ {0} ∪N and for q even, any solution of (4.7) belongs to C∞(a, b). In our case,
p = q we find that sinp(x) belongs to C∞(−πp/2, πp/2) if and only if p is even. Let us also
remark that local analytic solutions of the radial variant of (4.7) were studied in Bognár [9].

Our main result provides convergence of these partial sums. We treat two cases sepa-
rately, p > 2 is an even integer and p > 2 is an odd integer. Namely, for the particular case
sin2(m+1)(x), m ∈ N, x ∈ (−πp/2, πp/2), we show that the Maclaurin series converges towards
the values sin2(m+1)(x) on the interval (−πp/2, πp/2). Conversely, we show that the Maclaurin
series converge towards sin2m+1(x), m ∈ N, for x ∈ (0, πp/2) and does not for x ∈ (−πp/2, 0).
More precisely, the Maclaurin series converges on x ∈ (−πp/2, πp/2), but not towards values
of sin2m+1(x), m ∈ N for x ∈ (−πp/2, 0).

4.2 Main Results of [28]

Our main results concern derivatives of sinp(x) for p ∈ N, p > 2 on the interval x ∈
(−πp/2, πp/2). We distinguish two cases p is even, i.e., p = 2(m + 1) and m ∈ N, and p
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is not an even integer, i.e., p = R \ {2m} and m ∈ N. In the first case p = 2(m + 1), the
p-trigonometric identity (4.4) takes form

(sin2(m+1)(x))2(m+1) + (cos2(m+1)(x))
2(m+1) = 1 , (4.8)

which is valid for any x ∈ R and hence on (−πp/2, πp/2). Note that there is no absolute value,
since there are even powers.

In the second case assume p = 2k+ 1 for clarity. We have to distinguish two subcases. For
0 < x <

πp
2 , the p-trigonometric identity takes form

(sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (4.9)

On the other hand, for −πp/2 < x < 0, the p-trigonometric identity takes form

−(sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (4.10)

Since there is only one identity (4.8) for p = 2(m + 1), this case has nice smoothness
properties on (−πp/2, πp/2) and we obtain a rather surprising result concerning smoothness
of function sinp(x) for even p.

Theorem 4.2.1 (see [28], Thm. 3.1, p. 105). Let p = 2(m+ 1), m ∈ N. Then

sin2(m+1)(x) ∈ C∞
(
−
π2(m+1)

2
,
π2(m+1)

2

)
.

Conversely, for p = 2m + 1, we have to distinguish two subcases (4.9) and (4.10), which
has damaging effect on the differentiability of sinp(x). Thus the smoothness is lost when p is
odd. The smoothness is also lost if p is not an integer.

Theorem 4.2.2 (see [28], Thm. 3.2, p. 105). Let p ∈ R \ {2m}, m ∈ N, p > 1. Then

sinp(x) ∈ Cdpe(−πp/2, πp/2) ,

but
sinp(x) 6∈ Cdpe+1(−πp/2, πp/2) .

Here dpe := min{k ∈ N : k ≥ p}.
Our last result gives an explicit radius of convergence of the Maclaurin series for even

p > 2. To the best of our knowledge, all previous results concerning convergence of series for
sinp(x) were only local; see, e.g., [50].

Theorem 4.2.3 (see [28], Thm. 3.3, p. 106). Let p = 2(m+1) for m ∈ N. Then the Maclaurin
series of sin2(m+1)(x) converges on (−π2(m+1)

2 ,
π2(m+1)

2 ).

Theorem 4.2.4 (see [28], Thm. 3.4, p. 106). Let p = 2m + 1, m ∈ N. Then the formal
Maclaurin series of sin2m+1(x) converges on (−π2m+1

2 , π2m+1

2 ). Moreover, the formal Maclaurin
series of sinp(x) converges towards sin2m+1(x) on [0, π2m+1

2 ), but does not converge towards
sin2m+1(x) on (−π2m+1

2 , 0).

The convergence of Maclaurin series for p even/odd is illustrated on Figures 5–8 in [28],
p. 123–124.
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4.3 My contribution to [28]

Due to the purpose of this thesis I would like to devote this paragraph to specifying of my
contribution to [28]. Let me note that all my ideas were formalized and improved during
discussion with my mentor P. Girg. My Bachelor Thesis [34], where I proved Lemma 4.3.2,
was a starting point for this research. Lemma 4.3.2 yields following formula

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) (4.11)

on
(
0,

πp
2

)
. Here sin

(n)
p (x) denotes the n-th derivative of the function sinp(x). Formula (4.11)

is essential for the proofs of Theorems 4.2.1 and 4.2.2 which were the final results of my
Bachelor Thesis [34]. During the work on [28] I proved Lemmas 4.3.3 and 4.3.4. Lemma 4.3.4

states that sin
(n)
p ≤ 0 for p ≥ 3 be an integer and n ≥ 2. It was used by P. Girg in a proof

of Theorems 4.2.3 and 4.2.4. Since the proof of Lemma 4.3.4 was very technical, it is not
included in this thesis and the reader is invited to read it in Appendix A1.

In the sequel of the Section 4.3 the Lemmas, which was mentioned above, are stated
for convenience of the reader as well as and some definitions from [28]. Following ‘symbolic’
operators (rewriting rules) are defined on expressions of the form

a · sinqp(x) · cos1−q
p (x) with a, q ∈ R (4.12)

as follows

Ds a · sinqp(x) · cos1−q
p (x)

def
=

{
a · q · sinq−1

p (x) · cos
1−(q−1)
p (x) q 6= 0 ,

0 q = 0 .
(4.13)

Dc a · sinqp(x) · cos1−q
p (x)

def
=

{
−a · (1− q) · sinq+p−1

p (x) · cos
1−(q+p−1)
p (x) q 6= 1 ,

0 q = 1 .
(4.14)

Let us observe that the results of application Ds and Dc have the form (4.12). Hence they are
also in the domain of definition of Ds and Dc. Thus we can consider compositions of Dc and
Ds of arbitrary length. The first derivative of sinqp(x) · cos1−q

p (x) (here a = 1) can be written
using these symbolic operators as follows (see [28] for details)

d

dx
sinqp(x) · cos1−q

p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

In fact, there are three cases q ∈ R \ {0, 1}, q = 1, and q = 0.
Case q ∈ R \ {0, 1}. Here

d

dx
sinqp(x) · cos1−q

p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

Note that the distance between the exponents of sinp(x) in the resulting terms, i.e., sinq0−1
p (x)·

cos2−q0
p (x) and sinq0+p−1

p · cos2−p−q0
p (x), is exactly p. This is the fundamental fact of the proof

of Lemma 4.3.2 below because in a sum of the type

c0 sinq0p (x) · cos1−q0
p (x) + c1 sinq0+p

p (x) · cos1−(q0+p)
p (x)
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the terms combine together as in the diagram depicted on Figure 4.1
Case q = 1. In this case the term sinqp(x) · cos1−q

p (x) = sinp(x) and hence the derivative
of this term is the single term cosp(x) = Ds sinp(x) + Dc sinp(x). The fact Dc sinp(x) = 0
(by Definition (4.14)) will be reflected in our diagrams by omitting the ‘right-down’ edge
departing from this node, see Figure 4.2.
Case q = 0. This case corresponds to sinqp(x) ·cos1−q

p (x) = cosp(x). Thus the derivative of this

term is the single term − sinp−1
p (x) cos

1−(p−1)
p (x) = Ds cosp(x) + Dc cosp(x) by the Definitions

(4.13) and (4.14) of Ds and Dc, respectively. The fact Ds cosp(x) = 0 will be reflected in our
diagrams by omitting ‘left-down’ edge departing from this node, see Figure 4.3. Note that since

in our diagrams we write powers only, the node corresponding to − sinp−1
p (x) cos

1−(p−1)
p (x) is

labeled by sp−1
p c

1−(p−1)
p .

+p

DS

-1

DC

+p-1

DS

-1

DC

+p-1

+p +p

cp
1-q0 sp

q0 cp
1-Hq0+pL sp

q0+p

cp
1-Hq0-1L sp

q0-1 cp
1-Hq0+p-1L sp

q0+p-1 cp
1-Hq0+2 p-1L sp

q0+2 p-1

q � q0
q � q0 + p

Figure 4.1: Rewriting diagram of the first derivative of c0 sinq0p (x) · cos1−q0
p (x)+c1 sinq0+p

p (x) ·
cos

1−(q0+p)
p (x). For the lack of space, we do not write the coefficients standing in front of these

terms and use abbreviations, i.e., we write sqp instead of sinqp(x) and c1−q
p instead of cos1−q

p (x).

+p

DS

-1

DS

-1

DC

+p-1

+p +p

sp cp
1-H1+pL sp

1+p

cp cp
1-H1+p-1L sp

1+p-1 cp
1-H1+2 p-1L sp

1+2 p-1

q � 1 q � 1+ p

Figure 4.2: Rewriting diagram of the case q = 1. Recall that we write sqp instead of sinqp(x)

and c1−q
p instead of cos1−q

p (x) and do not write the coefficients.

The higher order derivatives are obtained in the same way, thus, e.g., the second derivative
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+p

DC

+p-1

DS

-1

DC

+p-1

+p

cp cp
1-p sp

p

sp
p-1 cp

1-Hp-1L cp
1-H2 p-1L sp

2 p-1

q � 0
q � p

Figure 4.3: Rewriting diagram of the case q = 0. Recall that we write sqp instead of sinqp(x)

and c1−q
p instead of cos1−q

p (x) and do not write the coefficients.

of sinqp(x) · cos1−q
p (x) (here a = 1) can be written as

d2

dx2
sinqp(x) · cos1−q

p (x)

= (Ds ◦Ds) sinqp(x) · cos1−q
p (x) + (Dc ◦Ds) sinqp(x) · cos1−q

p (x)

+ (Ds ◦Dc) sinqp(x) · cos1−q
p (x) + (Dc ◦Dc) sinqp(x) · cos1−q

p (x).

Let us recall the sum (4.11). The k-th term of this sum for n-th derivative can be derived
using composition of the symbolic operators Ds and Dc, which acts on the sin′′p(x). Before
we introduce the composition of the operators Ds and Dc, let us recall some notation from
formal languages.

Definition 4.3.1. (Salomaa-Soittola [52, I.2, p. 4,], and/or Manna [42, p. 2–3, p. 47, p.
78]) An alphabet (denoted by V ) is a finite nonempty set of letters. A word (denoted by w)
over an alphabet V is a finite string of zero or more letters from the alphabet V . The word
consisting of zero letters is called the empty word. The set of all words over an alphabet V
is denoted by V ∗ and the set of all nonempty words over an alphabet V is denoted by V +.
For strings w1 and w2 over V , their juxtaposition w1w2 is called catenation of w1 and w2, in
operator notation cat : V ∗ × V ∗ → V ∗ and cat(w1, w2) = w1w2. We also define the length of
the word w, in operator notation len : V ∗ → {0} ∪ N, which for a given word w yields the
number of letters in w when each letter is counted as many times as it occurs in w. We also
use the reverse function rev : V ∗ → V ∗ which reverses the order of the letters in any word w
(see [42, p. 47, p. 78]).

For our purposes here, we consider the alphabet V = {0, 1} and the set of all nonempty
words V +. Thus words in V + are, e.g.,

“0”, “1”, “01”, “10”, “11” . . . .

For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” ,

len(“010011000”) = 9 .
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Let n ∈ N, k ∈ {0} ∪ N, 0 ≤ k ≤ 2n−2 − 1 and (k)2,n−2 be the string of bits of the
length n − 2 which represents a binary expansion of k (it means, e.g., for k = 3 and n = 5,
(3)2,5−2 = “011”). Now we are ready to define Dk,n in two steps as follows.

Step 1 We create an ordered n − 2-tuple dk,n−2 ∈ {Ds,Dc}n−2 (cartesian product of sets
{Ds,Dc} of length n−2) from rev((k)2,n−2) such that for 1 ≤ i ≤ n−2, dk,n−2 contains
Ds on the i-th position if rev((k)2,n−2) contains “0” on the i-th position, and dk,n con-
tains Dc on the i-th position if rev((k)2,n−2) contains “1” on the i-th position (it means,
e.g., for k = 3, and n = 5, we obtain d3,5−2 = (Dc,Dc,Ds)).

Step 2 We define Dk,n as the composition of operators Ds,Dc in the order they appear in
the ordered n-tuple dk,n−2 (it means, e.g., for k = 3, and n = 5, we obtain D3,5 =
(Dc ◦Dc ◦Ds)).

With this notation in the hand, we can state chain of Lemmas 4.3.2 – 4.3.4.

Lemma 4.3.2 (see [28], Lemma 4.5, p. 110). Let p ∈ R, p > 1, n ∈ N. Then sin
(n)
p (x) exists

on (0, πp/2) and it is continuous. Moreover,

for n = 1 : sin′p(x) = cosp(x) , (4.15)

for n = 2 : sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) , (4.16)

and for n = 3, 4, 5, . . . , k = 0, 1, 2, 3, . . . , 2n−2 − 1 there exists ak,n ∈ R, lk,n,mk,n ∈ Z such
that

Dk,n sin′′p(x) = ak,n · sin
p·lk,n+mk,n
p (x) · cos

1−p·lk,n−mk,n
p (x) , (4.17)

and

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sin
p·lk,n+mk,n
p (x) · cos

1−p·lk,n−mk,n
p (x) . (4.18)

Moreover, let j(k) ∈ {0}∪N be the digit sum of the binary expansion of k = 0, 1, 2, . . . , 2n−2−1
(thus j(k) is the number of occurrences of Dc in Dk,n) and let Dk,n sin′′p(x) 6≡ 0. Then, for
k = 0, 1, 2, . . . , 2n−2 − 1, the exponents

qk,n := p · lk,n +mk,n (4.19)

satisfy
qk,n = j(k)(p− 1) + (n− 2− j(k))(−1) + p− 1 . (4.20)

Lemma 4.3.3 (see [28], Lemma 4.6, p. 113). Let p ∈ N, p > 1, and for all n ∈ N, n ≥ 2

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n sin
qk,n
p (x) · cos

1−qk,n
p (x) . (4.21)

Then for all n ∈ N, n ≥ 2, and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1

qk,n ∈ {0} ∪ N . (4.22)

Lemma 4.3.4 (see [28], Lemma 4.7, p. 114). Let p ∈ N, p ≥ 3. Then for all n ∈ N, n ≥ 2

sin(n)
p (x) ≤ 0 on (0,

πp
2

) .
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Chapter 5

Generalization of sinp in complex do-
main

5.1 Introduction

This chapter is a short summary of results obtained jointly with my mentor P. Girg in a
paper ”Generalized trigonometric functions in complex domain” accepted in Mathematica
Bohemica, special issue dedicated to Equadiff 13, see [29]. Please find this paper included in
Appendix A2. Since the paper was written in cooperation, I briefly comment my contribution
to the paper in Section 5.3.

