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Abstract

Let © € RY is a bounded domain with C?% boundary 92 for a € (0,1). In the Thesis we
consider the problem

—Apu = h(px,u, Vu) in Q, (1)
u = 0 on 02

for an unknown function u € VVO1 P(Q) and p > 1. Here the p-Laplace operator A, is defined by

Apu ©f div (]Vu|p_2Vu), parameter 1 € R and b : RxQxRxRY — R is given Carathéodory

function. We suppose that the reaction term h can be decompose into the (p—1)-homogeneous
part p|u[P~2u and a bounded perturbation g(u;x,u, Vu), where g : R x Q x R x RN — R.
At first we prove Krasnoselskii type necessary condition for under the assumptions
that p is in the neighborhood of the first eigenvalue A\; and g(u;x,s1,s2) € LT/(Q), where
%4—% =1,7 € (p,p*) and
p*d;f{ NE ifp<N,
4+oo ifp>N.

Then we assume one-dimensional case of and g(u; x, s1,s2) € L*(Q) and we prove the key
estimate for the proof of the analogy of Dancer’s Theorem. Let us note that the originality
of the work consists in including the gradient (the first derivative) of an unknown function
to the source term h. The rest of the Thesis is devoted to briefs comments of my papers
written in cooperation with my mentor P. GIRG. The first paper is focused on the continuity
of sin,(z), which is the first eigenfunction of —A,. Moreover we discuss the possibility of the
expression of sin,(x) as the convergent Maclaurin series on some neighborhood of the origin.
In the second paper we generalize sin,(z) to complex domain for p be an even integer. Please
find these papers included in Appendix Al and Appendix A2 for more details.

Keywords

p-Laplacian, bifurcations, Krasnoselskii type necessary condition, p-trigonometric functions,
differentiability, continuity, complex domain
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Chapter 1

Introduction

For p > 1, the following problem
—Apu = h(pu;x,u, Vu) in Q, (1)
u = 0 on Of) '

is considered for an unknown function u = u (x) in a bounded domain Q C RY with C%2
boundary 0€2, where o € (0,1). Operator A, stands for the p-Laplace operator defined by

Apu L div |VulP—2 Vu) and h: R x QxR xR — R is a given Carathéodory function (for
exact definition for vector function u see Definition [2.1.9)). In one dimension, the p-Laplace
operator is reduced to ¢p,(u'), where @, (s) def |s|P~2s. The dependence of ¢, on u is shown

on the Figure for p =30 and p = %.
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Figure 1.1: Function ¢, (s) = [s|P~2s for p = 30 (dashed line) and p = 33 (continuous line).

Problem ([1.1)) can be interpreted as the equation of the steady state of a diffusion equation.
Indeed, let u stand for a state variable (e.g. density, concentration, temperature), j = j(x) for
the diffusion flux, and A for a source term. Then the steady state conservation law has the

divergence form
(1.2)

div j = h (p;x,u, Vu) .

We say that the boundary is C*® if it can be decomposed in finite number of parts, such that each can
be expressed as a C** function in suitable rotated local coordinates. By C** function we mean the following.
_ 2
, TN-1) € M and denote f4(x) = af»afz~ (x) for
iOTj
b))~ a9l _
Ix -yl

Let M Cc R¥N=! and f € C(M). Assume x = (x1, T2, T3, . ..
i,7=1,2,3,..., N —1. We say that f € C**(M) in the case that sup
x,y € M

X#y



The constitutive relation for diffusion processes (Fick’s law) states
j=-DVu, (1.3)

where D = D(x) is the diffusion coefficient, which depends on the diffusing material (see
DRABEK-HOLUBOVA [20] for more details). In some circumstances the diffusion coefficient

depends also on w and/or Vu. In this thesis we suppose that D(x,u, Vu) e |VuP~? (see

Figure and compare with Figure , which appears in many practical situations (see e.g.
ARONSSON-EVANS-WU [4] or WU-ZHAO-YIN-LI [55]).

D(x,u, Vu) = |Vu|P~?
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Figure 1.2: Diffusion coefficient D(x,u, Vu) = |Vu[P~? restricted to the plain [Vu| x D for

p = 30 (dashed line) and p = 33 (continuous line).

Combining ([1.2)) and ([1.3)) and considering Dirichlet boundary condition, we get the prob-

lem ([1.1)). Let us note that (1.2) is stated in a divergence form as it would be for classical
solution u € C?(2) under the assumption that u has continuous partial derivatives. However,

the existence of classical solution is extremely difficult to establish. Thus ([1.1)) is understood

in the weak sense. Hence by a solution to (1.1)) we mean a function u € W” () such that

/ IVulP~? Vu - Vo dz = / h(w; x,u, Vu)odz Vo € WyP(Q).
Q Q

Papers [4] and/or EVANS-FELDMAN-GARIEPY [25] are concerned with growing of sand-
piles. In a non-stationary case of (|L.1), i.e.

u _ — ; N
5t — Apu Jj(.%‘,t) in RNX (0, +00), (1.4)
u = u on RY x {t =0},

they interpret u(x,t) as a height of sandpile. Hence Vu corresponds to the slope of the
sandpile. Assume p — 4o00. Then D — 0 within the region |Vu| < 1 — ¢ and D — +oo for

|Vu| > 146 for any small § > 0 (see Figure[1.2)). It follows that there is no diffusion until the
time, when the slope reaches critical value 1. Then the pile collapses and the slope decreases.



On the other hand, the article by KUIJPER [35] is concerned with image processing using
nonlinear diffusion. Here the domain  C R? (two-dimensional image - e.g. photograph) and
u(x, t) is interpreted as a value on a gray scale at a point x € Q. It turns out that the equation
for p — 17 preserves edges of the image. This is due to the fact that D — 0 within the
region |Vu| > 1—6 and D — +oo0 for [Vu| < 1+ 6 for any small § > 0 (see Figure[L.2). Note
that |[Vul| is large on the edges.

It is natural to ask about the number of solutions of for the given source function h.
The answer depends on the asymptotic properties of the function h and on properties of the
eigenvalue problem (see e.g. ANANE [1], ANANE-TsouLI [2], CEPICKA-DRABEK-GIRG [13],
ELBERT [23] and references therein)

{—Apu = AMuP?u in Q,

u = 0 on 0f), (1.5)

where A € R is an eigenvalue of if there is a nonzero function u which satisfies .
Such function is called eigenfunction. In one-dimensional case there is A\, = kP(p — 1) for any
k € N and corresponding normalized eigenfunction is sin,(kx). ELBERT showed in [23] that
sin,(x) is the unique solution of the problem

/
~(WPe) = AP e i (0,m,),
u(0) = 0,
W(0) = 1

and

! 1 27
= 2/0 (1 —sp)l/p ds = psin(mw/p)
In higher dimension, the structure of the spectrum of is not fully understood yet, but as
ANANE [I] prove there is the first eigenvalue A; > 0, which is isolated and the corresponding
normalized eigenfunction is positive in €. Hence the question about the number of solution
of is a difficult problem in general and for simplicity, we add some assumptions. Firstly,
we consider the one-dimensional case (except Section . Secondly, suppose that the reac-
tion term h can be decomposed into the (p — 1)-homogeneous part u|u[P~2u and a bounded
perturbation g(u;x,u, Vu). It means that

(3%, u, V) = plulPu + g (u;x,u, Vu) | (1.6)

where g : R x 2 x R x RV — R satisfies Carathéodory condition and there is a(x) € L™ ()
such that

|9 (5%, 81, 82)] < a. (1.7)

The allowable values of parameter r’ will be specified below. Thirdly, we focus only on such
values of the parameters u which are in the small neighborhood of the first eigenvalue A;.

Under this assumptions, we search for the number of solutions using bifurcation theory.
There are some papers devoted to this problem where the source term does not depend
on Vu. In DEL PINO-MANASEVICH [2I] authors deal with the bifurcations from zero. They
consider the source term h = h(p;x,u) satisfies with ¢ = ¢g(u;x,u). Function ¢ fulfills
Carathéodory condition in x and wu,

g%, 5) =0 (!S!”_l)

4



near s = 0, uniformly a.e. in 2 and uniformly with respect to u on bounded sets. Furthermore,
g satisfies the growth condition

uniformly with respect to u on bounded sets for any 1 < ¢ < p*, where p* depends on p and
dimension N as follows:

p*déf —J\],V_pp ifp< N,
4+oo ifp>N.