The paper [29] extends the results of [28] to complex domain. The research on [29] was
stimulated by an interesting question of O. Došý, which was posed during my talk at an
international conference “Nonlinear Analysis Plzeň 2013”. Recall the most surprising result
of [28], i.e. sinp(x) is a real analytic function on (−πp/2, πp/2) for p = 4, 6, 8 . . . . In other
words, sinp(x) equals to its Maclaurin on (−πp/2, πp/2) for p = 4, 6, 8 . . . . This approach
naturally allows to extend sinp(x) for p = 4, 6, 8 . . . to an open disk

{z ∈ C : |z| < πp/2}

in the complex domain using power series (cf. [38], where the convergence of the series is
conjectured without proof). O. Došlý in his question inquired whether this extension satisfies
(4.3) in the sense of differential equations in complex domain. The paper [29] addresses his
question. For p being an even integer the initial value problem (4.3) in R is equivalent to − (u′)p−2 u′′ − up−1 = 0 ,

u(0) = 0 ,
u′(0) = 1 .

(5.1)

Note that for p > 1 real not being an even positive integer, we cannot get rid off the absolute
values in (4.3). Thus the equation (4.3) does not make sense for general p > 1 in the com-
plex domain. In this paper we consider the (5.1) in complex domain for integer p > 2. The
complex valued ordinary differential equations are studied by means of power series (mostly

by Maclaurin series). Note that, by Theorem 4.2.2 (i.e. [28, Theorem 3.2 on p. 5]), sin
(n)
p (0)

exists for 1 < n ≤ p, but sin
(n)
p (0) does not exist when p ≥ 3 is odd integer and n > p. Thus,

by the formal Maclaurin series of sinp(x), we mean a series calculated from the limits of the

derivatives limx→0+ sin
(n)
p (x), which were shown to exist in [28] for any n ∈ N and p ≥ 3 odd

integer.
In Chapter 5, the independent variable z stands for a complex number and the independent

variable x stands for a real variable. In the same spirit, sinp(z) stands for a complex valued
function and sinp(x) stands for a function of one real variable.
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5.2 Main results of [29]

In this section we summarize all main results of the paper [29] regardless of my contribution,
which will be specified in Section 5.3.

Let Msinp(x) denotes formal Maclaurin series of sinp(x) for p ≥ 3 being an integer. It is
proved in [28] that

Msinp(x) =

+∞∑
k=0

αkx
kp+1 , (5.2)

where α0 > 0 and αk ≤ 0 (all other coefficients are zero). The first result of [29] answers the
question by O. Došlý affirmatively.

Theorem 5.2.1 (see [29], Theorem 2.1, p. 4). Let p = 4, 6, 8, . . . , then the unique solution of
the initial value problem (5.1) on |z| < πp/2 is the Maclaurin series (5.2).

Lindqvist [38] suggested alternative definition of sinp(z) in complex domain as the solu-
tion of the equation equivalent to

d

dz

(
w′
)p−1

+ (p− 1)wp−1 = 0 , w(0) = 0 , w′(0) = 1 . (5.3)

This definition works formally for p > 1. Lindquist also warned that sinp(z) defined in this
way in complex domain may be different from sinp(x) on R (see [29, Section 3, p. 6] for more
details). The following Theorem 5.2.2 confirms the legitimacy of the warning.

Theorem 5.2.2 (see [29], Theorem 3.1, p. 7). Let p = 3, 5, 7 . . . . Then the unique solution
u(z) of the complex initial value problem (5.1) differs from the solution sinp(x) of the Cauchy
problem (4.3) for z = x ∈ (−πp/2, 0).

The next result describes an interesting relationship between real and imaginary part of
sinp(z) for p = 4, 8, 12, . . . .

Theorem 5.2.3 (see [29], Theorem 4.1, p. 7). Let p = 4, 8, 12, . . . . Then

<[sinp(z)] = =[sinp(i · z)]

for all z ∈ C : |z| < πp/2.

However, there is no such relationship for p = 2, 6, 10, 14 . . . . Note, that this case includes
the classical sine function.

Theorem 5.2.4 (see [29], Theorem 4.2, p. 8). Let p = 2, 6, 10, 14 . . . . Then for all ϕ ∈ [0, 2π)
there exists z ∈ C : |z| < πp/2 such that

<[sinp(z)] 6= =[sinp(e
iϕ · z)] .

5.3 My contribution to [29]

This section is devoted to specifying of my contribution to [29]. This paper was mainly created
during numerous and intensive discussions among the both authors. Hence it is very difficult
to clearly separate my contribution. As was mentioned earlier, the paper [29] was motivated
by the question of O. Došlý (see Section 5.1) which was answered in Theorem 5.2.1. The
proof of Theorem 5.2.1 followed my ideas however the final version of the proof was joint
work. The proof contained the following auxiliary Lemma 5.3.1.
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Lemma 5.3.1 (see [29], Lemma 2.1, p. 5). There is δ > 0 such that in U0
def
= {z ∈ C : |z| < δ}

the initial value problem (5.1) has the unique solution u(z) which is an analytic function in
U0.

The result of Section 3 (Theorem 5.2.2) followed the same ideas as the proof of Theorem
5.2.1 and this theorem was proved during the discussion. Theorem 5.2.3 and Theorem 5.2.4
were based on the observations of P. Girg (see Figure 1 in [29], p. 12–13) and the proofs were
created together. Conversely, Sections 5 and 6 were worked by P. Girg. Section 5 contains
an interesting link between p-trigonometric identity (4.4) and complex analysis. Section 6 is
devoted to the visualization of sinp(z).
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[7] Benedikt, J.; Girg, P.; Takáč, P.: Perturbation of the image-Laplacian by vanishing non-
linearities (in one dimension) Nonlinear Anal., T.M.A., 75 (2012) pp. 3691–3703
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[31] Girg, P.; Takáč, P.: Bifurcations of Positive and Negative Continua in Quasilinear Elliptic
Eigenvalue Problems. Ann. Henri Poincaré 9 (2008), pp. 275–327.
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[48] Ôtani, M.: A Remark on Certain Elliptic Equations. Proc. Fac. Sci. Tokai Univ. 19
(1984), pp. 23–28.
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DIFFERENTIABILITY PROPERTIES OF p-TRIGONOMETRIC
FUNCTIONS

PETR GIRG, LUKÁŠ KOTRLA

Abstract. p-trigonometric functions are generalizations of the trigonometric
functions. They appear in context of nonlinear differential equations and also

in analytical geometry of the p-circle in the plain. The most important p-

trigonometric function is sinp(x). For p > 1, this function is defined as the
unique solution of the initial-value problem

(|u′(x)|p−2u′(x))′ = (p− 1)|u(x)|p−2u(x), u(0) = 0, u′(0) = 1 ,

for any x ∈ R. We prove that the n-th derivative of sinp(x) can be expressed

in the form
2n−2−1X

k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) ,

on (0, πp/2), where πp =
R 1
0 (1− sp)−1/pds, and cosp(x) = sin′p(x). Using this

formula, we proved the order of differentiability of the function sinp(x). The
most surprising (least expected) result is that sinp(x) ∈ C∞(−πp/2, πp/2) if

p is an even integer. This result was essentially used in the proof of theorem,

which says that the Maclaurin series of sinp(x) converges on (−πp/2, πp/2) if
p is an even integer. This completes previous results that were known e.g. by

Lindqvist and Peetre where this convergence was conjectured.

1. Introduction

In the previous two decades, p-trigonometric functions have attracted attention
of many researchers; see, e.g., [1, 5, 6, 7, 10, 11, 12, 13, 15, 16, 25], and references
therein. The p-trigonometric functions arise from the study of the eigenvalue prob-
lem for the one-dimensional p-Laplacian. We assume p > 1 and say, that λ ∈ R is
an eigenvalue of

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0, πp) ,

u(0) = u(πp) = 0 ,
(1.1)

if there is a nonzero function u ∈ W 1,p(0, πp) that satisfy (1.1) in a weak sense.
Here

πp = 2
∫ 1

0

1

(1− sp)1/p
ds =

2π
p sin(π/p)

. (1.2)
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Let us note, that the problem can be considered on any bounded open interval, but
the choice (0, πp) significantly simplifies the calculations. The discreetness of the
spectrum of this eigenvalue problem was established already by Nečas [21]. This
eigenvalue problem was later studied by means of the initial-value problem

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0,∞) ,

u(0) = 0, u′(0) = 1 ;
(1.3)

see Elbert [11] for initial work in this direction. Later it was independently studied
by del Pino-Elgueta-Manasevich [8], Ôtani [22] and Lindqvist [14].

Let sinp(x) denote the solution of (1.3) with λ = (p − 1). It follows from [11]
that sinp(x) is positive on (0, πp) and satisfies an identity

| sinp(x)|p + | sin′p(x)|p = 1 ∀x ∈ R , (1.4)

which for p = 2 becomes the familiar identity for sine and cosine. This suggest the
definition cosp(x) := sin′p(x) and justifies the notation sinp(x) and cosp(x). The
identity (1.4) is called p-trigonometric identity. It also follows from [11] that the
eigenvalues of (1.3) form a sequence λk = kp(p−1), k ∈ N and corresponding eigen-
functions are functions sinp(kx), k ∈ N. Thus all the eigenfunctions are determined
by the function sinp(x). It comes as no surprise that the properties of the function
sinp(x) were studied extensively in the previous 30 years. It was shown in [11]
that sinp(x) can be expressed on [0, πp/2] (the p-trigonometric identity (1.4) can
be thought of as the first integral of (1.3)) as the inverse of

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds , x ∈ [0, 1] , (1.5)

which is extended to [0, πp] by reflection sinp(x) = sinp(πp − x) and to [−πp, πp] as
the odd function. Finally, it is extended to R as the 2πp-periodic function. The
function arcsinp(x) from (1.5) is extended to [−1, 1] as an odd function. Then

sinp(arcsinp(x)) = x ∀x ∈ [−1, 1] . (1.6)

Note that for p = 2, we obtain classical arcsine and sine from this definition.
The (now familiar) notation sinp appears in [8] for the first time, where the authors
studied homotopic deformation along p to calculate the degree of trivial solutions of
(1.1) in order to establish existence results for the nonlinear problem (|u′|p−2u′)′+
f(t, u) = 0, u(0) = u(T ) = 0, p > 1, T > 0. The homotopy result from [8] initiated
development of bifurcation theory for quasilinear bifurcations.

As a historical remark, let us mention that generalizations of arcsine similar
to (1.5) were studied in a very different context by Lundberg [17] in 1879. It is
interesting to mention that the p-trigonometric functions satisfy certain relations
to geometrical objects such as arclength and area of a circle in a noneuclidean
metric; see Elbert [11], and Lindqvist [15]. The p-trigonometric functions also pos-
sesses some approximation properties in certain function spaces; see, e.g., Binding-
Boulton-Čepička-Drábek-Girg [1], Lang-Edmunds [13] for theoretical research, and
Boulton-Lord [6] for a very interesting computational application in evolutionary
PDEs. In Wood [27], the particular case p = 4 was studied and “p-polar” coordi-
nates in the xy-plane were proposed.

In this article we focus on the differentiability and analyticity properties of p-
trigonometric functions. One can immediately see from (1.2), (1.5), and (1.6) that
sinp(0) = 0 and sinp(πp/2) = 1 for all p > 1. From (1.4) and the definition of
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cosp(x), we obtain cosp(0) = 1 and cosp(πp/2) = 0. It follows from the results in [11,
15, 22] that the possible differentiability issues are located at x = 0 and x = πp/2.
There are several results concerning differentiability and asymptotic behaviour of
sinp(x) at x = 0 and x = πp/2 in Manásevich-Takáč [19] and Benedikt-Girg-Takáč
[2]. In Peetre [25], generalized formal Maclaurin series for sinp(x) were studied
and their convergence was conjectured on (−πp/2, πp/2). The local convergence of
the generalized Taylor series (and/or the generalized Maclaurin series) for sinp(x)
follows from Paredes-Uchiyama [24]. Taking into account that the point x = 0
is often considered as the center for the Taylor (i.e. the Maclaurin) series or the
generalized Taylor (i.e. the generalized Maclaurin) series for sinp(x), we decided
to provide detailed study of the convergence of these series towards sinp(x) on
(−πp/2, πp/2). We were also motivated by work of Ôtani [23], where he studies
properties of the solutions of

(|u′|p−2u′)′ + |u|q−2u = 0 in (a, b) ,

u(a) = u(b) = 0 ,
(1.7)

for general exponents p, q ∈ (1,+∞) with p 6= q. Among other properties he proved
that for p = 2m+2

2m+1 ,m ∈ {0} ∪ N and for q even, any solution of (1.7) belongs to
C∞(a, b). In our case, p = q we find that sinp(x) belongs to C∞(−πp/2, πp/2) if
and only if p is even. Let us also remark that local analytic solutions of the radial
variant of (1.7) were studied in Bognár [4].

Though we are aware that our methods are elementary mathematics, we are
sure that our results will help to better understand the behavior of sinp(x) and its
derivatives in the vicinity of 0. This behavior is crucial in establishing asymptotic
estimates such as those in the proof of the Fredholm alternative for the p-Laplacian
in the degenerate case Benedikt-Girg-Takáč [2, 3]. Moreover, knowledge of the
convergence/nonconvergence of the Taylor and/or the Maclaurin series is very im-
portant in the development of numerical methods for calculating approximations
of function values of p-trigonometric functions. Recently, Marichev [20] from the
Wolfram Research, Inc., pointed out to the first author of this paper in a personal
communication that Mathematica from version 8.0 has a capability to effectively
compute coefficients for sinp(x) for formal generalized Maclaurin power series by
means of the Bell Polynomials. With few lines of Mathematica code one can obtain
partial sums of generalized Maclaurin series for sinp(x) of large order in a couple of
minutes. Thus the question of the convergence of the partial sums of the Maclaurin
series is becoming quite urgent. This was our main motivation to address this topic.