Also in GIRG-TAKAC [31], the bifurcations from zero and/or from infinity are studied. In this
case, the source term h = h(u;x, u) satisfies again. In [31], the function g : RxQxR — R
is a Carathéodory function moreover there is a constant C' € (0,400) such as in the case of
the bifurcation from zero

9%, 8)] < C|s[P~

and in the case of the bifurcation from infinity
9%, 8)| < C (1+[s[P~1)
in both cases for a.e. x € Q and for all pairs (i, s) € R x R, and

g(p; %, s)
|s[P~

g(p; %, s)

—0 as [s]—0 and —
|s[”

—0 as |s] = +o0

uniformly for a.e. x €  and in p from bounded intervals in R, respectively. Note that our
assumptions for the function g are far more strict, but we work with the function g depending
also on Vu. Let us mention that [31] continues the paper by DRABEK-GIRG-TAKAC-ULM [19],
where g = g(x) is considered.

This thesis is organized as follows. In Chapter |2| we introduce some useful definitions and
we define Carathéodory function. In Chapter [3|we show that the bifurcation point from infinity
of the problem is also the eigenvalue of . Here we consider the assumptions and
(11.7), where a € L (Q). In this case, parameter r’ satisfies %—i— % = landr € (p,p*). Then we
suppose one-dimensional case of and we prove the key estimate for the proof of theorem
analogous to Dancer’s Theorem under the assumptions and (1.7), where a € L*(1).
Chapters [f] and [5] are devoted to brief commentary of my papers ” Differentiability properties
of p-trigonometric functions” and ” Generalized trigonometric functions in complex domain”.
Both papers were written in collaboration with my mentor P. GIRG. In these chapters you
can find sections where my contribution is specified. The articles were attached in Appendix

Al and Appendix A2, respectively.



Chapter 2

Preliminaries

The results of this chapter are well known. We include them here for the sake of completeness
of the presentation since results are scattered in the literature.

2.1 Measure theoretic preliminaries

Here we introduce some useful well (and/or less) known facts from the measure theory, see
e.g. AMBROSETTI-PRODI [3], FOLLAND [26], and/or MALY [41]. We assume that the reader
is familiar with definitions of sigma algebra, measure space, measure, complete measure, Borel
set, etc. Through out the section we suppose the measure space (X, S, v) with sigma algebra
& C 2% and a complete measure v. We also define R = R U {400} such that for any b € R
holds —oo < b < +00.

2.1.1 Basic definitions

Definition 2.1.2 (see, [41], 3.3 Definition, p. 5 ). Let D € &. We say that function f : D — R
is G-measurable if for any Borel set B C 28 is f~1(B) € .

In case no confusion may arise, we use the term measurable function instead of the term
&-measurable function.
2.1.3 Convergence theorems

Let us introduce the space LT. It contains all measurable functions that maps from X to
[0, 4+00]. In other words it is the space of the non-negative measurable functions.

Proposition 2.1.4 (see [26], 2.14 The Levi Monotone Convergence Theorem, p. 50). If
{fa 3129 is a sequence in L™ such that f; < fj41 for all j € N, and

= 1li n\— n);
f=lm fof ilelgf)

fo = [ o

Proposition 2.1.5 (see [26], Fatou’s Lemma 2.18, p. 52 ). If {f,} = is any sequence in L7,

n=1
then
liminf f, ) < liminf [ f,.
(it ) <t [ 1

Corollary 2.1.6. Let {fn}:i‘i be a sequence of measurable functions. Assume that there
exists h € LY (X) such that f, < h. Then

limsup/ fn §/ lim sup f,
n—+oo JX X n—+oo

then



Proof. Choose any h € Lt such that h— f,, > 0 for all n € N. Hence the sequence {h— f,},;1>
belongs to L+ and by Proposition

liminf/ (h— fn) 2/ liminf(h — f,).
b X

n—-+oo n—-+o0o

Since Lebesgue’s integral is additive and h does not depend on n we obtain
/ — lim sup / fn> / /hm sup fn,
n—-+oo n——+00

limsup/ fnﬁ/ limsup fi, .
n—+oo JX X n—+oo

which follows

Let us recall classical Lebesgue Dominated Convergence Theorem. For more detail see e.g.
[41] and/or [26].

Proposition 2.1.7 (see [41], 6.2 Lebesgue Dominated Convergence Theorem, p. 15). Let
D ec & and f, fj, j € N, are measurable functions on D. Let {f] +°° converge to f a.e. in
D. Let there exist integrable function such that for every j € N,

|fi(2)] < g(), for z € D.

/Df_jETOO/ij'

2.1.8 Carathéodory condition

Then

Definition 2.1.9. Let g : Rx Q xR x RY = R, Q c RY, satisfies
(i) g(p;-,u,v) : Q — R is measurable for all p,u € R and v € R,
(ii) g(-;2,-,-) : Rx R x RY — R is continuous for x a.e. in
Then we say that h satisfies Carathéodory condition.

Our aim is to show that Carathéodory condition is sufficient for measurability of function
g. It is well known fact, but its proof is difficult to find in the literature. For that reason, we
present a proof in one dimension, which can be easily generalized to higher dimension. Before
we introduce the proof, we state two useful propositions from [26] and prove a lemma from
[41]. Since [41] refers to lecture notes in Czech, the proof is presented below.

Proposition 2.1.10 (see [26], 2.7 Proposition, p. 45). If {f;}] 10 is a sequence of R-valued
measurable functions on (X, &), then the functions

g1(z) =sup fj(z), g3(x)=limsup f;(x),
JEN

Jj—+oo

ga(w) = ]Hglg fi(x), ga(z) = Elgligof fi(x)

are all measurable. If f(x) =lim; 4o fj(x) exists for every x € X, then f is measurable.



Proposition 2.1.11 (see [26], 2.10 Theorem, p. 47). Let (X, &) be a measure space. If
f X — C is measurable, there is a sequence {¢y, :ng of stimple functions such that 0 <
lp1] < |p2| < ... < |fl, ¢ — f pointwise, and ¢, — f uniformly on any set on which f is
bounded.

Lemma 2.1.12 (see [41] (in Czech), 3.10 Theorem (d), p. 6). Let functions f;(x) be mea-
surable on D € & for all j € N. Then the set D' of all points, where the limit lim;_, | o f;(x)
exists, is measurable and lim;_, | fj(x) is measurable on D’.

Proof. Denote D' set of all points where lim; ;o fj(z) exists, i.e., limsup; , . fj(z) =
liminf;_, o fj(x). It is easily seen that

D' =D\ U {:L‘ €D: yglﬁgf](x) <r< limsupfj(x)}

reQ J—+00

Since D is measurable, the difference of two measurable sets is a measurable set and countable
unification of measurable sets is a measurable set, we get that D’ is measurable if we show
that the set

{x € D :liminf fj(x) < r < limsup fj(x)} (2.1)

j—oo j—+oo

is measurable for all r € Q. At first we justify that {x € D : liminf; ,,  f;j(z) < r} and
{r € D:r <limsup;_,, fj(z)} are measurable. Indeed, the functions liminf;_,  « f;(z) and
limsup;_, ., fj(x) are measurable functions by Proposition [2.1.10{ and hence from Definition
[2.1.2] of measurable function also the sets must be measurable. Since for given r € Q the
set (2.1 is the intersection of sets {x € D : liminf; ,  fj(z) < r} and {z € D : r <
limsup,_, o, fj(®)}, we get desired measurability of the set (2.1]). [

Idea of the following proof is taken from AMBROSETTI-PRODI [3].

Theorem 2.1.13. Let ¢ : R x Q@ x R x RY — R fulfill Carathéodory condition. Then
g(p;z,u(z), v(z)) is measurable function for any measurable functions u : £ — R and
v:Q— RV,

Proof. For simplicity N = 1. The idea of proof in higher dimension (N > 2) is analogous, but
it is more technical and it produces lengthly formulas.