Our main result provides convergence of these partial sums. We treat two cases
separately, p > 2 is an even integer and p > 2 is an odd integer. Namely, for the par-
ticular case sin2(m+1)(x), m ∈ N, x ∈ (−πp/2, πp/2), we show that the Maclaurin se-
ries converges towards the values sin2(m+1)(x) on the interval (−πp/2, πp/2). On the
other hand, we show that the Maclaurin series converge towards sin2m+1(x), m ∈ N,
for x ∈ (0, πp/2) and does not for x ∈ (−πp/2, 0). More precisely, the Maclaurin
series converges on x ∈ (−πp/2, πp/2), but not towards values of sin2m+1(x), m ∈ N
for x ∈ (−πp/2, 0).

The article is organized as follows. In Section 2, we give a definition of the
function sinp(x) by means of a differential equation and also introduce other useful
notation. In Section 3, we state and discuss our main results concerning differentia-
bility and/or non-differentiability of sinp(x) and convergence of Maclaurin series of
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sinp(x). In Section 4, we express higher derivatives of sinp(x) by means of powers of
sinp(x) and cosp(x). Finally, in Section 5, we prove our main results using formulas
for higher derivatives of sinp(x) from Section 4. In Section 6, we conclude with
remarks and open problems.

2. Definitions of p-trigonometric functions

Proposition 2.1. The initial-value problem

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0

u(0) = 0, u′(0) = 1 ,
(2.1)

has the unique local solution and moreover any local solution to (2.1) can be con-
tinued to (−∞,+∞).

For uniqueness of the solution see [8, Sect. 3], and for the existence of global
solutions see [9, Lemma A.1].

Definition 2.2. The function sinp(x) is defined as the unique solution of the initial-
value problem (2.1) on R.

For any q > 1 and z ∈ R we define

ϕq(z) =

{
|z|q−2z forz 6= 0 ,
0 for z = 0 .

(2.2)

Note that ϕp′(ϕp(z)) = ϕp(ϕp′(z)) = z provided p > 1 and 1/p + 1/p′ = 1. With
this notation, we can rewrite the initial-value problem (2.1) as an equivalent first-
order system

u′(x) = ϕp′(v(x)) ,

v′(x) = −(p− 1)ϕp(u(x)) ,

u(0) = 0, v(0) = 1 .

(2.3)

Clearly, from the definition of Carathéodory solution, it follows that u(x) = sinp(x)
and v(x) = ϕp(sin′p(x)) must be absolutely continuous on any compact interval
[−K,K], K > 0. Thus sin′p(x) = ϕp′(v(x)) is continuous on any [−K,K], K > 0,
which entails that sin′p(x) = ϕp′(v(x)) is continuous on (−∞,+∞). Thus the
following definition makes sense.

Definition 2.3. For x ∈ R, we define cosp(x) = sin′p(x).

Since cosp(0) = sin′p(0) = 1 and cosp(x) is continuous, there exists an interval
(−c, c) such that cosp(x) > 0 on (−c, c), c > 0. Moreover, since sin′p(0) = 1 and
sinp ∈ C1(R), there exists an interval [0, s), s > 0, such that sinp(x) ≥ 0 on [0, s).

Definition 2.4. For p > 1, let πp denote

2 sup{s > 0 : ∀x ∈ (0, s) holds sinp(x) > 0 ∧ cosp(x) > 0} .

It was shown in [11], that

πp = 2
∫ 1

0

1

(1− xp)1/p
dx =

2π
p · sin(π/p)

,
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for p > 1. It was also shown in [11], that sinp(x) can be expressed on [0, πp/2] as
the inverse of

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds x ∈ [0, 1] , (2.4)

and, moreover, it extends to [0, πp] by reflection sinp(x) = sinp(πp − x) and to
[−πp, πp] as the odd function. Finally, it extends to R as the 2πp-periodic function.

Remark 2.5. In the following text, formulas containing higher order derivatives
and powers of sinp(x) and cosp(x) appear. We try to keep our notation as close
as possible to the usual notation for classical trigonometric functions. Thus the
derivatives are denoted by, e.g., sin′p(x), . . . , sin′′′p (x), sin(iv)

p (x) (primes and roman
numerals) and/or, e.g., sin(n)

p (x), sin(2n−1)
p and sin(2n)

p for n ∈ N. On the other
hand, the powers are denoted by sin2

p(x), sin3
p(x), sinqp(x), q ∈ R. Where a confusion

may happen, we denote the powers by, e.g., (sinp(x))m, m ∈ N, to distinguish them
clearly from derivatives. For the convenience of the reader, we write the values of
p as explicit as possible, with a few exceptions such as in the proofs of Theorems
3.3 and 3.4, where this approach would produce very lengthy formulas.

3. Main results

In the sequel, we study derivatives of sinp(x) for p ∈ N, p > 2 on the interval
x ∈ (−πp/2, πp/2). We distinguish two cases p is even, i.e., p = 2(m + 1) and
m ∈ N, and p is odd; i.e., p = 2m + 1 and m ∈ N. In the first case p = 2(m + 1),
the p-trigonometric identity (1.4) takes form

(sin2(m+1)(x))2(m+1) + (cos2(m+1)(x))2(m+1) = 1 , (3.1)

which is valid for any x ∈ R and hence on (−πp/2, πp/2). Note that there is no
absolute value, since there are even powers.

In the second case p = 2k+ 1, we have to distinguish two subcases. For 0 < x <
πp
2 , the p-trigonometric identity takes form

(sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (3.2)

On the other hand, for −πp/2 < x < 0, the p-trigonometric identity takes form

− (sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (3.3)

Since there is only one identity (3.1) for p = 2(m+1), this case has nice smooth-
ness properties on (−πp/2, πp/2) and we obtain a rather surprising result concerning
smoothness of function sinp(x) for even p.

Theorem 3.1. Let p = 2(m+ 1), m ∈ N. Then

sin2(m+1)(x) ∈ C∞
(
−
π2(m+1)

2
,
π2(m+1)

2
)
.

On the other hand, for p = 2m + 1, we have to distinguish two subcases (3.2)
and (3.3), which has damaging effect on the differentiability of sinp(x). Thus the
smoothness is lost when p is odd. The smoothness is also lost if p is not an integer.

Theorem 3.2. Let p ∈ R \ {2m}, m ∈ N, p > 1. Then

sinp(x) ∈ Cdpe(−πp/2, πp/2) ,

but
sinp(x) 6∈ Cdpe+1(−πp/2, πp/2) .
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Here dpe := min{k ∈ N : k ≥ p}.
Our last result gives an explicit radius of convergence of the Maclaurin series

for even p > 2. To the best of our knowledge, all previous results concerning
convergence of series for sinp(x) were only local; see, e.g., [24].

Theorem 3.3. Let p = 2(m + 1) for m ∈ N. Then the Maclaurin series of
sin2(m+1)(x) converges on (−π2(m+1)

2 ,
π2(m+1)

2 ).

Theorem 3.4. Let p = 2m + 1, m ∈ N. Then the formal Maclaurin series of
sin2m+1(x) converges on (−π2m+1

2 , π2m+1
2 ). Moreover, the formal Maclaurin series

of sinp(x) converges towards sin2m+1(x) on [0, π2m+1
2 ), but does not converge towards

sin2m+1(x) on (−π2m+1
2 , 0).

The proofs of Theorems 3.1–3.4 are postponed to Section 5.

4. Derivatives of sinp(x)

The following lemma summarizes basic properties of sinp(x) and cosp(x).

Lemma 4.1. Let p ∈ R, p > 1. Functions sinp(x) and cosp(x) have the following
basic properties.

(1) sinp(x) > 0 on (0, πp), sinp(0) = 0, sinp(x) = sinp(πp − x) for x ∈ (πp2 , πp),
and sinp(x) = − sinp(−x) on (−πp, 0). The function sinp(x) extends to R
as 2πp-periodic function.

(2) sinp(x) is strictly increasing on (−πp/2, πp/2).
(3) cosp(x) > 0 on (−πp/2, πp/2), cosp(−πp2 ) = cosp(

πp
2 ) = 0 and cosp(x) < 0

on
[
−πp,−πp2 ) ∪ (πp2 , πp

]
.

(4) For all n ∈ N, if sin(2n−1)
p (x) exists on (−πp/2, πp/2), then it is even func-

tion on (−πp/2, πp/2).
(5) For all n ∈ N, if sin(2n)

p (x) exists on (−πp/2, πp/2), then it is odd function
on (−πp/2, πp/2).

Statements 1–3 follows from [11]. Statements 4, and 5 are trivial consequence of
statement 1.

Lemma 4.2. For all p ∈ R, p > 1

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) for x ∈ (0, πp/2) , (4.1)

sin′′p(x) = sinp−1
p (−x) · cos2−p

p (x) for x ∈ (−πp/2, 0) . (4.2)

Proof. The identity (4.1) is obtained by a straightforward calculation; see, e.g., [13].
For x ∈ (−πp/2, 0), we obtain from Lemma 4.1 statement 1 and 3 and the identity
(1.4)

sinpp(−x)+cospp(x) = |−sinp(−x)|p+| cosp(x)|p = | sinp(x)|p+| cosp(x)|p = 1. (4.3)

Taking
sinpp(−x) + cospp(x) = 1 (4.4)

into derivative we obtain

− p · sinp−1
p (−x) · cosp(−x) + p · cosp−1

p (x) · sin′′p(x) = 0 . (4.5)

From Lemma 4.1, statements 3 and 4, we obtain

sinp−1
p (−x) · cosp(x) = cosp−1

p (x) · sin′′p(x)
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which yields
sin′′p(x) = sinp−1

p (−x) · cos2−p
p (x) .

�

Lemma 4.3. Let p ∈ R \ {2} such that p > 1.
(1) If p > 2, then the function sinp(x) ∈ C1(R) and sinp(x) 6∈ C2(R).
(2) If p ∈ (1, 2), then the function sinp(x) ∈ C2(R) and sinp(x) 6∈ C3(R).

Proof. By the definition of cosp(x), sin′p(x) = cosp(x). The function cosp(x) ∈
C(R), for all p > 1. Thus sinp(x) ∈ C1(R). By Lemma 4.2,

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) for x ∈ (0, πp/2) .

Taking into account that

lim
x→πp

2 −
sinp−1

p (x) = 1 and lim
x→πp

2 −
cos2−p

p (x) = +∞ for p > 2 ,

we find that
lim

x→πp
2 −

sin′′p(x) = −∞ .

Thus the continuity of sin′′p(x) fails at x = πp/2 for p > 2 and the statement 1 of
Lemma 4.3 follows.

From (2.3), we find that the function v′(x) = −(p−1)ϕp(sinp(x)) is continuous on
R as sinp(x) is continuous on R. We also find that cosp(x) = ϕp′(v(x)) from (2.3).
Taking into account that ϕp′ ∈ C1(R) for p ∈ (1, 2) (observe that p′ = p

p−1 > 2
in this case), we infer that cos′p(x) = ϕ′p′(v(x)) · v′(x) is continuous on R. Thus
sinp(x) is two times continuously differentiable on R for p ∈ (1, 2). On the other
hand, taking

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) on (0,
πp
2

)

into derivative, we obtain

sin′′′p (x) = −(p− 1) sinp−2
p (x) · cos3−p

p (x)− (2− p) · sinp−1
p (x) · cos1−p

p (x) · sin′′p(x) .

Substituting for sin′′p(x) from the later equation into the former, we have

sin′′′p (x) = −(p− 1) sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) .

Since limx→0+ sinp(x) = 0 and limx→0+ cosp(x) = 1, we obtain

lim
x→0+

sin′′′p (x) = −∞

for p ∈ (1, 2). This concludes the proof of statement 2 of Lemma 4.3. �

Let us define the following ‘symbolic’ operators (rewriting rules) defined on ex-
pressions of the form

a · sinqp(x) · cos1−q
p (x) with a, q ∈ R (4.6)

as follows

Ds a · sinqp(x) · cos1−q
p (x) :=

{
a · q · sinq−1

p (x) · cos1−(q−1)
p (x) q 6= 0 ,

0 q = 0 .
(4.7)

Dc a · sinqp(x) · cos1−q
p (x) :=

{
−a · (1− q) · sinq+p−1

p (x) · cos1−(q+p−1)
p (x) q 6= 1 ,

0 q = 1 .
(4.8)
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Let us observe that the results of application Ds and Dc have the form (4.6).
Hence they are also in the domain of definition of Ds and Dc. Thus we can consider
compositions of Dc and Ds of arbitrary length. We will show that the first derivative
of sinqp(x) · cos1−q

p (x) (here a = 1) can be written using these symbolic operators as
follows

d
dx

sinqp(x) · cos1−q
p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

To show this, we have to distinguish three cases q ∈ R \ {0, 1}, q = 1, and q = 0.
Case q ∈ R \ {0, 1}. Here

d
dx

sinqp(x) · cos1−q
p (x)

= q sinq−1
p (x) · cos1−(q−1)

p (x)− (1− q) sinq+p−1
p (x) · cos1−(q+p−1)

p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

Note that the distance between the exponents of sinp(x) in the resulting terms, i.e.,
sinq0−1

p (x) · cos2−q0
p (x) and sinq0+p−1

p · cos2−p−q0
p (x), is exactly p. This is crucial in

the sequel of the paper, because in a sum of the type

c0 sinq0p (x) · cos1−q0
p (x) + c1 sinq0+p

p (x) · cos1−(q0+p)
p (x)

the terms combine together as in the diagram depicted on Fig. 1
Case q = 1. In this case the term sinqp(x) ·cos1−q

p (x) = sinp(x). Thus the derivative
of this term is the single term cosp(x). By the definitions of Ds,Dc, we find that
Ds sinp(x) = cosp(x) and Dc sinp(x) = 0. Thus d

dx sinp(x) = Ds sinp(x)+Dc sinp(x).
The fact Dc sinp(x) = 0 will be reflected in our diagrams by omitting ‘right-down’
edge departing from this node, see Figure 2.
Case q = 0. This case corresponds to sinqp(x) · cos1−q

p (x) = cosp(x). Thus the de-

rivative of this term is the single term − sinp−1
p (x) cos1−(p−1)

p (x). By the definitions
of Ds,Dc, we find that Ds cosp(x) = 0 and

Dc cosp(x) = − sinp−1
p (x) cos1−(p−1)

p (x) .