Since v and v are measurable there exist nondecreasing sequences u; S ut, u, S u,
v]j /vt and v, /v of simple functions such that

k* k*
+ + + +
Uy = E G X and v, = E B; Xp- (2.2)
=1 =1

for almost all x € Q. It follows from Proposition [2.1.11} Hence sequences u; = u: —u;, and
Vv = vg — v, converge to u and v, respectively. For any k, k € N the sums ([2.2)) are finite and
hence

1(k) U(k)
Uy, = ZanEj and v = ZﬁjXEj'
j=1 j=1



We claim that g(u; z, ug, vg) is measurable function. To prove this we show that set
{r e : g(pu;z,ug,vg) >t} (2.3)

is measurable for all ¢ € Q. We can divide the set ([2.3]) as follows:

{r e Q:g(p;z,up,v;) >t} = (ngl Ui_nzl {z eQ:g(wz, a5, pm) >t }ﬂEj_ﬂ E'm>U. ..
U ({x eq: g(,u;x,t,t)>t}ﬂ<Q\<U§.:1 Biul _, Em)))

and the problem of measurability of g is falling to the problem of measurability of E;, Ey,,
{r e Q:g(wx,05,6m) >t }, and {x € Q: g(p;z,t,t) >t} .

Since up = 2221 ajxg; and vp = Zé-:l BjXEj are measurable function, the sets £; and
FE,, are measurable as well.

From the Carathéodory condition (see Definition[2.1.9] (i)) the function g(x; -, u, v) is mea-
surable and using Deﬁnitionwe get measurability of the sets {z € Q : g(u; x, o), Bn) >t}
and {x € Q: g(u;z,t,t) > t}.

Due to the continuity of g(-;z,-,-) (see Definition [2.1.9] (i), ug(z) — u(x), and vj(z) —
v(z) for z a.e. in Q we have g(p;z,uk,v;) — g(p;x,u,v) for any p € R. Let us denote
E ={x € Q:limg o0 up(z) = u(x) Alimg— 400 v5(z) = v(z)}. The measure u(E) = u(Q)
since uy and vy, converge for z a.e. in 2 and so p(2\ E)) = 0. Limit function g of the sequence
of measurable functions which converge on measurable set D’ is also measurable on D’ in the

sense of Lemma 2.1.12 [

2.2 Abstract preliminaries

In this section we introduce some properties of the inverse operator to the p-Laplacian. We
assume that the reader has basic knowledge of functional analysis. More precisely he/she is
familiar with definitions of compact operator, compact set, continuous operator, functional,
strong and weak convergence etc. At first let us define some function spaces and the norms
on these spaces. More details can be found in BENEDIKT-GIRG [5] or [41].

Definition 2.2.1. Let Q C RY is domain. The symbol C*(Q) denotes the space of continu-
ously differentiable functions on Q2 up to the order k € NU{0}. Moreover C*°(Q) denotes the
space of infinitely continuously differentiable functions on 2.

Let us note for k = 0, we write C(Q) instead of CY(£2). Let us also define the support of
function f:Q — R, Q C RN as the set

def
supp f = {z € Q: f(x) =0},
where the closure is considered in euclidean metric.

Definition 2.2.2. Let Q C RY is domain. By C3° () we denote the space of all functions
f e C>(Q) for which
supp f C

and supp f is compact set.



Definition 2.2.3. Let [a,b] C R is closed interval. The symbol Cyla,b] (resp. Ci[a,b]) denotes
the space of functions f € C(a,b) (resp. f € C'(a,b)) such that f(a) = 0= f(b).
(

Definition 2.2.4 (see [41] 17.2 Definition (LP-norms), p. 37). Let (X,S,v) is a space with
a measure. If f is a measurable function on X and 1 < p < 400 is real parameter, then we

define .
191, ([ 1)’
def

|flloc = inf{C >0:|f] < C almost everywhere} .

Moreover we define

Definition 2.2.5 (see [41], Lebesgue space, p. 37). Let (X, S, v) is space with measure. Define
LP(X) as the space of v-measurable functions f on X such that ||f||, is finite. Moreover we

define

dcf
[flleex) = [ llp-
Let us mention that mapping || - ||, is seminorm on the space LP(Q2). For the correct
definition of norm || - ||»(x) we have to assume that if f; = fo almost everywhere in X, then

f1 and fo are the same element of LP(X). It is realized by the concept of equivalence classes
of Lebesgue measurable functions. See [5] and/or [41] for more details.

Definition 2.2.6 (see [5] Definition 3.1, p. 94). Let Q C RY is domain and 1 < p < +oo0.
Sobolev space WLP(Q) is space of all functions f € LP(Q) such that fori=1,2, ..., N, there
exists function g; € LP(Q) satisfying

l/%wm=émww

for all ¢ from the space of test function C3°(S2). Function g; is called weak partial derivative
of the function f with respect to x;.

Definition 2.2.7 (see [5], Definition 3.9 and Theorem 3.10, p. 95). For 1 < p < 400 we
define the norm || - |lywie(q) : WLP(Q) — [0, +00) as
1
LP(Q) ) ’

Definition 2.2.8 (see [5], Definition 3.12, p. 95). Let Q C RN is domain and 1 < p < +00.
Sobolev space Wol’p(Q) is defined as closure of C§°(Q) in WIP(Q) with respect to the norm

I Mlwre)-

def
1 lwe () <||f||LP(Q + Z H 0z,

where % € LP(Q) are weak derivatives of f.

Define p/ def p%l and recall that p > 1 and

. NN—% if p< N,
+oo ifp> N.



By Rellich-Kondrachov Compactness Theorem (see EVANS [24, Theorem 1, p. 272]), the
Sobolev space VVO1 P(Q) is compactly embedded to L"(2) for 1 < r < p*. In particular for
p > 2, we get the following chain of embeddings

WP (Q) < LT(Q) — L7 () S W=7 (), (2.4)

where W1 (Q) denotes the dual space of VVO1 P(Q) and L + L = 1. It is well known fact that
the problem
-Apu = f inQ,

v = 0 on 0N (2.5)

has the unique weak solution for each f € W~1#'(Q) by ZEIDLER [57, Theorem 26.A, p. 557].
In other words, there is the unique u € I/VO1 P(Q) which satisfies

/ |VulP~2 Vu - Vodz = (h,v)
Q

for all v € W, ?(£2). Note that (-,-) denotes the duality pairing between W, ?(€2) and W~1#' ().
We denote the unique solution of by R,(h), which is a continuous operator from
WL (Q) to W, P(Q) for p > 2 by [Zeidler, Theorem 26.A (d), p. 557]. By (2.4), the operator
R, : L' (Q) — VVO1 P(Q) is compact. In the following section we prove the continuity and
compactness of R, (h) for any p > 1, but only in one dimension.

2.2.9 Solution operator for one-dimensional case for p > 1

This subsection provides continuity and compactness of the solution operator R, : L (0,mp) —
C[0,p], h = u of one-dimensional boundary value problem

_92 / .
—(|u’|p u’) = h a.e. in (0,7,),

u(0) = u(m,) =0, 20

for any p > 1. The equation is understood in the weak sense. By regularity (see e.g. GIRG
[27], where the more general case of ¢-Laplacian is considered) for weak solution, it can be
shown that u € C}[0, 7] and the equation is satisfied pointwise a.e. in (0,7,). Note that the
results of this section are known, see e.g. [43], and we provide them only for completeness of
the presentation. Since the solution u € C’é [0, 7], the function u is absolutely continuous (see
e.g. DEL PINO [16]) and integrating we get

OP 20 O 20 =~ [ hs)as, .1
0
Let us define function -
o= { e 20 (2.8

which is increasing and continuous for any p > 1. It is not difficult to verify that its inverse
function is ¢,y and hence it has the same properties as ¢, does. Using function ¢, we can

rewrite (2.7) as follows
t
op (W(1)) = |u/(0)|p_2 u'(0) —/ h(s)ds.
0

11



Applying the monotone continuous function ¢, 1 we obtain

W) = ;' <|u’<o>|p‘2 o - | o) ds) . (2.9)

Integrating (2.9)) once more and using homogeneous Dirichlet boundary condition leads us to

u(z) = /0 ’ P (\u/(O)]’?‘Qu’(O)— /0 th(s) ds> dz (2.10)

and
P t
0=u(m) = / ®p ! <’u’(0)|p_2 u'(0) /0 h(s) ds) dz
Denoting o ,
a = [u/'(0)]"7 v/ (0) (2.11)
we get

0= /Oﬂp oy (a— /Ot h(s) ds) dz . (2.12)

Lemma 2.2.10. Equation (2.12) has unique solution a € R.

Proof. Let us define function ' : a — [ ¢! (a - fg h(s) ds) dz. Since the function ¢, !(s) =

@ (8) is continuous and fg h(s) ds is constant with respect to a we have continuity of F'. Next
part of the proof naturally falls into two steps.
Step 1. - Existence. Fact that h € L' (0,7,) implies

EIK>O:/p|h(s)|ds§K.
0

Choosing A > K we get Vt € [0, )]

A_/o h(s)ds >0, (2.13)

and choosing A < —K we get Vt € [0, 7]

t
A— / h(s)ds < 0. (2.14)
0
Combining (2.13)) and (2.14]) with continuity of F' we get that there is at least one solution
on (4, A) by definition of ¢, due to (2.8).

Step 2. - Uniqueness. We show that the function F' is monotone which guarantees the unique-
ness of the solution of (2.12). Indeed, let az > a;. Then monotonicity of ¢, ! yields

e ool <a2 — [T h(s) ds) dz — [77 5! (a1 — [ h(s) ds) dr =
= Jy" [%051 (aa — Jy h(s) d8> — ;! (a1 — J¥h(s) ds)} dz > 0

12



Let us denote a : L™ (0,m,) — R, which maps any h € L™ (0,7) to unique a such that a

solves the equation
T t
/ go:;l <a — / h(s) ds) dx =0. (2.15)
0 0

Lemma 2.2.11. Functional o maps any bounded set in L"(0,7y) to the bounded set in R.

Proof. Let ||hHLr/(0 ) < K. Then la| < 2K since from (2.13) and (2.14)) follows that a €
(A, A) for any A < —K and any A > K. |

Lemma 2.2.12. Functional o 18 continuous.

Proof. Let h, — h in L" (0,7,). Hence h,, is bounded in L" (0,7,) and the real sequence
a (hy) is bounded by Lemma [2.2.11] Then there exists subsequence Qh,,, SO it converges to
some point ag € R. If we prove

Tp t
/ 4,01:1 <a0 - / h(s) ds> dz =0,
0 0

the statement of Lemma follows from uniqueness of solution of (2.12)). Our current aim is to
show

s t s t
0= lim ’ go;l (a (hny,) — / B, () ds> dr = / ’ 90;1 <a0 - / h(s) ds> dz
k—+o0 Jo 0 0 0

The first equation follows easily from the definiton of a due to (2.15)). The second one follows
Proposition (Lebesgue Dominated Convergence Theorem),

t Tp t

lim hn,(s)ds = lim P (8)X[0,(8) ds = / ’ h(s)Xjo,(s)ds = [ h(s)ds
k—+o0 Jo k—+oo Jo ) o )
(2.16)

using the boundedness of h,,, and fact that h,, — h. The function y 4 is characteristic function

of set A which is defined as
1 €A,

0 otherwise.

(€)% {

Since ¢, 1'is defined for any ¢ € R and it is continuous, boundedness of argument implies
boundedness of ¢, 1. Due to the continuity of p L the fact that a (hn, ) — ao, and (2.16)), we

find
Tp t Tp t
lim %:1 <a (hny) —/ P, () ds) dz :/ 90;1 <a0 —/ h(s) ds) dz
k=00 Jo 0 0 0

by Proposition m (Lebesgue Dominated Convergence Theorem) again.

Hence .
Tp
0:/ <p;1(a0—/h(s)ds> dz,
0 0

which implies ap = a(h) because a(h) is the unique solution of (2.12) by Lemma [2.2.10, W

Proposition 2.2.13 (see YOSIDA [56], Theorem (Eberlein-Shmulyan), p. 141). A Banach
space X is reflexive if and only if it is locally sequentialy weakly compact; that is, X is
reflexive if and only if every strongly bounded sequence of X contains a subsequence which
converge weakly to an element of X.

13



Let us summarize the knowledge of the solution of the problem (2.6)). From (2.10) we have

u(z) :/Ox (a(h)—/oth(s)ds> de,

where a : L™ (0,7m,) — R is continuous and it maps a bounded domain in L (0,7,) to
a bounded domain in R. Let us consider the mapping R, : L 0,7m) — C’é [0, 7], which
assigns solution u to every function h € L™ (0, ).

Theorem 2.2.14. Operator R, : L (0,7,) — C§[0,7,] is continuous and compact.

Proof. Step 1. - Continuity. Let hy, — h in L™ (0, mp). If we prove that

ol (a(hn) _ /0 n(s) ds) Syt (a(h) - /0 "hs) ds) (2.17)

the proof follows from Proposition (Lebesgue Dominated Convergence Theorem). The
convergence hy, — h implies the boundedness of h,, in L"(0, 7). Hence we get the boundedness

) o5t (a(hn) — /0 t B (s) ds>
0" <a(h) — /Ot h(s) ds>

by Lemma [2.2.11| and by the continuity of gp;l on R.
It remains to show (2.17). Since « is continuous by Lemma [2.2.12] we get

and

alhn) = a(h). (2.18)

Moreover . .
/ hn(s)ds — / h(s)ds (2.19)
0 0

by Proposition m (Lebesgue Dominated Convergence Theorem) due to the boundedness
of hy, and the convergence h, — h. Since ¢, i continuous, the convergence follows
from ([2.18]) and (2.19)).

Step 2. - Compactness. Let B is bounded set in L' (0, 7,) which is reflexive Banach space (we
have 1 < r < +oc). Then there is K > 0 such that ||hy|/zri(or,) < K for any h, € B and
there exists a subsequence h,, — h € LT’(O,wp) by Proposition (Eberlein-Shmulyan
Theorem).

If we show, that

oy <a(hnk) —/Ot B, (5) ds) — ! (a(h) —/Oth(s) ds> (2.20)

then

14



by (2.9). Integrating (2.21]) we obtain

un(x):/oxcppl <a(hnk)—/0thnk(s)ds> d:c—>/0xgop1 (a(h)—/oth(s) ds) dx

and u(z) is solution of by (2.10)), definition of a due to and « due to (2.15). Hence
u(z) € C}[0,m,] and R, is compact operator.

It remains to obtain . Due to Lemma and boundedness of Ay, , there is subse-
quence of hy, (still denoted by h,,, for simplicity) such that a(hy, ) converges to some ag € R.
It follows from the weak convergence of h,, that

/Wp o, () dz — /Wp h(z)¢de Vo e L7 (0,m,).
0 0

Choosing X0, € L*(0,mp) — L’J(O,ﬂp) for all 1 <7’ < 400, we obtain

/Ot hn,(s)ds — /Oth(s) ds

/O 7 () x04(s) ds = /O "hs)ds.

using the fact that

Hence . i i
/0 iy (5) ds = /0 o (5)X(0. () dls /0 h()x(04(s) ds

and

Ly t Ly t
lim ’ 90;1 <a(hnk) - / B, (5) ds> dr = / ’ go;1 <a0 - / h(s) ds> dz  (2.22)
k=00 Jo 0 0 0

by Proposition (Lebesgue Dominated Convergence Theorem) and the continuity of p L

Due to the fact that .
Tp
/ 4,0;1 (a(hnk) — / Iy (5) ds> dr =0
0 0

for all k£ € N by the definition (2.15) of «, we have

/Ofrp gogl <ao - /Oth(s) ds) dz = 0

from ([2.22)). It follows that ap = «(h) by the uniqueness of the solution (see Lemma [2.2.10)).
Hence the limit (2.20) holds. [
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Chapter 3

Bifurcations from infinity

3.1 Krasnoselskii type necessary condition
In this section we consider the problem

—Apu = plulP 2w+ g(; 2,0, Vu)  in Q,

u = 0 on 01}, (3.1)

(in the weak sense) where p € R, A, L div <|Vu|p72 Vu) denotes p-Laplace operator,

the domain Q € RY is bounded with C*®-boundary for some « € (0,1). Let us note that
by Section , the inverse of p-Laplace operator R, : L™ (Q) — VVO1 P(Q) is continuous
and compact for p > 1 in the case N = 1 and/or for p > 2 in the case N > 2. Let g :
R x Q x R x R™ — R satisfy Carathéodory condition (see Definition and the following
growth condition:

9(s5 7,4, ) < alz) (3.2)

for some a(z) € L™ (Q). The parameter 7/ satisfies 1+ L =1andr e (p,p*). Our aim is to

formulate necessary condition for the bifurcation of solutions from infinity.

Definition 3.1.1. We say that A € R is a bifurcation point from infinity of the problem
(3.1), if there exists a sequence {(fn,un)}re; € R X VVO1 P(Q) of weak solutions to

—Apuy, = fin ]un|p*2 Un + g(ln; T, Up, Vuy,)  in Q, (3.3)
u, = 0 on 0, '

such that i, — X and ||unHW17p(Q) — +00
0

Next Proposition is a slightly modified version of Proposition 2.1 from [21I], where the
bifurcation is considered from zero and the function on right hand side does not depend on
Vu.