Thus d
dx cosp(x) = Ds cosp(x)+Dc cosp(x). The fact Ds cosp(x) = 0 will be reflected

in our diagrams by omitting ‘left-down’ edge departing from this node, see Figure
3. Note that since in our diagrams we write powers only, the node corresponding
to − sinp−1

p (x) cos1−(p−1)
p (x) is labeled by sp−1

p c
1−(p−1)
p .

In the same way, we can express higher order derivatives, thus, e.g., the second
derivative of sinqp(x) · cos1−q

p (x) (here a = 1) can be written as

d2

dx2
sinqp(x) · cos1−q

p (x)

= (Ds ◦Ds) sinqp(x) · cos1−q
p (x) + (Dc ◦Ds) sinqp(x) · cos1−q

p (x)

+ (Ds ◦Dc) sinqp(x) · cos1−q
p (x) + (Dc ◦Dc) sinqp(x) · cos1−q

p (x).

To better understand our methods of proof, it is good to have in mind the diagrams
Figures 1–3.

The way how the term in the n-th derivative on the k-th position was derived
from sin′′p(x) can be recovered from n and k as follows. First let us recall some
notation from formal languages.
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+p

DS

-1

DC

+p-1

DS

-1

DC

+p-1

+p +p

cp
1-q0 sp

q0 cp
1-Hq0+pL sp

q0+p

cp
1-Hq0-1L sp

q0-1 cp
1-Hq0+p-1L sp

q0+p-1 cp
1-Hq0+2 p-1L sp

q0+2 p-1

q � q0
q � q0 + p

Figure 1. Rewriting diagram of the first derivative of c0 sinq0p (x) ·
cos1−q0

p (x) + c1 sinq0+p
p (x) · cos1−(q0+p)

p (x). For the lack of space,
we do not write the coefficients standing in front of these terms and
use short-cuts, i.e., we write sqp instead of sinqp(x) and c1−qp instead
of cos1−q

p (x)

+p

DS

-1

DS

-1

DC

+p-1

+p +p

sp cp
1-H1+pL sp

1+p

cp cp
1-H1+p-1L sp

1+p-1 cp
1-H1+2 p-1L sp

1+2 p-1

q � 1 q � 1+ p

Figure 2. Rewriting diagram of the case q = 1. Recall that we
write sqp instead of sinqp(x) and c1−qp instead of cos1−q

p (x) and do
not write the coefficients

+p

DC

+p-1

DS

-1

DC

+p-1

+p

cp cp
1-p sp

p

sp
p-1 cp

1-Hp-1L cp
1-H2 p-1L sp

2 p-1

q � 0
q � p

Figure 3. Rewriting diagram of the case q = 0. Recall that we
write sqp instead of sinqp(x) and c1−qp instead of cos1−q

p (x) and do
not write the coefficients

Definition 4.4. (Salomaa-Soittola [26, I.2, p. 4,], and/or Manna [18, p. 2–3, p.
47, p. 78]) An alphabet (denoted by V ) is a finite nonempty set of letters. A word
(denoted by w) over an alphabet V is a finite string of zero or more letters from
the alphabet V . The word consisting of zero letters is called the empty word. The
set of all words over an alphabet V is denoted by V ∗ and the set of all nonempty
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words over an alphabet V is denoted by V +. For strings w1 and w2 over V ,
their juxtaposition w1w2 is called catenation of w1 and w2, in operator notation
cat : V ∗ × V ∗ → V ∗ and cat(w1, w2) = w1w2. We also define the length of the
word w, in operator notation len : V ∗ → {0} ∪ N, which for a given word w yields
the number of letters in w when each letter is counted as many times as it occurs
in w. We also use reverse function rev : V ∗ → V ∗ which reverses the order of the
letters in any word w (see [18, p. 47, p. 78]).

For our purposes here, we consider the alphabet V = {0, 1} and the set of all
nonempty words V +. Thus words in V + are, e.g.,

“0”, “1”, “01”, “10”, “11” . . . .

For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” ,

len(“010011000”) = 9 .

Let n ∈ N, k ∈ {0}∪N, 0 ≤ k ≤ 2n−2−1 and (k)2,n−2 be the string of bits of the
length n− 2 which represents binary expansion of k (it means, e.g., for k = 3 and
n = 5, (3)2,5−2 = “011”). Now we are ready to define Dk,n in two steps as follows.
Step 1 We create an ordered n−2-tuple dk,n−2 ∈ {Ds,Dc}n−2 (cartesian product of

sets {Ds,Dc} of length n−2) from rev((k)2,n−2) such that for 1 ≤ i ≤ n−2,
dk,n−2 contains Ds on the i-th position if rev((k)2,n−2) contains “0” on the
i-th position, and dk,n contains Dc on the i-th position if rev((k)2,n−2)
contains “1” on the i-th position (it means, e.g., for k = 3, and n = 5, we
obtain d3,5−2 = (Dc,Dc,Ds)).

Step 2 We define Dk,n as the composition of operators Ds,Dc in the order they
appear in the ordered n-tuple dk,n−2 (it means, e.g., for k = 3, and n = 5,
we obtain D3,5 = (Dc ◦Dc ◦Ds)).

The following Lemma implies that

sin(n)
p (x) =

2n−2−1∑
k=0

Dk,n sin′′p(x) (4.9)

for all x ∈ (0, πp/2).

Lemma 4.5. Let p ∈ R, p > 1, n ∈ N. Then sin(n)
p (x) exists on (0, πp/2) and it is

continuous. Moreover,

for n = 1 : sin′p(x) = cosp(x) , (4.10)

for n = 2 : sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) , (4.11)

and for n = 3, 4, 5, . . . , k = 0, 1, 2, 3, . . . , 2n−2−1 there exists ak,n ∈ R, lk,n,mk,n ∈
Z such that

Dk,n sin′′p(x) = ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) , (4.12)

and

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) . (4.13)
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Moreover, let j(k) ∈ {0} ∪ N be the digit sum of the binary expansion of k =
0, 1, 2, . . . , 2n−2 − 1 (thus j(k) is the number of occurrences of Dc in Dk,n) and let
Dk,n sin′′p(x) 6≡ 0. Then, for k = 0, 1, 2, . . . , 2n−2 − 1, the exponents

qk,n := p · lk,n +mk,n (4.14)

satisfy
qk,n = j(k)(p− 1) + (n− 2− j(k))(−1) + p− 1 . (4.15)

Proof. The cases n = 1 and n = 2 follows immediately from the definition of cosp(x)
and from Lemma 4.2.

We proceed by induction to prove the validity of the statement for n = 3, 4, 5, . . . .
Step 1. Taking (4.11) into derivative, we obtain

sin′′′p (x) = −(p− 1) · sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) .

For k = 0, 1 we obtain a0,3 = −(p− 1), a1,3 = (2− p), l0,3 = 1, l1,3 = 2 m0,3 = −2,
and m1,3 = −2. Hence

sin′′′p (x) =
1∑
k=0

ak,3 · sinp·lk,3+mk,3
p (x) · cos1−p·lk,3−mk,3

p (x) .

Since we assume p > 1 we obtain p − 1 6= 0 and thus by the definition of Ds and
Dk,n

D0,3 sin′′p(x) = Ds(− sinp−1
p (x) · cos2−p

p (x))

= −(p− 1) · sinp−2
p (x) · cos3−p

p (x)

= a0,3 · sinp·l0,3+m0,3
p (x) · cos1−p·l0,3−m0,3

p (x).

Analogously, by the definition of Dc and Dk,n for p 6= 2, we find

D1,3 sin′′p(x) = Dc(− sinp−1
p (x) · cos2−p

p (x))

= −(−1) · (2− p) · sin2p−2
p (x) · cos3−2p

p (x)

= a1,3 · sinp·l1,3+m1,3
p (x) · cos1−p·l1,3−m1,3

p (x) ,

and for p = 2, we obtain

D1,3 sin′′p(x) = Dc(− sin2(x) · cos0
2(x)) = 0 .

Hence,

sin′′′p (x) = Ds sin′′p(x) + Dc sin′′p(x)

= D0,3 sin′′p(x) + D1,3 sin′′p(x)

=
1∑
k=0

Dk,3 sin′′p(x) .

Step 2. Let us assume that sin(n)
p (x) exists, it is continuous on (0, πp/2), and for

all k = 0, 1, 2, . . . , 2n−2 − 1 there exist ak,n ∈ R, lk,n,mk,n ∈ Z such that

Dk,n sin(n)
p (x) = ak,n · sinp·lk,n+mk,n

p (x) · cos1−p·lk,n−mk,n
p (x) , (4.16)

and

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) . (4.17)
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By the additivity rule of the derivative, we find that

sin(n+1)
p (x) =

d
dx

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x)

=
2n−2−1∑
k=0

d
dx

(ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x)) .

(4.18)

For all k = 0, 1, 2, . . . , 2n−2 − 1, we find
d

dx
(ak,n · sinp·lk,n+mk,n

p (x) · cos1−p·lk,n−mk,n
p (x))

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

+ ak,n(1− p · lk,n −mk,n) · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n−1

p (x) sin′′p(x)

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

− ak,n(1− p · lk,n −mk,n) · sinp·(lk,n+1)+mk,n−1
p (x) · cos1−(p·(lk,n+1)+mk,n−1)

p (x).
(4.19)

For k = 0, 1, 2, . . . , 2n−2 − 1, we denote

a2k,n+1 := ak,n · (p · lk,n +mk,n) , (4.20)

a2k+1,n+1 := −ak,n · (1− p · lk,n −mk,n) , (4.21)

l2k,n+1 := lk,n , (4.22)

m2k,n+1 := mk,n − 1 , (4.23)

l2k+1,n+1 := lk,n + 1 , (4.24)

m2k+1,n+1 := mk,n − 1 . (4.25)

Hence from (4.18), (4.19), and (4.20)–(4.25) we obtain

sin(n+1)
p (x) =

2n−1−1∑
k′=0

ak′,n+1 · sin
p·lk′,n+1+mk′,n+1
p (x) · cos

1−p·lk′,n+1−mk′,n+1
p (x).

(4.26)
Note that sinp(x) > 0 and cosp(x) > 0 for x ∈ (0, πp/2) by Lemma 4.1, statements
1 and 3, and continuous by Lemma 4.3. Moreover, the function z 7→ zq, defined for
z > 0 and q ∈ R belongs to C∞(0,+∞). Thus the function on the right-hand side
of (4.26) is continuous for x ∈ (0, πp/2) which implies the continuity of sin(n+1)

p (x)
for x ∈ (0, πp/2).

Now, we show that for all k′ = 0, 1, 2, . . . , 2n−2−1: ak′,n+1 ∈ R, lk′,n+1,mk′,n+1 ∈
Z and, moreover,

Dk′,n+1 sin(n)
p (x) = ak′,n+1 · sin

p·lk′,n+1+mk′,n+1
p (x) · cos

1−p·lk′,n+1−mk′,n+1
p (x) .

(4.27)
Let us set

D2k,n+1 := Ds ◦Dk,n , (4.28)

D2k+1,n+1 := Dc ◦Dk,n . (4.29)

Then it follows easily from corresponding binary expansion of k and 2k that

(2k)2,n−1 = cat((k)2,n−2, “0”),
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(2k + 1)2,n−1 = cat((k)2,n−2, “1”)

and also that (4.28), (4.29) cover all 2n−1 of k′ = 0, 1, . . . 2n−1 − 1. Thus our
definitions (4.28) and (4.29) conform the relation between binary expansion of k′ =
2k and/or k′ = 2k + 1 and order of compositions of Ds,Dc in Dk′,n+1.

For k′ = 0, 2, 4, . . . , 2n−1 − 2 even,

Dk′,n+1 sin′′p(x) = D2k,n+1 sin′′p(x) = Ds ◦Dk,n sin′′p(x) . (4.30)

From the induction assumption (4.16), the definition of Ds (4.7) and (4.20), (4.22),
(4.23), we find

Ds(Dk,n sin′′p(x))

= Ds(ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x))

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

= a2k,n+1 · sinp·l2k,n+1+m2k,n+1
p (x) · cos1−p·l2k,n+1−m2k,n+1

p (x).

We can treat k′ = 1, 3, 5, . . . , 2n−1 − 1 in the same way using Dc instead of Ds and
(4.8) and (4.21), (4.24), (4.25). This concludes the proof by induction.

It remains to show (4.15). In fact, from the definition (4.8) of Dc, each occurrence
of the symbolic operator Dc in Dk,n increases the exponent q of sinqp(x) by p − 1.
Analogously, from the definition of (4.7) of Ds, each occurrence of the symbolic
operator Ds in Dk,n decreases the exponent q of sinqp(x) by 1. Taking into account
these facts and also that q1,2 = p − 1, the formula (4.15) follows. This concludes
the proof of Lemma 4.5. �

Lemma 4.6. Let p ∈ N, p > 1, and for all n ∈ N, n ≥ 2

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n sinqk,np (x) · cos1−qk,n
p (x) . (4.31)

Then for all n ∈ N, n ≥ 2, and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1

qk,n ∈ {0} ∪ N . (4.32)

Proof. From the definitions (4.7) and (4.8),

q2k,n+1 = qk,n − 1 (we applied DS on the expression)

q2k+1,n+1 = qk,n + p− 1 (we applied DC on the expression)
(4.33)

The proof proceeds by induction in n.
Step 1. From Lemma 4.2, for sin′′p(x) on (0, πp/2) we obtain the formula

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) .