Proposition 3.1.2. Let p > 2 for N > 1 orp > 1 for N = 1. We assume that X is a
bifurcation point from infinity of the problem (3.1). Moreover there is 6 > 0 such that the
sequence fi, from Definition satisfies |Aa — A1l > 0 > |un — \1| the sequence form

Definition (3.1.1. Then X is an eigenvalue of (1.5)).

Proof. We perform the proof for p > 2 and N > 1; the other case is analogous. Assume that
the sequence (fiy, uy) € R x Wol’p () satisfies (3.3), i.e.,

—div (\Vun\p_Q Vun) = lin |un\p_2 Un + g(fn; , Up, V), (3.4)

and ji, — A, HunHWOLp(Q) — 400 as n — +o0. Dividing (3.4) by HU”HII:I;(;P(Q and substituting

)

Un
Wn,

||Un||W017P(Q)
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into (3.4) we get

9(n; T, Up, Vuy,)

HUTLHWOLP(Q)

~div (\anIH an) = ttn |0 |P 2w +

Hence using the inverse operator R, : L"(Q) — VVO1 P(Q) of p-Laplacian, we obtain

_ ST, Uy, VU
Wp = Rp <Nn |'U)n‘p 2 Wy, + g('un n n)>

”unHWOl’p(Q)

Now we show that there is K > 0 such that for all n € N holds

g(ﬂm Ty Up, vun)

< K. (3.5)
L (@)

Hn ’wn|p72 Wn, +

HunHWOLP(Q)

Recall that Wol’p(Q) — L1(Q) for q € [1, NN—_’;] with p < N and for any ¢ > 1 with N = p.

In the case p > N holds Wol’p(Q) — 00,17%(9)' Thus WP (Q) < L" (Q) for r € (p,p*).
It is also well known that L? () < L?(Q) for p > ¢ on bounded domain Q. With this in
hand, we claim that Hwn||wo1,p(m = 1 implies |Hwn|p_IHer(Q) < . Indeed from embeddings

Wol’p () = L" () we get that ||wy|rrq) < c

Hence
CTZ/ ]wn|de2/(wn|p_1)P1 dx
Q Q

and
p—1

([ Gunp)7 7 ar) © <o
Q

< P~ L. Since for r € (p, p*) we have L1 (Q) = L (Q) and

p—1 .
It follows that |||wy] HLF(Q)
there exist ¢ € R such that
-1
lwn P~ ) < €

Moreover the function g(u;x,u,v) is bounded by assumption and so inequality
holds. It follows that there is a subsequence of w, (still denoted w,) such that w, — w
weakly in Wy (). Hence

w = Rp(j‘|w‘p_2w)a

with ”wHWOLP(Q) =1 and so \ is an eigenvalue of (I.5)). [ |

3.2 The key estimate for the proof of an analogy of Dancer’s
Theorem

In this section our aim is to prove the key estimate, which will be used to prove an analogy
of Dancer’s Theorem (see [15], Theorem 2., p. 1071) for the equation in one dimension
and the bifurcation from infinity. The bifurcations of the positive and negative solutions will
be studied in detail in the prepared paper [30]. The process of the proof is identical with the
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proof given in DANCER [I5]. The first fundamental part is to prove that there is the jump in
the Leray-Schauder degree. This is done in DEL PINO-MANASEVICH [2]]. Let us define

TH : WP (Q) — Wy P(Q)

such that T}’ & Rp(ppp(u)).

Proposition 3.2.1 (see [2I] Proposition 2.2, p. 231). Let r >0, p > 1, B(0,r) is the ball in
Wol’p(Q) centered at origin and p € R. Then

1 if <A
_ TH =
degyyir () (I = T3, B(0,7),0) { 1 A <p<

Using this proposition we can follow the proof of Dancer up to Lemma 2. The main
difficulty is to prove analogy of Lemma 3. It is the aim of this section. More precisely, we
consider the pairs (uy, u,) € R X VVO1 (0, mp) satisfying problem (3.1]) in one dimension, i.e.

- (|U{n|p_2ufn)/ — palunlPPun = g (pns @, up, ) on (0,mp)
(3.6)
un(0) = un(mp) =0,

with g(pn; @, un, ul,) < K and we show that following Theorem holds.

Theorem 3.2.2. Let (up,u,) € R X Wol’p(O,ﬂp) is sequence of solution of (3.6) such that
Hunle,p(O ry) — T00- Moreover let there is d € R such that [Aa — M| > & > |pn, — A1| for all
0 )

n € N. Then pun, — A1 as n — +oo and there is ng € N such that p, does not change a sign
for all n > ng.

We state some auxiliary facts first. The weak formulation of (3.6)) leads us to
Tp 9 Tp 9 Tp
/ lul, [P~ ¢’ da — ;Ln/ [tun [P uppde = / G(pn; T, up, U)o da (3.7)
0 0 0
for all ¢ € W,”. Choosing ¢ = u,, in (3.7) we obtain

Tp Tp Tp
/0 |uy, |P dz —un/o |un|P dz :/0 (s T, U, ul, )y, da (3.8)

Let us recall the variational characterization of the first eigenvalue of p-Laplacian, e.g.

Tp /pd
A\ = inf w
wewr o7 lwlP dx
and hence f ‘ /‘
™ |w!|P da
<2 7 3.9
1 — Oﬂ'p |’l,U|p d.’f ( )
for all w € T/VO1 P Tt follows that
Tp Tp
og/ |w’|pdx—)\1/ P da. (3.10)
0 0
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From (3.8)) we obtain
Tp Tp Tp Tp Tp
/ G(pin; T, Uy, Ul Uy Az = / |u;\pdx—)\1/ ]un]pda:—l—)\l/ |un|pdx—un/ |un [P dx
0 0 0 0 0
and using ((3.10) we get
Tp Tp Tp Tp Tp
/ ]u;l\pdx—)q/ ]un]pdx+/\1/ \un\pdx—,un/ |un|P dz > (M —un)/ |un|P da .
0 0 0 0 0

Hence -
fo ! g(/j’n; L, Un, uéz)un dz
foﬁp |, [P da

Lemma 3.2.3. Let {w,}, satisfies (3.8) with g(pin;z, wy,w),) € L®(0,m,) for all n € N.
Moreover let there is 6 € R such that |Aa — A\1| > & > |un — A1 for all n € N. Then
||wn||W1,p(0 . bounded if and only if |[wnl|Lr(o,x,) is bounded.

0 ’ )

> A\l — fin - (3.11)

Proof. The fact that there exists K > 0 such that [[wy|lze(0x,) < KHwnHWLp(O , follows
) 0 3T

from Wol’p((),ﬂp) — LP(0,mp).
Conversely assume that ||wp||pr(o,r,) is bounded sequence and there is a > 0 such that
9(n; 2, wy, w!) < a by the assumption of the Thesis. Then from (3.8)) it follows

Tp

Tp Tp Tp
/0 lw! P dz = Mn/o ]wn‘de—F/O 9t T, Wy, W) )wy, d < Mn\wnﬂip(o’%)—i-a/o |wy,| dz .

Since p > 1 we obtain

Tp

Tp
ol [ a4 < o+ 0 [ s

0 0
and hence

Tp

|7 et o < o + )
0

Since u, is bounded by assumption, the statement of Lemma follows. |

Lemma 3.2.4. Let (up,wy) € Rx W&’p(O,Wp) fulfills (3.8), HwnHW&,p(O ) 00 8T = 00,
and there is § > 0 such that [N — A1| > 6 > |pn, — M| for all n € N. Then p, — A1.

Proof. Applying Hoélder’s inequality we can rewrite (3.11)) as

, i 1
A < (fo7rp |g(pon, T, Up, ul,) P dl“) (fop unl? dx) & Hg(,un,af,umU%)Hm’(omp)
1= fin < T P A - e
0 n n LP(OJFP)

Since L>®(0,7,) < LP (0,7,) for all p’ € [1,+o0] and g(n, T, un, ul)) € L=(0,7,), there is
0 < C < +oo such that Hg(un,x,un,u;l)HLp/(Omp) < C. Moreover HunHLp(Omp) — 400 by
Lemma [3.2.3] and hence

lim (A — py,) <0.

n—-4o00
It remains to prove that there is no A > 0 such that u, — A. On the contrary, suppose
that there is such A\. Hence )\ is a bifurcation point from infinity by Definition Since
A1 < limpy o0 ftn < A2 —9, we get a contradiction with Proposition [3.1.2] The same argument
follows that any subsequence of u, converge to A\; and thus lim,_, 1 ptn = A1. |

19



Proof of Theorem[3.2.3. The proof is based on the following substitution
U =t (o1 +0,)), (3.12)

where t, € R\ {0} and v, € Wol’p(O,ﬂp) such that scalar product (QDI,UJL—)WI,ZJ(O ) = 0- We
0 )

have also v,, — 0. Indeed, y, — A; by Lemma and all eigenfunctions correspond-

ing to the first eigenvalue has form k¢, for any x € R. Therefore, the case that there

is limp— 400 vg % 0 contradicts that Ay is the first eigenvalue. Hence vZ — 0 and since

Hu"HWol’p(Oﬂfp) — 400, it is obvious that ¢, — 0.

Substituting (3.12]) into (3.11)) gives

\ fg /me Un, U n)t 1(901"1'“ )dx fo :Umx Un, U n)(@1+v )d
1— I =
I [t o1 + o)) da Itn! P o |(pr + o) da

and thus -
fOp g\ln, T, Up, U n)((pl + v, )dx AL —

Jo7 (o1 + o) dz T talP 2ty

Due to the fact that v,;r — 0 as n — 400, there is ng such that for all n > ng holds
@1+ v, > ¢. Furthermore in one dimension ¢; = sin,(z), which is positive function on the
open interval (0, ,). Consequently

(3.13)

@1+ v, >0 (3.14)

for any n > ng here.

Our goal is to show that A\; —,, does not change a sign for t — 0™ and ¢t — 0, respectively.
We give the proof only for ¢ — 0T, because the second case is similar. In this case we are
proving A\ — u, < 0 for all n > ng. Combining with we find that it is sufficient
to obtain

Tp
| sl o+ 0] e <0, (3.15)
0
For this purpose let us introduce the sequence of functions
9t @5 s 0 ) (01 + v ) = P (11) 977 (2) (3.16)
where
0 0<s<m,
Pn(s) = C’“s—C’;.C m <2< 2m,
C 2m < s < +o0

with Cj > 0, which will be specified below. Replacing g(tin, z, un, ul,) in (3.15) by (3.16]) we
get for fixed m € N in the limit case

Tp
lim Sup/ [g(un, T, Un, ) — P (t;l) 80110—1] (p1 + v;) dz.

k——+o0 n>k

By the definition of limes superior we get

Tp
lim sup/ [g(un, 2, U, ) = Py (171) sO’f_l] (1 +v,)dz (3.17)
0

k—+4o00
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and by straightforward rearrangement we obtain that (3.17)) is lower or equal to

Tp Tp
limsup/ 9(tn, Ty un, ul) (01 +0, )dx—i—hmsup/ (=P (t7)] (@] + Y o) da. (3.18)
0 0

k—+o00 k—+o0
Since
Q(Mnaxﬂnv%) € LOO(()’ﬂ—p)?
|siny(z)] < 1,
P, < C. (3.19)
v, — 0,

n

these functions are measurable and there is a function f € L>(0,m,) such that
|9(kn, @ wnyup) (o1 + o)l S f - and [P (87) (W] + o) < F

and we can apply Corollary we obtain that

Tp Tp
/ lim sup g(pn, T, tn, u)y) (@1 + v, ) da +/ limsup [~ P, (t;1)] (o] + ool de
0 0

k—+o00 k—4o00

is greater or equal to (3.18)). Using (3.19)) again we have

Tp
/ lim sup g(fin, T, tn, ty,) (91 + v, )dw<K/ ¢1 dw
0

k—4o00
and
Tp . _ 1 T Tp »
/0 lllﬁmiup [— P (t:9)] (&8 + @2 o)) dae < —C’k/o oy dx.
—+00
Hence there is n1 € N such that
Tp
/ [g(un, Ty Uns i) — P (871) ] (o1 + v, )dz <0 (3.20)
0
for
C fO ¥1 da
f ’fdx

any m € N, and n > nj. Since

hm [Q(Mnafﬂa unau/n) - Pm (tgl) (p117_1:| (301 + 'UZ) - g(MTZ?xauna u'/n) I

m—-+00

all function are bounded by (3.19)) again, and there is integrable function f(x) =max{2K,2Cy}
such that

190t @,y 1) (01 + 0, )] < f and Yim € Nt |g(p, @, un, uly) — P (877) (0] + 65 0,)) < f
for fixed n > max{ng,n1} holds that

Tp i 1 -1 T
/(; g(:“’nax Un, U n)(gpl—i_v )d :m1—1>r-',r-loo 0 [g(ﬂn7$7un7u%>_Pm (tr: )(10117 :| (gpl—i_vn)dw

by Proposition (Lebesgue Dominated Convergence Theorem). Consequently

Tp
/ G(fns T, U, 1l (01 + v, )dm <0.
0
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Chapter 4

Differentiability of sin

4.1 Introduction

This chapter is a short summary of results obtained jointly with my mentor P. GIRG in the
paper " Differentiability properties of p-trigonometric functions” published in the proceedings
of Variational and Topological Methods: Theory, Applications, Numerical Simulations, and
Open Problems, see [28]. The published version of the paper [28] is included in the Appendix
A1. Since the paper was a joint work, I briefly comment on my personal contribution to the
paper in Section

The p-trigonometric functions arise from the study of the eigenvalue problem for the one-
dimensional p-Laplacian. Recently, the p-trigonometric functions have attracted attention of
many researchers; see, e.g., [8, 10, 12, 13| 22, 23, 25, B0, B8, B39, 51], and references therein.
We assume p > 1 and say, that A € R is an eigenvalue of

—( P2 = MuPu =0 in (0,7,), (4.1)
u(0) = u(mp) =0,

if there is a nonzero function u € VVO1 (0, mp) that satisfies (4.1)) in a weak sense. Here

1 1 2
T = 2/ - ds=_—-T (4.2)
o (1

— o T psin(n/p)

Let us note, that the problem can be considered on any bounded open interval, but the choice
(0, mp) simplifies the calculations. The discreetness of the spectrum of this eigenvalue problem
was established by NECAS [47]. This eigenvalue problem was later studied by the means of
the initial-value problem

o Hnp—2, 1\ _ p—2, _ :
(| P~2u")" — Aul /u =0 in (0,00), (4.3)
u(0) =0, '(0)=1;
see ELBERT [23] for initial work in this direction. Later it was independently studied by DEL
PINO-ELGUETA-MANASEVICH [17], OTANI [48] and LINDQVIST [37].
Let sin,(z) denote the solution of with A = (p — 1). It follows from [23] that sin,(z)
is positive on (0, 7,) and satisfies an identity

| sing ()P + [sing,(z)[P =1 Vz eR, (4.4)

which for p = 2 becomes the familiar identity for sine and cosine. This suggests the definition
cosp(x) := siny,(x) and justifies the notation sin,(x) and cos,(x). The identity is called
p-trigonometric identity. It also follows from [23] that the eigenvalues of form a sequence
A = kP(p— 1),k € N and corresponding eigenfunctions are functions sin,(kz), k € N. Thus
all the eigenfunctions are determined by the function sin,(x). It comes as no surprise that the

properties of the function siny,(z) were studied extensively in the previous 30 years. As was
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shown in [23] that sin,(x) can be expressed on [0,7,/2] (the p-trigonometric identity (4.4)
can be thought of as the first integral of (4.3))) as the inverse of

r 1
arCSinp(x) = /0\ m dS, T e [O, ].] s (45)

which is extended to [0, 7,] by reflection sin,(x) = sin,(7, — x) and to [—mp, 7] as the odd
function. Finally, it is extended to R as the 2m,-periodic function. The function arcsin,(x)
from (4.5]) is extended to [—1, 1] as an odd function. Then

siny(arcsing(z)) =« Vo € [-1,1]. (4.6)

Note that for p = 2, we obtain classical arcsine and sine from this definition.