Thus q1,2 = p− 1. By assumption p ∈ N, p > 1 we find q1,2 ∈ N.
Step 2. We distinguish two cases, qk,n ∈ N and qk,n = 0. Let qk,n ∈ N. Then from
(4.33), p ∈ N, p > 1, we obtain

q2k,n+1 = qk,n − 1 ∈ {0} ∪ N,
q2k+1,n+1 = qk,n + p− 1 ∈ N,

which satisfies (4.32). Let qk,n = 0. Then the corresponding term in (4.31) has
form

ak,n · cosp(x) , (4.34)
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since sin0
p(x) ≡ 1 for x ∈ (0, πp/2). Taking (4.34) into derivative, we find

ak,n · cos′p(x) = −ak,n · sinp−1
p (x) · cos2−p

p (x)

and q2k+1,n+1 = p − 1 ∈ N, because p ∈ N, p > 1. This concludes the proof by
induction. �

Lemma 4.7. Let p ∈ N, p ≥ 3. Then for all n ∈ N, n ≥ 2

sin(n)
p (x) ≤ 0 on (0,

πp
2

) .

Proof. By Lemma 4.5 and substitution (4.14), we have

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) . (4.35)

Let Qn denote the set of all values of qk,n attained in the previous expression (this
is to handle possible multiplicities), i.e.,

Qn = {qk,n : k = 0, . . . , 2n−2 − 1} . (4.36)

By Lemma 4.6 for all n ≥ 2 and for all k ≤ 2n−2 − 1, we have qk,n ∈ {0} ∪ N.
Clearly, Qn ⊂ {0}∪N has at most 2n−2 elements and thus there exists i0 ∈ N : 0 <
i0 ≤ 2n−2 − 1 and bijective mapping

qn : {0, 1, 2, . . . i0} = Qn (4.37)

satisfying the order condition

∀i, j = 0, 1, . . . , i0 : i < j ⇒ qi < qj . (4.38)

In the sequel, qi,n stands for qn(i). With this at hand, we add together the co-
efficients in (4.35) corresponding to the same value of powers qk,n and for any
i = 0, 1, . . . , i0 define

ci,n :=
∑

k=0,1,...2n−2−1
qk,n=qi,n

ak,n . (4.39)

Now, we rewrite (4.35) using coefficients ci,n:

sin(n)
p (x) =

i0∑
i=0

ci,n · sin
qi,n
p (x) · cos

1−qi,n
p (x) . (4.40)

Later, we will prove by induction that

∀i = 0, 1, . . . , i0 : ci,n ≤ 0 . (4.41)

By Lemma 4.1 statements 1 and 3, sinp(x) > 0 and cosp(x) > 0 on (0, πp2 ), which
implies that for all q, r ∈ {0} ∪ N and x ∈ (0, πp/2)

sinqp(x) · cosrp(x) > 0 . (4.42)

Thus from (4.40)–(4.42) the statement of Lemma 4.7 follows.
Now it remains to prove by induction in n that (4.41) holds.

Step 1. By Lemma 4.2 we find that

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) (4.43)

for all x ∈ (0, πp/2) and so c0,2 = −1 < 0.
Taking the derivative of (4.43) (and after some straightforward rearrangements),

sin′′′p (x) = −(p− 1) · sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) (4.44)
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for x ∈ (0, πp/2). Since p ≥ 3, we have c0,3 = −(p − 1) ≤ −2 ≤ 0 and c1,3 =
(2− p) ≤ −1 ≤ 0 as desired. Taking the derivative (4.44),

sin(iv)
p = −(p− 1) · (p− 2) · sinp−3

p (x) · cos4−p
p (x)+

+ (p− 1) · (3− p) · sin2p−3
p (x) · cos4−2p

p (x)

+ (2− p) · (2p− 2) · sin2p−3
p (x) · cos4−2p

p (x)

− (2− p) · (3− 2p) · sin3p−3
p (x) · cos4−3p

p (x)

= −(p− 1) · (p− 2) · sinp−3
p (x) · cos4−p

p (x)

+ ((p− 1) · (3− p) + (2− p) · (2p− 2)) · sin2p−3
p (x) · cos4−2p

p (x)

− (2− p) · (3− 2p) · sin3p−3
p (x) · cos4−3p

p (x)

(4.45)

for all x ∈ (0, πp/2). Since p ≥ 3 we have c0,4 = −(p − 1) · (p − 2) ≤ −2 ≤ 0,
c1,4 = (p−1)·(3−p)+(2−p)·(2p−2) ≤ −4 ≤ 0, and c2,4 = −(2−p)·(3−2p) ≤ −3 ≤ 0
Step 2. Let us assume that sin(n)

p (x) for n ≥ 4 can be written in the form (4.40)
and

∀i ≤ i0 : ci,n ≤ 0 . (4.46)
The proof falls naturally into two parts.
Case 1. If

qi,n ≥ 1 , (4.47)
then taking the i-th term of (4.40), which is

ci,n · sin
qi,n
p (x) · cos

1−qi,n
p (x) , (4.48)

into derivative we obtain

ci,n · qi,n · sin
qi,n−1
p (x) · cos

1−qi,n+1
p (x)

+ ci,n · (1− qi,n) · sinqi,np (x) · cos
1−qi,n−1
p (x) · sin′′p(x) .

Substituting (4.43) for sin′′p(x) into the previous expression, we obtain

ci,n · qi,n · sin
qi,n−1
p (x) · cos

2−qi,n
p (x)

− ci,n · (1− qi,n) · sinqi,n+p−1
p (x) · cos

−qi,n−p+2
p (x) .

Let us denote

a′2i−1,n+1 := ci,n · qi,n ,
a′2i,n+1 := ci,n · (qi,n − 1) .

By the induction assumption (4.46) and assumption of Case 1 (4.47), we have
a′2i−1,n+1, a

′
2i,n+1 ≤ 0.

Case 2. If qi,n = 0, then i = 0 (by the ordering) and the corresponding term of
(4.40) is

c0,n · sin0
p(x) · cos1

p(x). (4.49)
Taking derivatives in (4.49) we find

− c0,n · sinp−1
p (x) · cos2−p

p (x) . (4.50)

Denote a′1,n+1 := −c0,n which is clearly nonnegative by the induction assumption
(4.46). We consider the second term of (4.40) (i = 1) and take the derivative,

d
dx
c1,n · sin

q1,n
p (x) · cos

1−q1,n
p (x)
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= Ds c1,n · sin
q1,n
p (x) · cos

1−q1,n
p (x) + Dc c1,n · sin

q1,n
p (x) · cos

1−q1,n
p (x) .

Since q0,n = 0, q1,n = p (see Figure 4). Note that the right-hand side of

Ds c1,n sinpp(x) · cos1−p
p (x) = p · c1,n · sinp−1

p (x) · cos2−p
p (x) (4.51)

has the same exponent q = p−1 as (4.50) has. It remains to prove that p·c1,n−c0,n ≤
0. Using (n− 2)-th derivative of sinp(x) we obtain (4.50),

(Dc ◦Ds ◦Ds)c0,n−2 · sin2
p(x) cos−1

p (x) = (Dc ◦Ds)2 · c0,n−2 · sinp(x)

= Dc 2 · c0,n−2 · cosp(x)

= −2 · c0,n−2 · sinp−1
p (x) cos2−p

p (x)

(4.52)

and (4.51),
(Ds ◦Ds ◦Dc)c0,n−2 · sin2

p(x) cos−1
p (x)

= (Ds ◦Ds)c0,n−2 · sin1+p
p (x) cos−pp (x)

= Ds(1 + p) · c0,n−2 · sinpp(x) · cos1−p
p (x)

= p · (1 + p) · c0,n−2 · sinp−1
p (x) · cos2−p

p (x) .

(4.53)

Comparing (4.52) with (4.50), we find that

−c0,n = −2 · c0,n−2 .

In addition, comparing (4.51) and (4.53), we find

p · c1,n = p · (p+ 1) · c0,n−2 .

From the induction assumption, c0,n−2 ≤ 0 and for p ≥ 3, we easily find

p · c1,n − c0,n = (p · (p+ 1)− 2)c0,n−2 ≤ 0

by adding the previous two identities.
In the definition (4.39) of ci,n, we are adding coefficients

a′k,n , k = 0, 1, . . . , 2(i0 + 1)

corresponding to the same value of exponent q. From the both cases, we obtain
ci,n+1 ≤ 0 for all i ∈ N, i ≤ i1, 0 < i1 ≤ 2n−1 − 1. This concludes the proof by
induction. �
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q0,n-1 � 1+ 0 p q1,n-1 � 1+ 1 p

q1,n-2 � 2+ 1 p

q2,n-1 � 1+ 2 p

q2,n-2 � 2+ 2 p

q3,n-1 � 1+ 3 p

q0,n � 0+ 0 p q1,n � 0+ 1 p q2,n � 0+ 2 p q3,n � 0+ 3 p q4,n � 0+ 4 p

Not Defined q1,n+1 � -1+ 1 p q2,n+1 � -1+ 2 p q3,n+1 � -1+ 3 p q4,n+1 � -1+ 4 p q5,n+1 � -1+ 5 p

Figure 4. Rewriting diagram - starting with q0,n−2, q1,n−2, q2,n−2
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5. Proofs of main results

Proof of Theorem 3.1. By Lemma 4.5 and substitution (4.14), we can write

sin(n)
2(m+1)(x) =

2n−2−1∑
k=0

ak,n · sin
qk,n
2(m+1)(x) · cos1−qk,n

2(m+1)(x) ,

where
qk,n = (2(m+ 1)− 1) · j(k) + (n− j(k)− 2) + 2(m+ 1)− 1 ,

and j(k) has the same meaning as in Lemma 4.5. Thus ak,n ∈ Z.
From Lemma 4.1, statement 4 and 5, we also know that sin(n)

2(m+1)(x) is even

function for n odd and sin(n)
2(m+1)(x) is odd function for n even. It follows that for

x ∈ (−π2(m+1)

2 , 0)

sin(n)
2(m+1)(x) =

{
− sin(n)

2(m+1)(−x) for n even ,

sin(n)
2(m+1)(−x) for n odd .

(5.1)

Now we assume p = 2(m+ 1), m ∈ N, and

qk,n = (2(m+ 1)− 1)j(k) + (n− j(k)− 2) + 2(m+ 1)− 1

= (2(m+ 1)− 1)(j(k) + 1) + j(k) + 2− n
= 2(m+ 1)(j(k) + 1)− n+ 1

which implies qk,n is odd for n even. Thus we obtain

− sin(n)
2(m+1)(−x) = −

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(−x) · cos1−qk,n
2(m+1)(−x)

=
2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) .

(5.2)

Analogously, qk,n is even for n odd and

sin(n)
2(m+1)(−x) =

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(−x) · cos1−qk,n
2(m+1)(−x)

=
2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) .

(5.3)

Hence from (5.2), (5.3), we obtain

sin(n)
2(m+1)(x) =

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) (5.4)

for all x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) \ {0}.
Now, we prove the continuity of sin(n)

2(m+1)(x) for all x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) by
induction in n.
Step 1. For x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) the function

v(x) = ϕ2(m+1)(cos2(m+1)(x)) > 0
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and so we can take the first equation in (2.3) into its derivative and obtain

u′′(x) = ϕ′p′(v(x))v′(x) , where p′ =
2m+ 1

2m
.

Since v′ is continuous and ϕp′ ∈ C1(0,+∞) (ϕp′(z) = zp−1 for z > 0), we obtain
continuity of sin(n)

2(m+1)(x) for n = 2.

Step 2. Let us assume that sin(n)
2(m+1)(x) is continuous on (−π2(m+1)

2 ,
π2(m+1)

2 ).

From Lemma 4.5 we know that sin(n+1)
2(m+1)(x) is continuous on (0, π2(m+1)

2 ). Now

we distinguish two cases: n + 1 is odd then sin(n+1)
2(m+1)(x) is even by Lemma 4.1,

statement 4, and n+1 is even then sin(n+1)
2(m+1)(x) is odd by Lemma 4.1, statement 5.

In both cases, sin(n+1)
2(m+1)(x) ∈ C(0, π2(m+1)

2 ) implies sin(n+1)
2(m+1)(x) ∈ C(−π2(m+1)

2 , 0).
It remains to prove the continuity at x = 0. From (5.4) we know that

lim
x→0−

sin(n+1)
2(m+1)(x) = lim

x→0+
sin(n+1)

2(m+1)(x) . (5.5)

At the end we compute the derivative of sin(n)
2(m+1)(0) from its definition:

sin(n+1)
2(m+1)(0) = lim

h→0

sin(n)
2(m+1)(h)− sin(n)

2(m+1)(0)

h
.

It is a limit of the type “0/0”. Since the limit limh→0 sin(n+1)
2(m+1)(h) exists, we obtain

sin(n+1)
2(m+1)(0) = limh→0 sin(n+1)

2(m+1)(h) by L’Hôspital’s rule. Note that by Lemma 4.6,
qk,n ≥ 0 for all n ∈ N, n ≥ 2, and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1, these limits are
finite and we obtain continuity. This proves the continuity of sin(n+1)

2(m+1)(x) for all
x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ). �

Proof of Theorem 3.2. By Lemma 4.5 and substitution (4.14), we have

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) on (0,

πp
2

) .

Moreover, by Lemma 4.1, statement 4 and 5, we obtain

sin(n)
p (x) =

{
− sin(n)

p (−x) for n even ,
sin(n)

p (−x) for n odd ,
(5.6)

for x ∈ (−πp/2, 0). Since sin(n)
p (x) is continuous for x ∈ (0, πp/2), it is also contin-

uous on x ∈ (−πp/2, 0) by (5.6). Thanks to (5.6) it is enough to study the behavior
of sinp(x) in the right neighborhood of 0. From Lemma 4.5, we have that

qk,n = j(k) · (p− 1) + (−1) · (n− 2− j) + p− 1 = p · (j(k) + 1) + 1− n . (5.7)

for all n ∈ N, n ≥ 2 and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1. Since j(k) ∈ {0} ∪ N we
find that

qk,n ≥ p+ 1− n .
Then, for n < p + 1, we have qk,n > 0 for all k ∈ {0} ∪ N, k ≤ 2n−2 − 1. And so
using the theorem of the algebra of the limits from any classical analysis textbook,
we find that

lim
x→0+

sin(n)
p (x) = 0 .
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From (5.6),

lim
x→0−

sin(n)
p (x) =

{
− limx→0+ sin(n)

p (x) = 0 for n even ,
limx→0+ sin(n)

p (x) = 0 for n odd .