In our article [28] we focus on the differentiability and analyticity properties of p-trigono-
metric functions. One can immediately see from , , and that sin,(0) = 0 and
sin,(m,/2) =1 for all p > 1. From and the definition of cosy(z), we obtain cosy,(0) =1
and cosy(m,/2) = 0. It follows from the results in [23] [38] 48] that the possible differentiability
issues are located at = 0 and & = 7,/2. There are several results concerning differentiability
and asymptotic behaviour of sin,(z) at z = 0 and = = 7,/2 in MANASEVICH-TAKAC [44] and
BENEDIKT-GIRG-TAKAC [6]. In PEETRE [51], generalized formal Maclaurin series for sin,(x)
were studied and their convergence was conjectured on (—,/2, m,/2). The local convergence of
the generalized Taylor series (and/or the generalized Maclaurin series) for sin,(z) follows from
PAREDES-UcHIYAMA [50]. Taking into account that the point = 0 is often considered as the
center for the Taylor (i.e. the Maclaurin) series or the generalized Taylor (i.e. the generalized
Maclaurin) series for sin,(x), we decided to provide a detailed study of the convergence of
these series towards sin,(z) on (—7,/2,7,/2). We were also motivated by work of OTant [49],
where he studies properties of the solutions of

(| |P2u") + |u|* 2u =0 in (a,b), e
u(a) =u(b) =0, (4.7)
for general exponents p,q € (1, +00) with p # ¢. Among other properties he proved that for
p= gzﬁ,m € {0} UN and for ¢ even, any solution of belongs to C*°(a, b). In our case,
p = q we find that siny(z) belongs to C*°(—m,/2,m,/2) if and only if p is even. Let us also
remark that local analytic solutions of the radial variant of were studied in BOGNAR [9].
Our main result provides convergence of these partial sums. We treat two cases sepa-
rately, p > 2 is an even integer and p > 2 is an odd integer. Namely, for the particular case
sing(p41)(7), m € N, x € (—mp/2,7m,/2), we show that the Maclaurin series converges towards
the values sing(,,41y(x) on the interval (—m,/2, m,/2). Conversely, we show that the Maclaurin
series converge towards sing,+1(x), m € N, for x € (0,m,/2) and does not for z € (—m,/2,0).
More precisely, the Maclaurin series converges on « € (—m,/2,m,/2), but not towards values
of singp41(x), m € N for x € (—m,/2,0).

4.2 Main Results of [2§]

Our main results concern derivatives of sin,(xz) for p € N, p > 2 on the interval z €
(—mp/2,mp/2). We distinguish two cases p is even, ie., p = 2(m + 1) and m € N, and p
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is not an even integer, i.e., p = R\ {2m} and m € N. In the first case p = 2(m + 1), the
p-trigonometric identity (4.4) takes form

(sin(m1y (2)) 2™ + (cosa(m1y@)) 2™ =1, (4.8)

which is valid for any € R and hence on (—m,/2, m,/2). Note that there is no absolute value,
since there are even powers.

In the second case assume p = 2k + 1 for clarity. We have to distinguish two subcases. For
<< %”, the p-trigonometric identity takes form

(singma1(x))*™ 1 + (cosgmar (z))*" T = 1. (4.9)
On the other hand, for —m,/2 < x < 0, the p-trigonometric identity takes form
—(singm41(2))?™ ™ 4 (cosgmir(z))*™ T =1. (4.10)

Since there is only one identity (4.8)) for p = 2(m + 1), this case has nice smoothness
properties on (—mp,/2,7,/2) and we obtain a rather surprising result concerning smoothness
of function sin,(z) for even p.

Theorem 4.2.1 (see [28], Thm. 3.1, p. 105). Let p =2(m + 1), m € N. Then
T2(m-+1) 7T2(m+1))
2 72 ’

Conversely, for p = 2m + 1, we have to distinguish two subcases (4.9) and (4.10), which
has damaging effect on the differentiability of sin,(z). Thus the smoothness is lost when p is
odd. The smoothness is also lost if p is not an integer.

sing(p11) () € CF( —

Theorem 4.2.2 (see [28], Thm. 3.2, p. 105). Let p € R\ {2m}, m € N, p > 1. Then
siny () € CMPN(=m,/2,7,/2),

but
sing(z) ¢ OV (—mp/2,7,/2).

Here [p] := min{k € N: k > p}.

Our last result gives an explicit radius of convergence of the Maclaurin series for even
p > 2. To the best of our knowledge, all previous results concerning convergence of series for
sin,(x) were only local; see, e.g., [50].

Theorem 4.2.3 (see [28], Thm. 3.3, p. 106). Let p = 2(m+1) for m € N. Then the Maclaurin

. . T Tr
series of siny(m,41)(x) converges on (—w, W)

Theorem 4.2.4 (see [28], Thm. 3.4, p. 106). Let p = 2m + 1, m € N. Then the formal

Maclaurin series of singm41(x) converges on (—™253 Z224L) - Moreover, the formal Maclaurin

series of sin,(z) converges towards singmy1(x) on [0, 25+L), but does not converge towards

singm+1(z) on (—25,0).

The convergence of Maclaurin series for p even/odd is illustrated on Figures 5-8 in [2§],
p. 123-124.
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4.3 My contribution to [28]

Due to the purpose of this thesis I would like to devote this paragraph to specifying of my
contribution to [28]. Let me note that all my ideas were formalized and improved during
discussion with my mentor P. GIRG. My Bachelor Thesis [34], where I proved Lemma
was a starting point for this research. Lemma [4.3.2] yields following formula

2n—2-1
sin(z) = Y agnsing " (z) cos, " (2) (4.11)
k=0

on (0,7). Here sinl(on) (x) denotes the n-th derivative of the function sin,(x). Formula (4.11])
is essential for the proofs of Theorems [4.2.1] and |4.2.2] which were the final results of my
Bachelor Thesis [34]. During the work on [2§] I proved Lemmas and Lemma [4.3.4]
states that sin](;n) < 0 for p > 3 be an integer and n > 2. It was used by P. GIRG in a proof
of Theorems [4.2.3] and [4.2.4] Since the proof of Lemma [4.3.4] was very technical, it is not
included in this thesis and the reader is invited to read it in Appendix Al.

In the sequel of the Section the Lemmas, which was mentioned above, are stated
for convenience of the reader as well as and some definitions from [28]. Following ‘symbolic’

operators (rewriting rules) are defined on expressions of the form

a-sinf(z) - coszl,*q(a:) with a,qg € R (4.12)
as follows
cg - sin?=1(z) - cogt (@D
D, a - sind(z) - COS;,%Q:) def ) a-q-sin, (x) - cosp (x) q#0, (4.13)
0 q=0.
of [—a-(1=¢q)-sin?P1(z)- 1—(¢+p-1) 1
Dca - sinf(z) - cos;_q(:c) def { a-(1-g)-sing () - cosp (z) a#1, (4.14)
0 q=1.

Let us observe that the results of application Dy and D, have the form (4.12)). Hence they are
also in the domain of definition of Dy and D.. Thus we can consider compositions of D, and
D; of arbitrary length. The first derivative of sinf(z) - cosp” %(x) (here a = 1) can be written
using these symbolic operators as follows (see [28§] for details)

P sinf(z) - Cos]lfq(ac)

= Dgsinf(z) - cosllfq(x) + Desinl(z) - Cosglaiq@f) :

In fact, there are three cases ¢ € R\ {0,1}, ¢ =1, and ¢ = 0.
Case g € R\ {0,1}. Here

P sinf(z) - cos;,_q(:c)

= D, sind(z) - cos;)_q(l“) + Desin}(z) - coszl,_q(a:) .