The continuity at x = 0 follows from L’Hôspital’s rule used recurrently from n = 2
to n = dpe.

By Lemma 4.5, sin(2m+2)
2(m+1)(x) satisfies

sin(dpe+1)
p (x) =

2dpe−1−1∑
k=0

Dk,dpe+1 sin′′p(x) on (0,
πp
2

) .

Since qk,n > 0 for all n < dpe and all k ∈ {0} ∪ N, k < 2dpe − 1, the function
DS ak,n · sinqk,np (x) · cos1−qk,n

p (x) does not vanish identically. Thus a0,dpe+1 6= 0.
Since a0,dpe+1 6= 0, we can apply (5.7) for j(0) = 0 which gives

q0,dpe+1 = p− dpe ≤ 0 .

From the fact that j(k) > j(0) for all k ∈ {0} ∪ N, k ≤ 2dpe−1 − 1 and from (5.7)
we know that

qk,dpe+1 > q0,dpe+1 .

Moreover from (5.7),

qk,dpe+1 = (j(k) + 1) · p+ 1− (dpe+ 1) = (j(k) + 1) · p− dpe > 0

for j(k) ≥ 1 and p > 1. Since, for all qk,n > 0,

lim
x→0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) = 0 ,

we obtain
lim
x→0+

sin(dpe+1)
p (x) = lim

x→0+
a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe

p (x)

+
2dpe−1−1∑
k=1

ak,dpe+1 · sin
qk,dpe+1
p (x) · cos1−qk,dpe+1

p (x)

= lim
x→0+

a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe
p (x)

(5.8)

by the theorem of the algebra of the limits.
Now the proof falls into two cases, p = 2m+ 1 and p ∈ R \ N, p > 1.

Case 1. For p = 2m+ 1, we have by (5.8)

lim
x→0+

sin(2m+2)
2m+1 (x) = lim

x→0+
a0,2m+2 · cosp(x) = a0,2m+2 6= 0 .

Since 2m+2 is even, sin(2m+2)
2m+1 (x) is odd function by Lemma 4.1, statement 5. Thus

lim
x→0−

sin(2m+2)
2m+1 (x) = −a0,2m+2 .

Hence sin(2m+2)
2m+1 (x) is not continuous at x = 0.

Case 2. Since for p ∈ R \ N, p > 1, we have

lim
x→0+

sin(dpe+1)
p (x) = lim

x→0+
a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe

p (x) = +∞

from (5.8). Hence sindpe+1
p (x) is discontinuous at x = 0. This concludes the proof.

�
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Proof of Theorem 3.3. It follows from [24, Thm. 1.1, consider p = q and σ = 0]
that there exists a unique analytic function F (z) near origin such that the unique
solution u(x) = sinp(x) of the initial value problem (2.1); i.e.,

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0

u(0) = 0, u′(0) = 1 ,

takes the form sinp(x) = u(x) = x ·F (|x|p). Note that for p = 2(m+ 1) and m ∈ N,

sinp(x) = x · F (|x|p) = x · F (xp) =
+∞∑
l=0

αl · xl·p+1, where F (z) =
+∞∑
l=0

αlz
l ,

which is also an analytic function in a neighborhood of x = 0. In the sequel of this
proof p = 2(m+ 1), m ∈ N. By the uniqueness of the Maclaurin series of analytic
function, we see that

+∞∑
l=0

αl · xl·p+1 =
+∞∑
l=0

sin(l·p+1)
p (0)

(l · p+ 1)!
· xl·p+1 ,

where the right-hand side also converges to sinp(x) on some neigbourhood of x = 0.
Note that sin(k)

p (0) = 0 for any k ∈ N such that

∀l ∈ {0} ∪ N : k 6= l · p+ 1

as it follows from Lemma 4.5 and Lemma 4.6.
Since the restriction of sinp(x) to [−πp2 ,

πp
2 ] is the inverse function of arcsinp(x),

by the identity (1.6); i.e.,

∀x ∈ [−1, 1] : sinp(arcsinp(x)) = x .

It is well known see, e.g., [13] that

arcsinp(x) =
∫ x

0

(1− sp)−
1
p ds

=
s · 2F1(1, 1

p ; 1 + 1
p ; sp)

p

=
+∞∑
n=0

Γ(n+ 1
p )

Γ( 1
p )(n · p+ 1)

· 1
n!
· xn·p+1

(5.9)

for x ∈ (0, 1). Observe that for our special case p = 2(m + 1) with m ∈ N, this
formula is valid on [−1, 1]. Note also that in our special case, (5.9) is in fact the
Maclaurin series for arcsinp(x) and, moreover, all coefficients are nonnegative (the
explicitly written coefficients are positive, the other ones are zero).

To apply the formula for composite formal power series, we need to consider
series for sinp(x) and arcsinp(x) including the zero terms. For this reason, we
define for all j ∈ N

α′j := sin(j)
p (0)/j! =

{
αi if j = ip+ 1 for some i ∈ {0} ∪ N ,
0 otherwise

(5.10)

and

β′j :=


Γ(n+ 1

p )

Γ( 1
p )(n·p+1)

· 1
n! if j = ip+ 1 for some i ∈ {0} ∪ N ,

0 otherwise .
(5.11)
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Thus by well-known composite formal power series formula

sinp(arcsinp(x)) =
+∞∑
n=1

cnx
n , (5.12)

where
cn =

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk
. (5.13)

Since both functions sinp(x) and arcsinp(x) are analytic in some neighborhood of
x = 0, the series from (5.12) with coefficients given by (5.13) is convergent towards
the identity x 7→ x on some neighborhood of x = 0. From this fact, we infer that
c1 = 1 and cn = 0 for all n ∈ N, n ≥ 2. Thus for any x ∈ R

x =
+∞∑
n=1

xn
∑

k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk

(5.14)

and in particular

1 =
+∞∑
n=1

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk
. (5.15)

Now we show that also
+∞∑
n=1

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

|α′k · β′j1 · β
′
j2 · · · · · β

′
jk
| (5.16)

is convergent. By Lemma 4.7 and (5.10) we see that α′j ≤ 0 for all j ∈ N, j ≥ 2
and α′1 = cosp(0) = 1. Moreover, from (5.11) it follows that β′j ≥ 0 for all j ∈ N.
Thus the product α′k · β′j1 · β

′
j2
· · · · · β′jk is positive if and only if k = 1. All

positive terms can be written as α′1 · β′n = β′n for n ∈ N (if k = 1 then j1 = n
is the only decomposition of n). Since the sum of all positive terms in (5.15) is∑+∞
n=1 β

′
n = arcsinp(1) = πp

2 < +∞, the sum of all negative terms must be finite
too and equals 1 − πp

2 . Thus (5.16) converges. This means that the series (5.15)
converges absolutely to 1 and any rearrangement of this series must converge. Also
any subseries of any rearrangement of this series must converge absolutely. Let
sM =

∑M
m=1 β

′
m. Then the series

∑+∞
k=1 α

′
k · (sM )k is a subseries of one of the

rearrangements of (5.15) and it is convergent. Observe that sM is nondecreasing
and converging to

∑+∞
m=1 β

′
m = πp/2 as M → +∞. Thus the Maclaurin series for

sinp(x) =
∑+∞
k=1 α

′
k · xk is convergent for any x ∈ (−πp/2, πp/2) to some analytic

function.
Now it remains to show that it converges towards sinp(x) on (−πp/2, πp/2). This

last step follows from the formal identity (5.14), which on the established range of
convergence holds also analytically and the fact that the function sinp(x) is the
only function that satisfies the identity (1.6). �
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Proof of Theorem 3.4. From [24, Thm. 1.1, consider p = q and σ = 0] it follows
that, for any p > 1, there exists a unique analytic function F (z) near origin such
that sinp(x) = x · F (|x|p); thus we have

sinp(x) = x · F (|x|p) =
+∞∑
l=0

αl · x · |x|l·p , where F (z) =
+∞∑
l=0

αl · zl .

Note that for p = 2m+ 1, m ∈ N, the series

+∞∑
l=0

αl · xl·p+1 (5.17)

defines an analytic function G(x) in a neighborhood of x = 0 and also that

sinp(x) =
+∞∑
l=0

αl · xl·p+1 = G(x) for x > 0 (5.18)

on a neighborhood of 0. Our aim is to show that the radius of convergence of (5.17)
is πp/2 for p = 2m+ 1, m ∈ N. By (5.18), the following derivatives are equal

sin(n)
p (x) = G(n)(x) =

+∞∑
l=dn−1

p e

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1

for x > 0 on the neighborhood of 0 where the series converges. Now take a one-sided
limit from the right in the previous equation

lim
x→0+

sin(n)
p (x) = lim

x→0+

+∞∑
l=dn−1

p e

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1.

For j := n−1
p ∈ {0} ∪ N, we obtain

lim
x→0+

+∞∑
l=j

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1 = αj ·

(j · p+ 1)!
(j · p+ 1− n)!

.

Thus

lim
x→0+

sin(n)
p (x) = αj ·

(j · p+ 1)!
(j · p+ 1− n)!

for j ∈ {0} ∪ N. By Lemma 4.7, limx→0+ sin(n)
p (x) ≤ 0 for n ≥ 2, p ∈ N and p ≥ 3.

Thus αj ≤ 0 for j ∈ N, j > 1.
The rest of the proof of the theorem is identical to the proof of Theorem 3.3

and we find that the convergence radius of the series (5.17) is πp
2 for p = 2m + 1,

m ∈ N. The only difference against the proof of Theorem 3.3 is that the series
(5.17) converges towards sinp(x) only on (0, πp/2) for p = 2m + 1, m ∈ N. Note
that the series is still convergent on (−πp/2, 0) towards G(x) 6= sinp(x) for x < 0.
The changes in the proof are obvious and are left to the reader. �
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Figure 5. Graph of sin3(x) obtained by high-precision numeri-
cal integration of (1.3) (thin line) versus graph of partial sum of
the Maclaurin series for sin3(x) up to the power x100 (thick line).
Notice that the Maclaurin series does not converge to sin3(x) for
x < 0 and x > π3
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Figure 6. Graph of the function log10 | sin3(x) −
∑100
n=1 α

′
nx

n|
where

∑100
n=1 α

′
nx

n is the partial sum of the Maclaurin series of
sin3(x). The values of sin3(x) were obtained by high-precision nu-
merical integration of (1.3) using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sin3(x) for x < 0 and x >
π3/2

6. Concluding remarks and open problems

As it was mentioned in the proofs of Theorems 3.3 and 3.4, it follows from [24,
Thm. 1.1, consider p = q and σ = 0] that, for any p > 1, there exists a unique
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Figure 7. Graph of sin4(x) obtained by high-precision numerical
integration of (1.3) (thin line) versus graph of partial sum of the
Maclaurin series for sin4(x) up to the power x100 (thick line)
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Figure 8. Graph of the function log10 | sin4(x) −
∑100
n=1 α

′
nx

n|
where

∑100
n=1 α

′
nx

n is the partial sum of the Maclaurin series of
sin4(x). The values of sin4(x) were obtained by high-precision nu-
merical integration of (1.3) using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sin4(x) for |x| > π4/2

analytic function F (z) near origin such that

sinp(x) = x · F (|x|p) .
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Thus the function sinp(x) can be expanded into generalized Maclaurin series near
the origin:

sinp(x) = x · F (|x|p) =
+∞∑
l=0

αl · x · |x|l·p, where F (z) =
+∞∑
l=0

αl · zl .

Remark 6.1. (Convergence of generalized Maclaurin series) Let p = 2m + 1 for
m ∈ N. It follows from the symmetry of the function sin2m+1(x) with respect
to the origin and from the proof of Theorem 3.4 that the generalized Maclau-
rin series

∑+∞
l=0 αl · x · |x|l·(2m+1) converges towards the values of sin2m+1(x) on

(−π2m+1
2 , π2m+1

2 ).

Remark 6.2 (Complex argument for p even). Let p = 2(m + 1) for m ∈ N. It
follows from the proof of Theorem 3.3 that the Maclaurin series

∑+∞
l=0 αl·xl·2(m+1)+1

converges towards the values of sin2(m+1)(x) on (−π2(m+1)

2 ,
π2(m+1)

2 ) absolutely. This
enables us to extend the range of definition of the function sin2(m+1)(x) to the
complex open disc

Bm = {z ∈ C : |z| <
π2(m+1)

2
}

by setting sin2(m+1)(z) :=
∑+∞
l=0 αl · zl·2(m+1)+1. Since all the powers of z are of

positive-integer order l · 2(m+ 1) + 1, the function sin2(m+1)(z) is an analytic com-
plex function on Bm and thus is single-valued. Unfortunately, this easy approach
works only for p = 2(m+ 1) with m ∈ N; cf [15].

Our methods for proving convergence of the Maclaurin or generalized Maclaurin
series are based on the fact that p is an integer. Thus a natural question appears.

Open Problem 6.3 (Convergence for p > 1 not integer). Consider p > 1, p 6∈ N.
Prove (or find a counterexample) that the generalized Maclaurin series correspond-
ing to sinp(x) ’suggests the convergence’ on (−πp/2, πp/2) towards the values of
sinp(x).

For the sake of completeness, we remark that [15] claims the convergence of the
generalized Maclaurin series on (−πp/2, πp/2) for any p > 1, but there is no proof
nor any indication for the proof of this claim.

Moreover, we are not able to decide about the convergence at the endpoints.
This is another open question.

Open Problem 6.4 (Endpoints of the interval). Consider p > 1. Prove (or find a
counterexample) that the generalized Maclaurin series of sinp(x) converge at −πp2
and/or πp

2 .

Remark 6.5 (Function cosp for p even). Let p = 2(m + 1) for m ∈ N. Since
cosp(x) = sin′p(x) by definition, the Maclaurin series for cos2(m+1)(x) can be ob-
tained by taking into derivative the Maclaurin series for sin2(m+1)(x) term by
term. The Maclaurin series for cos2(m+1)(x) then converges towards the value
cos2(m+1)(x) for any x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ).

Remark 6.6 (Function cosp for p odd). Let p = 2m+1 for m ∈ N. In this case the
Maclaurin series for cos2m+1(x) can also be obtained by taking into derivative the
Maclaurin series for sin2m+1(x) term by term. This Maclaurin series then converges
for x ∈ (−π2m+1

2 , π2m+1
2 ). However, the Maclaurin series for cos2m+1(x) converges

towards the value cos2m+1(x) for x ∈ [0, π2m+1
2 ), but it does not converge towards

the value cos2m+1(x) for any x ∈ (−π2m+1
2 , 0).
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[11] Elbert, Á.: A half-linear second order differential equation. Qualitative theory of differential

equations, Vol. I, II (Szeged, 1979), pp. 153–180, Colloq. Math. Soc. János Bolyai, 30, North-

Holland, Amsterdam-New York, 1981.
[12] Evans, L. C.; Feldman, M.; Gariepy, R. F.: Fast/slow diffusion and collapsing sandpiles. J.

Differential Equations 137 (1997), no. 1, pp. 166–209.
[13] Lang, J.; Edmunds, D.: Eigenvalues, Embeddings and Generalised Trigonometric Functions,

in: Lecture Notes in Mathematics 2016, Springer-Verlag Berlin Heidelberg (2011).

[14] Lindqvist, P.: Note on a nonlinear eigenvalue problme, Rocky Mountains Journal of Mathe-
matics, 23, no. 1 (1993), pp. 281–288.

[15] Lindqvist, P.: Some remarkable sine and cosine functions. Ricerche Mat. 44 (1995), no. 2,

pp. 269–290 (1996)
[16] Lindqvist, P.; Peetre, J.: Two Remarkable Identities, Called Twos, for Inverses to Some

Abelian Integrals. Amer. Math. Monthly 108 (2001) pp. 403–410.

[17] Lundberg, E.: Om hypergoniometriska funktioner af komplexa variabla, Stockholm, 1879.
English translantion by Jaak Peetre: On hypergoniometric funkctions of complex variables.

[18] Manna, Z.: Mathematical Theory of Computation, McGraw-Hill 1974

[19] Manásevich, R. F.; Takáč, P.: On the Fredholm alternative for the p-Laplacian in one di-
mension. Proc. London Math. Soc.(3) 84, no. 2 (2002), pp. 324–342.

[20] Marichev, O.: Personal communication with P. Girg during the Wolfram Technology Con-
ference 2011 and some materials concerning computation of p, q-trigonometric functions sent

from O. Marichev to P. Girg after the Wolfram Technology Conference 2012.
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Czech Republic

E-mail address: kotrla@students.zcu.cz



Appendix A2

[29] Girg, P.; Kotrla, L.: Generalized trigonometric functions in complex domain. To appear
in Mathematica Bohemica, special issue dedicated to Equadiff 13 (held in Prague, CZ,
2013).



GENERALIZED TRIGONOMETRIC FUNCTIONS IN COMPLEX

DOMAIN

Petr Girg, Plzeň, Lukáš Kotrla, Plzeň

(Received October, 2013)

Abstract. In this paper we study extension of p-trigonometric functions sinp and cosp to
complex domain. For p = 4, 6, 8, . . . , the function sinp satisfies initial value problem which
is equivalent to

(*)

 − (u′)
p−2

u′′ − up−1 = 0 ,
u(0) = 0 ,
u′(0) = 1

in R. In our recent paper [2], we showed that sinp(x) is a real analytic function for p =

4, 6, 8, . . . on (−πp/2, πp/2), where πp/2 =
∫ 1

0
(1 − sp)−1/p. This allows us to extend sinp

to complex domain by its Maclaurin series convergent on disc {z ∈ C : |z| < πp/2}. The
question is whether this extensions sinp(z) satisfies (*) in the sense of differential equations
in complex domain. This interesting question was posed by Došlý and we show that the
answer is affirmative. We also discuss difficulties concerning extension of sinp to complex
domain for p = 3, 5, 7 . . . . Moreover, we show that the structure of the complex valued initial
value problem (*) does not allow entire solutions for any p ∈ N, p > 2. Finally, we provide
some graphs of real and imaginary parts of sinp(z) and suggest some new conjectures.

Keywords: p-Laplacian, differential equations in complex domain, extension of sinp.

MSC 2010: 33E30, 34B15, 34M05, 34M99

1. Introduction

The initial value problem

(1.1)

 −
(
|u′|p−2u′

)′ − (p− 1)|u|p−2u = 0 ,
u(0) = 0 ,
u′(0) = 1

The research has been supported by the Grant Agency of the Czech Republic, project no.
13-00863S.
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arises in connection with nonlinear boundary value problems for p > 1 (see e.g.

[4, 5, 7]). The solution of (1.1) is known as sinp, see e.g. [4], and cosp
def
= sin′p. Since

the functions sinp and cosp satisfy well-known p-trigonometric identity, see e.g. [5],

(1.2) | sinp(x)|p + | cosp(x)|p = 1 ,

they are also known as the p-trigonometric and/or generalized trigonometric func-

tions. Note that (1.2) is in fact the so-called first integral of (1.1) (see e.g. [5]). It

follows from this identity (see e.g. [5]) that∫ sinp(x)

0

(1− sp)−1/pds = x

for 0 ≤ x ≤ πp/2, where sinp(x) ≥ 0 and cosp(x) ≥ 0 and where

πp
def
= 2

∫ 1

0

(1− sp)−1/pds .

Thus it is natural to define

(1.3) arcsinp(x)
def
=

∫ x

0

(1− sp)−1/pds = for 0 ≤ x ≤ 1 ,

and extend it to [−1, 1] as an odd function. The function sinp is the inverse function

to arcsinp(x) on [−πp/2, πp/2]. Moreover, sinp(x) = sinp(πp − x) for x ∈ (πp/2, πp]

and sinp(x) = − sinp(−x) for x ∈ [−πp, 0]. Finally, sinp(x) = sinp(x + 2πp) for all

x ∈ R (see [5] for details).

Smoothness of sinp on (−πp/2, πp/2) for p > 1 was studied in [2]. The most

surprising result of [2] is that sinp is a real analytic function on (−πp/2, πp/2) for

p = 4, 6, 8 . . . , i.e., sinp(x) equals to its Maclaurin on (−πp/2, πp/2) for p = 4, 6, 8 . . . .

This approach naturally allows to extend sinp for p = 4, 6, 8 . . . to an open disk

{z ∈ C : |z| < πp/2}

in the complex domain using power series (cf. [7], where the convergence of the

series is conjectured without proof). When our recent result was presented in the

conference “Nonlinear Analysis Plzeň 2013”, O. Došlý posed an interesting question

if this extension satisfies (1.1) in the sense of differential equations in complex domain.

This paper addresses his question. For p = 4, 6, 8, . . . , the initial value problem (1.1)

in R is equivalent to

(1.4)

 − (u′)
p−2

u′′ − up−1 = 0 ,
u(0) = 0 ,
u′(0) = 1 .

2



Note that for p > 1 real not being an even positive integer, we cannot get rid off the

absolute values in (1.1). Thus the equation (1.1) does not make sense for general

p > 1 in the complex domain. In this paper we consider the (1.4) in complex domain

for integer p > 2. The complex valued ordinary differential equations are studied by

means of power series (mostly by Maclaurin series). Note that, by [2, Theorem 3.2

on p. 5], sin(n)
p (0) exists for 1 < n ≤ p, but sin(n)

p (0) does not exist when p ≥ 3 is

odd integer and n > p. Thus, by the formal Maclaurin series of sinp(x), we mean

a series calculated from the limits of the derivatives limx→0+ sin(n)
p (x), which were

shown to exist in [2] for any n ∈ N and p ≥ 3 odd integer.

In Section 2, we prove that, for p = 4, 6, 8, . . . , the function sinp can be extended by

its Maclaurin series to the disc {z ∈ C : |z| < πp/2} and that this series solves the or-

dinary differential equation (1.4) in the sense of differential equations in the complex

domain. On the other hand, in Section 3, we show that the complex valued formal

Maclaurin series Msinp
(z) of the real function sinp(x) does not satisfy (1.4) in the

sense of differential equations in the complex domain for odd powers p = 3, 5, 7, . . . .

In Section 4, we explain relations between the real and imaginary components of the

complex valued function sinp(z) for p = 2, 6, 10, . . . and p = 4, 8, 12, . . . , and also

the complex valued formal Maclaurin series Msinp
(z) of the real function sinp(x) for

p = 3, 5, 7, . . . . In Section 5, we show that the fact that the function sinp(z) cannot

be extended as an entire function follows from an interesting connection between

p-trigonometric identity and some classical results from complex analysis. Finally,

in Section 6, we visualize some of our result.

In the whole paper, the independent variable z stands for a complex number and

the independent variable x stands for a real number. In the same spirit, sinp(z)

stands for a complex valued function and sinp(x) stands for a function of one real

variable.

2. Extension of sinp for p = 4, 6, 8 . . . to complex domain.

We assume that p = 4, 6, 8 . . . throughout this section unless specified differently.

In [2, Thm. 3.3] we proved the following result.

Proposition 2.1 ([2], Theorem 3.3 on p. 6). Let p = 4, 6, 8, . . . . Then the

Maclaurin series of sinp(x) converges on (−πp/2, πp/2).

Let Msinp
(x) denotes the formal Maclaurin series of sinp(x), p = 3, 4, 5, 6, . . . (any

integer greater than 2). We also proved in the paper [2] that this Maclaurin series

has the following particular structure

(2.1) Msinp
(x) =

+∞∑
k=0

αkx
kp+1 ,

3



where α0 > 0 and αk ≤ 0 (all other coefficients are zero).

The following result answers the question by O. Došlý in the positive way.

Theorem 2.1. Let p = 4, 6, 8, . . . , then the unique solution of the initial value

problem (1.4) on |z| < πp/2 is the Maclaurin series (2.1).

In order to prove this result, we need to state several auxilliar results. First of

all, let us note that the equation (1.4) is of second order. In order to apply known

theory, we rewrite (1.4) as an equivalent system. Using the substitution u′ = v, we

get the following first order system

(2.2)


u′ = v ,
v′ = −up−1/vp−2 ,

u(0) = 0 ,
v(0) = 1 .

To study systems of equations like (2.2) in complex domain, we need to use complex

functions of several variables. We will often make use of the following result.

Proposition 2.2 ([6], Theorem 16 on p. 33). Let f and g be holomorphic func-

tions in open set M ⊂ Cr, r ∈ N. Then the functions f + g , f − g and fg are

holomorphic in M . Moreover if g(z) 6= 0 for all z ∈ M , then f
g is holomorphic on

M .

Let us consider first order ODE system

(2.3)

{
y′ = f(z,y) ,

y(z0) = y0 ,

where y = (y1, y2, . . . , yn)
T ∈ Cn and f = (f1(z, y), f2(z, y), . . . , fn(z,y))

T ∈ Cn

and the function f : Cn+1 → Cn is analytic complex function of n + 1 complex

variables. The folowing result concerning existence and uniqueness of the initial

values problem in the complex domain is crucial in our proofs.

Proposition 2.3 ([3], Theorem 9.1 on p. 76). Let function f : Cn+1 → Cn be

analytic and bounded in the region

R : |z − z0| < α , ‖w −w0‖ < β ,

where α > 0 , β > 0 , and let

µ
def
= sup

(z,w)∈R
‖f(z,w)‖ , γ

def
= min

(
α,
β

µ

)
.

Then there exists in the disk D0 : |z−z0| < γ a unique analytic function w : C→ Cn

which is the solution of (2.3).
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Lemma 2.1. There is δ > 0 such that in U0
def
= {z ∈ C : |z| < δ} the initial value

problem (1.4) has the unique solution u(z) which is an analytic function in U0.

Proof. Consider (2.2) in complex domain. Let us denote

f1(z, ξ, η)
def
= η

and (recall p = 4, 6, 8, . . . by assumption of this section)

f2(z, ξ, η)
def
= −ξ

2m+1

η2m
, where z, ξ, η ∈ C and m ∈ N .

Naturally, the functions f = ξ and g = η are holomorphic in entire complex plane.

Thus by Proposition 2.2, functions f1(z, ξ, η) and f2(z, ξ, η) are holomorphic on some

neighborhood of [0, 0, 1]. LetR denote the maximal closed subset of this neigborhood.

Then the functions f1 and f2 are holomorphic on the closed domain R and so they

are continuous on R. Hence they are bounded on R (see [6], p. 37). Therefore, the

system (2.2) has unique solution by Proposition 2.3. �

The previous lemma yields local solution u(z) of (1.4) in a small neighborhood

U0 of 0 in C. Since u(z) is analytic in U0, it can be written as a power series

u(z) =
∑∞
k=0 akz

k, where this power series converges towards u(z) for all z ∈ U0.

Our next aim is to show that the series corresponding to u(z) has the same coefficients

as the series corresponding to sinp(x), which is the unique solution to the real-

valued initial value problem (1.1). For this purpose, we will use the following result

concerning sum of two powers series.

Proposition 2.4 ([9], Theorem 16.6 on p. 352). If the sum of two power series

in the variable z − z0 coincide on a set of points E for which z0 is a limit point and

z0 /∈ E, then identical powers of z − z0 have identical coefficients, i.e., there is a

unique power series in the variable z − z0 which has given sum on the set E.

Now we are ready to prove the main result of this section.

Proof of Theorem 2.1. By Lemma 2.1, u(z) =
∑∞
k=0 akz

k is the unique solution of

(1.4) in any point z ∈ U0. Observe that the solution u(z) =
∑∞
k=0 akz

k solves also

the real-valued Cauchy problem (1.4) in the sense of real analysis. On the other

hand, sinp is the unique solution of the real-valued Cauchy problem (1.4). Since

the Maclaurin series (2.1) of sinp converges towards sinp in (−πp/2, πp/2) under the

assumption of this section, we find that (2.1) satisfies (1.4) in (−πp/2, πp/2). More-

over, convergence of (2.1) on (−πp/2, πp/2) implies convergence of
∑∞
k=0 αkz

kp+1 for
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all z ∈ C : |z| < πp/2. Therefore,

+∞∑
j=0

ajz
j =

+∞∑
k=0

αkz
kp+1 for all z ∈ U0 ∩ (−πp/2, πp/2) .

Now we consider the set of points zn = δ
n+1 , n ∈ N. From the previous equation,

we have
+∞∑
j=0

ajz
j
n −

+∞∑
k=0

αkz
kp+1
n = 0 =

+∞∑
j=0

0 · zjn .

By Proposition 2.4, we find that these two series must coincide on U0. Hence the

Maclaurin series (2.1) satisfies (1.4) on U0. Let u be given by the series (2.1). Then

u′′, (u′)p−2, up−1 have the radius of convergence πp/2 for p > 2, p ∈ N. Since any

power series converges absolutely within the radius of its convergence, we see from

(1.4) that

−

(+∞∑
k=0

αkz
kp+1
n

)′p−2(+∞∑
k=0

αkz
kp+1
n

)′′
−

(
+∞∑
k=0

αkz
kp+1
n

)p−1
= 0 =

+∞∑
j=0

0 · zjn

for all zn = δ
n+1 , n ∈ N. Thus, by Proposition 2.4, u given by the series (2.1) is the

solution of (1.4) on the disc D = {z ∈ C : |z| < πp/2}. �

3. Obstacles for extension of sinp for p = 3, 5, 7 . . . to complex domain.

Lindqvist [7] proposed alternative definition of sinp as the solution of

(3.1)
d

dz
(w′)

p−1
+ wp−1 = 0 , w(0) = 0 , w′(0) = 1

in complex domain for p > 1 (considered only formally). In [7, Section 7], he conjec-

tures the possibility that solutions to (3.1) and real Cauchy problem

(3.2)
(
|u′|p−2 u′

)′
+ |u|p−2 u , u(0) = 0 , u′(0) = 1

could produce different solutions on R. We address this question in this section.

However, we have different definition of πp and sinp in this paper than in [7]. Turning

to our definitions of πp and sinp, we get an equation corresponding to (3.1):

(3.3)
d

dz
(w′)

p−1
+ (p− 1)wp−1 = 0 , w(0) = 0 , w′(0) = 1

which is equivalent to (1.4), which is equivalent to (2.2). Since the p − 1-th power

is multivalued complex function, we will limit ourselves to p ∈ N, p > 1, in order
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to be able to perform rigorous analysis. The question is whether (3.3) produces a

solution which is different from solution (1.1) on R. In the previous section we proved

that for p = 4, 6, 8, . . . (and of course for p = 2) the solutions of (3.3) and (1.1) are

identical. Now we show that for p = 3, 5, 7, . . . the solutions are different for negative

arguments.

This proposition is crucial for the proof of the main result of this section.

Proposition 3.1 ([2], Theorem 3.4 on p. 6). Let p = 3, 5, 7, . . . . Then the formal

Maclaurin series of sinp(x) (the solution of the Cauchy problem (1.1)) converges on

(−πp/2, πp/2). Moreover, the formal Maclaurin series of sinp(x) converges towards

sinp(x) on [0, πp/2), but does not converge towards sinp(x) on (−πp/2, 0).

Now we are ready to formulate main result of this section.

Theorem 3.1. Let p = 3, 5, 7 . . . . Then the unique solution u(z) of the complex

initial value problem (1.4) differs from the solution sinp(x) of the Cauchy problem

(1.1) for z = x ∈ (−πp/2, 0).

Proof. Let us recall that (3.3) is equivalent to (2.2). There exists unique solution

of (2.2) on some nonempty open disc in C containing 0 by Proposition 2.3. In the

same way as in the proof of Theorem 2.1 (with obvious modifications), it follows

that Msinp
(z) solves (3.3) on the open disc |z| < πp/2 and it is the unique solution

on this disc. Since sinp(x) is the unique solution of (1.1), sinp(x) 6= Msinp
(x) for

x ∈ (−πp/2, 0) by Proposition 3.1, we see that (1.1) and (3.3) produce different

solutions on R. �

4. Relations between real and imaginary parts

Let us mention an interesting relationship between real and imaginary part of

sinp(z) for p = 4, 8, 12, . . . . One can see in the Figure 1, that the graph of the

imaginary part of sin4(z) is the graph of the real part, rotated by −π/2.

Theorem 4.1. Let p = 4, 8, 12, . . . . Then

<[sinp(z)] = =[sinp(i · z)]

for all z ∈ C : |z| < πp/2.

Proof. Note that by (2.1)

sinp(z) =

+∞∑
k=0

αkz
kp+1 = z

+∞∑
k=0

αkz
kp
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for z ∈ C : |z| < πp/2. We assume p = 4l where l = 1, 2, 3 . . . and thus

sinp(z) = z

+∞∑
k=0

αkz
4kl .

Substituting i · z into this formula we find

sinp(i · z) = i · z
+∞∑
k=0

αk(i · z)4kl = i ·
+∞∑
k=0

αkz
4kl+1 = i · sinp(z) .

Now the result easily follows from comparison of the real and imaginary parts of

sinp(z) and i · ˙sinp(ż). This ends the proof. �

Theorem 4.2. Let p = 2, 6, 10, 14 . . . . Then for all ϕ ∈ [0, 2π) there exists

z ∈ C : |z| < πp/2 such that

<[sinp(z)] 6= =[sinp(e
iϕ · z)] .

Proof. It is known from [2], that the series Msinp
(z) has the form

Msinp
(z) =

+∞∑
k=0

αkz
k p+1 ,

where the other coefficients are known to be zero. At first we show that α0 = 1 and

α1 = − 1
p(p+1) < 0 (cf e.g. [7]). In fact, evaluating the integral in (1.3), we see that

arcsinp(x) =

∫ x

0

(1− sp)−1/pds = 2F1

(
1

p
,

1

p
, 1 +

1

p
, xp
)
x for 0 ≤ x ≤ 1 ,

where 2F1 is the Gauss’s hypergeometric function. Using the known series

2F1(a, b, c, z) =

+∞∑
k=0

(a)k (b)k z
k

(c)k k!
for|z| < 1 ,

where (a)k =
∏k
j=0(a+ k − 1) for any a ∈ R stands for the rising factorial, we find

arcsinp(w) = w

∞∑
k=0

(
1
p

)2
k
wkp(

1 + 1
p

)
k
k!

for 0 < w < 1 .

Hence

arcsinp(w) = w +
1

p(p+ 1)
wp+1 +O

(
w2p+1

)
for 0 < w < 1 .
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Denoting w = sinp(x), we find

x = w +
1

p(p+ 1)
wp+1 +O

(
w2p+1

)
,

which yields

(4.1) w = x− 1

p(p+ 1)
wp+1 +O

(
w2p+1

)
.

Substituting (4.1) into itself we obtain

w = x− 1

p(p+ 1)

(
x− 1

p(p+ 1)
+O

(
w2p+1

))p+1

+O
(
w2p+1

)
.

Hence

(4.2) sinp(x) = x− 1

p(p+ 1)
xp+1 +O

(
w2p+1

)
,

which gives desired formulas for α1 = 1 and α2 = − 1
p(p+1) . With this at hand, we

can write

Msinp
(z) = z − 1

p(p+ 1)
zp+1 +

+∞∑
m=2

αmz
mp+1 =(4.3)

= z − zp+1

p(p+ 1)
− z2p+1

+∞∑
m=0

αm+2z
mp .

Let z = a, a ∈ R : 0 < a < πp/2 for simplicity. Then φ0 = π/2 is the unique angle

in [0, 2π) such that <[z] = =[eiφ0 z]. Assumption on p of this theorem is that there

exists l ∈ N∪ {0} such that p = 4l+ 2. Thus <[zp+1] = <[z4l+3] = <[a4l+3]. On the

other hand, =[(eiφ0 z)p+1] = =[(ia)4l+3] = −a4l+3 for φ0 = π/2. Pluging z = a and

z = ia into (4.3), taking real and imaginary part, respectively, and subtracting, we

get

<
[
Msinp

(a)]−=[Msinp
(ia)

]
=(4.4)

= − 2ap+1

p(p+ 1)
+ a2p+1

(
<

[
+∞∑
m=0

αm+2a
mp

]
−=

[
i2p+1

+∞∑
m=0

αm+2(ia)mp

])

Since the series on the right-hand side are convergent on disc {z ∈ C : |z| < πp/2},
then

A
def
= max
{z∈ : |z|≤πp/4}

∣∣∣∣∣
(
<

[
+∞∑
m=0

αm+2z
mp

]
−=

[
i2p+1

+∞∑
m=0

αm+2(iz)mp

])∣∣∣∣∣ < +∞
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exists and from (4.4) we find∣∣∣∣(< [Msinp(a)]−=[Msinp(ia)
])
/ap+1 − 2

p(p+ 1)

∣∣∣∣ ≤ Aap .
Taking 0 < a < min

{
πp/4,

(
1

Ap(p+1)

)1/p}
, we see that <

[
Msinp

(a)]−=[Msinp
(ia)

]
6=

0. This concludes the proof. �

5. Consequence of complex p-trigonometric identity

As it was mentioned earlier, the maximal possible radius of convergence for the

(formal) Maclaurin series for functions sinp and cosp is πp/2. This fact was antici-

pated in [7] and studied in detail in [2]. In this section we explain that there was no

hope for these series to have their radius of convergence infinite for p = 3, 4, 5, 6, . . . .

To the contrary what one would think, we will show that it is not the absolute

value in (1.1) that produces the main difficulty. It is a complex analogy of the p-

trigonometric identity that produces the impossibility of sinp to be an entire complex

functions for p = 3, 4, 5, 6, . . . .

Let us reconsider (1.4), i.e., − (u′)
p−2

u′′ − up−1 = 0 ,
u(0) = 0 ,
u′(0) = 1 ,

now for any p = 3, 4, 5, 6, . . . in a complex domain. Let us assume that u is a solution

which is a holomorphic function on some neighborhood U0 of 0. Multiplying the

equation of (1.4) by u′ and integrating from 0 to z ∈ U0, we obtain

(u′(z))p − (u′(0))p + (u(z))p − (u(0))p = 0 .

Now using the initial conditions of (1.4) we get

(5.1) (u′(z))p + (u(z))p = 1 ,

which is the first integral of (1.4) and we can think of it as complex p-trigonometric

identity for holomorphic solutions of (1.4) for p = 3, 4, 5, 6, . . . .

Now we state the very classical result from complex analysis.

Proposition 5.1 ([1], Theorem 12.20 on p. 433). Let f and g be entire functions

and for some positive integer satisfy identity

fn + gn = 1 .
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(i) If n = 2, then there is an entire function h such that f = cos ◦h, g = sin ◦h.

(ii) If n > 2, then f and g are each constant.

It follows from this result that holomorphic solution u of (1.4) cannot be entire

function for any p = 3, 4, 5, 6, . . . , since the derivative of entire function is entire

function as well and u and u′ must satisfy (5.1). Thus by Proposition 5.1 u and u′

are constant which contradicts u′(0) = 1.

In particular for p = 4, 6, 8, . . . , with u(z) = sinp(z) and u′(z) = cosp(z) this

becomes

cospp(z) + sinpp(z) = 1

and we see that sinp and cosp cannot be entire functions.

Note that it was an interesting internet discussion [11] that called our attention

towards this connection between complex analysis (including the classical reference

[1, Thm. 12.20]) and p-trigonometric functions. It seems to us that this connection

was overlooked by the ‘p-trigonometric community’.

6. Visualization of sinp(z) and their Maclaurin series

In this section we visualize graphs of extension of sinp(z) by its Maclaurin series

for p = 4, 6 and the formal Maclaurin series for p = 3, 5, 7 and compare it to the

classical result sinp(z) = sin2(z). To the best of our knowledge, these figures in

complex domain are new and we believe that they will help to stimulate discussion

on this topic. We also formulate some conjectures in the caption of Figure 3. The

authors would like to thank to O. Marichev [8] from Wolfram Research, for his

valuable advices concerning series representation of functions and their inverses in

the software package Mathematicar.
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<[sin2(z)]

<

=

=[sin2(z)]

<

=

<[Msin3
(z)]

<

=

=[Msin3
(z)]

<

=

<[sin4(z)]

<

=

=[sin4(z)]

<

=
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<[Msin5
(z)]

<

=

=[Msin5
(z)]

<

=

<[sin6(z)]

<

=

=[sin6(z)]

<

=

<[Msin7(z)]

<

=

=[Msin7(z)]

<

=

Figure 1. Contourlines of the real and imaginary part of sinp(z)

for p = 2, 4, 6 and Msinp
(z) for p = 3, 5, 6. Note that imaginary part

of sin4(z) is its real part rotated by −π/2.
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p even

=
<

<[sin2(z)]

p odd

=
<

<[Msin3
(z)], sin3(x)

=
<

<[sin4(z)]

=
<

<[Msin5
(z)], sin5(x)

=
<

<[sin6(z)]

=
<

<[Msin7
(z)], sin7(x)

Figure 2. Comparison of real parts of sinp(z) for p even (extended

by the Maclaurin series) and the real parts of the formal Maclaurin

series Msinp
(z) and the real function sinp(x) for p odd.
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p even

<[sinp(πp/2 eiπϕ)]. . . solid line

=[sinp(πp/2 eiπϕ)]. . . dashed line

ϕ

p = 2

p odd

<[Msinp
(πp/2 eiπϕ)]. . . solid line

=[Msinp
(πp/2 eiπϕ)]. . . dashed line

ϕ

p = 3

ϕ

p = 4

ϕ

p = 5

ϕ

p = 6

ϕ

p = 7

Figure 3. Numerical comparison of the real and the imaginary

parts of sinp(πp/2 eiπϕ) for p = 2, 4, 6 (extended by Maclaurin series)

and the real and the imaginary parts of Msinp(πp/2 eiπϕ) for p =

3, 5, 7. Note that these graphs are only an illustration, because we

do not know about the convergence of the series for z ∈ C : |z| =

πp/2. From these pictures we conjecture this convergence. It is

interesting to note at these pictures that for larger p, the graph

of real part is a small perturbation of πp/2 cosφ and the graph of

imaginary part is a small perturbation of πp/2 sinφ. We conjecture

that this phenomena occurs due to the fact that the Maclaurin series

Msinp(z) = z − 1
p(p+1)z

p+1 + O(z2p+1) and for large p the higher

order terms are negligible. Moreover, limp→+∞ πp/2 = 1. Thus we

conjecture that these graphs tend to graphs of sinφ and cosφ for

p→ +∞, respectively.
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