Note that the distance between the exponents of sin, () in the resulting terms, i.e., sin®~1(z)-

P
cosy ©(z) and sindotP—1 -cosz P (1), is exactly p. This is the fundamental fact of the proof

of Lemma, below because in a sum of the type

cosing’ (z) - cos;_qo () + 1 sin]q)°+p(:v) : cos}?_(q‘)ﬂ’) (x)
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the terms combine together as in the diagram depicted on Figure
Case ¢ = 1. In this case the term sinf(x) -cos;,l,_q(x) = sin,(x) and hence the derivative

of this term is the single term cosy(xz) = Dgsiny(z) + Desiny(x). The fact D, sin,(z) = 0
(by Definition ) will be reflected in our diagrams by omitting the ‘right-down’ edge
departing from this node, see Figure

Case g = 0. This case corresponds to sinf(x) -cos,lj_q(x) = cosp(x). Thus the derivative of this
term is the single term — sing_l(:):) Cos;_(p_l)(x) = D, cosp(x) + D cos,(x) by the Definitions
(.13) and (4.14) of Dy and Dy, respectively. The fact D4 cos,(z) = 0 will be reflected in our

diagrams by omitting ‘left-down’ edge departing from this node, see Figure Note that since

in our diagrams we write powers only, the node corresponding to — sin?~!(z) cos;l,_(p _1)(:1:) is

p
labeled by sb~cp PV

q=0o+ P

1~(Go+P) Ho+P
C
p +p p P

A N

C%;(Qo* p-1) S%vﬁ p-1 C%f<qo+2 p-1) S%vﬁz p-1

1-(0o—1) o1
) S5

+p +p

Figure 4.1: Rewriting diagram of the first derivative of ¢ sinf° (=) - cosy P (z)+ep sindo P (x) -

Cosjlo_(qo—i_p) (x). For the lack of space, we do not write the coefficients standing in front of these

. . . . . 1—q . 1-
terms and use abbreviations, i.e., we write s instead of sinf(z) and ¢, ? instead of cos, /().

q=1 q=1+p

1-(1+p) S1+p
S C
P +p P P

1-(1+p-1) Sl+ p-1
C C
P +p P P

C:Il.)—(1+2 p-1) 8'1;'2 p-1

+p

Figure 4.2: Rewriting diagram of the case ¢ = 1. Recall that we write s}, instead of sin(z)

and c;,_q instead of cos;,_q(x) and do not write the coefficients.

The higher order derivatives are obtained in the same way, thus, e.g., the second derivative
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q=0
q=p
1,
Cp s > Cp Psh
Dc Bs/ Dc
+p-1 / -1 +p-1
-1 1-(p-1) 1-(2 p-1) -1
sptey P o » cp PP

Figure 4.3: Rewriting diagram of the case ¢ = 0. Recall that we write s}, instead of sin(z)

and c,l,_q instead of cos,lfq(a:) and do not write the coefficients.

of sinf(z) - cosp”%(x) (here a = 1) can be written as
2
P sinf(z) - cosll,_q(:c)
= (Ds o Ds) sin () - cosll,_q(x) + (D¢ o Ds) sin(z) - Coszl,_q(a:)
+ (Ds 0 D.) sind () - cos}g_q(x) + (Do D) sind(x) - cosy ().

Let us recall the sum (4.11). The k-th term of this sum for n-th derivative can be derived
using composition of the symbolic operators Dg and D., which acts on the sing (). Before
we introduce the composition of the operators Dy and D, let us recall some notation from

formal languages.

Definition 4.3.1. (SALOMAA-SOITTOLA [52], 1.2, p. 4,], and/or MANNA [42, p. 2-3, p. 47, p.
78]) An alphabet (denoted by V') is a finite nonempty set of letters. A word (denoted by w)
over an alphabet V is a finite string of zero or more letters from the alphabet V. The word
consisting of zero letters is called the empty word. The set of all words over an alphabet V/
is denoted by V* and the set of all nonempty words over an alphabet V is denoted by V.
For strings wy and wy over V', their juxtaposition wyws is called catenation of wy and ws, in
operator notation cat : V* x V* — V* and cat(w;,ws2) = wiwy. We also define the length of
the word w, in operator notation len : V* — {0} UN, which for a given word w yields the
number of letters in w when each letter is counted as many times as it occurs in w. We also
use the reverse function rev : V* — V* which reverses the order of the letters in any word w
(see [42, p. 47, p. 78]).

For our purposes here, we consider the alphabet V' = {0,1} and the set of all nonempty
words V. Thus words in VT are, e.g.,

“077 “177 440177 “1077 “1177 L
For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” ,
len(“010011000”) = 9.
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Let n € N, k € {0} UN,0 < k < 2" 2 —1 and (k)2,,—2 be the string of bits of the
length n — 2 which represents a binary expansion of k (it means, e.g., for k = 3 and n = 5,
(3)2,5—2 = “011”). Now we are ready to define Dy, in two steps as follows.

Step 1 We create an ordered n — 2-tuple dj,,—2 € {DS,DC}”_2 (cartesian product of sets
{Ds, D¢} of length n —2) from rev((k)2,—2) such that for 1 <i <n—2, dj o contains
D, on the i-th position if rev((k)2,—2) contains “0” on the i-th position, and dy,, con-
tains D, on the i-th position if rev((k)2,—2) contains “1” on the i-th position (it means,
e.g., for k=3, and n = 5, we obtain d3 52 = (D, D¢, Dy)).

Step 2 We define Dy ,, as the composition of operators Dy, D, in the order they appear in
the ordered n-tuple dj ,—o (it means, e.g., for k = 3, and n = 5, we obtain D35 =
(DcoD¢oDy)).

With this notation in the hand, we can state chain of Lemmas ~

Lemma 4.3.2 (see [28], Lemma 4.5, p. 110). Let p € R, p > 1, n € N. Then sinl(;n) (x) exists
on (0,m,/2) and it is continuous. Moreover,

forn=1: sin,(x) = cosy(z), (4.15)
forn=2: sinj(z) = — sing_l(m) : cosg_p(z) , (4.16)
and forn = 3,4,5,..., k=0,1,2,3,...,2" 2 — 1 there exists agn € R, lgp,miy, € Z such

that l l
Dk,n Slng(l‘) — ak,n . Sing' kntMgn (ﬂf) . COS}?_p. kn Mk n (CL‘) , (417)

and
an—2_]
sin]g”) (x) = Z A - sing'lk’"erk’" (x) - cos;_p'lk’"_mk’" (x). (4.18)
k=0

Moreover, let j(k) € {0}UN be the digit sum of the binary expansion of k = 0,1,2,...,2" 21
(thus j(k) is the number of occurrences of D. in Dy ) and let Dy, sing (z) # 0. Then, for
k=0,1,2,...,2"2 — 1, the exponents

dkn ‘=P lk,n + Mmgn (419)

satisfy
Gk =J(k)(p—1) + (n =2 —j(k))(-1) +p—1. (4.20)
Lemma 4.3.3 (see [28], Lemma 4.6, p. 113). Let p € N, p > 1, and for alln € N, n > 2
2n—2-1
sin(2) = > apsing (z) - cos, " (). (4.21)
k=0
Then for alln € N, n>2, and all k € {0} UN, k <272 -1
Gon € {0}UN. (4.22)
Lemma 4.3.4 (see [28], Lemma 4.7, p. 114). Let p € N, p > 3. Then for alln € N, n > 2

sin]()")(x) <0 on (0, %)
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Chapter 5

Generalization of sin, in complex do-
main

5.1 Introduction

This chapter is a short summary of results obtained jointly with my mentor P. GIRG in a
paper ”Generalized trigonometric functions in complex domain” accepted in Mathematica
Bohemica, special issue dedicated to Equadiff 13, see [29]. Please find this paper included in
Appendix A2. Since the paper was written in cooperation, I briefly comment my contribution
to the paper in Section

The paper [29] extends the results of [2§] to complex domain. The research on [29] was
stimulated by an interesting question of O. Do0SY, which was posed during my talk at an
international conference “Nonlinear Analysis Plzen 2013”. Recall the most surprising result
of [28], i.e. siny(x) is a real analytic function on (—mp,/2,7,/2) for p = 4,6,8.... In other
words, sin,(z) equals to its Maclaurin on (—m,/2,m,/2) for p = 4,6,8.... This approach
naturally allows to extend sin,(z) for p =4,6,8... to an open disk

{ze€C:|z| <mp/2}

in the complex domain using power series (cf. [38], where the convergence of the series is
conjectured without proof). O. DOSLY in his question inquired whether this extension satisfies
in the sense of differential equations in complex domain. The paper [29] addresses his
question. For p being an even integer the initial value problem in R is equivalent to

o (u/)p—2 W — Pl = 0,
u(0) = 0, (5.1)
u'(0) = 1.

Note that for p > 1 real not being an even positive integer, we cannot get rid off the absolute
values in . Thus the equation does not make sense for general p > 1 in the com-
plex domain. In this paper we consider the in complex domain for integer p > 2. The
complex valued ordinary differential equations are studied by means of power series (mostly
by Maclaurin series). Note that, by Theorem (i.e. [28, Theorem 3.2 on p. 5]), sinl(;n) (0)

exists for 1 < n < p, but sin}(,n) (0) does not exist when p > 3 is odd integer and n > p. Thus,
by the formal Maclaurin series of sin,(x), we mean a series calculated from the limits of the

derivatives limg_,o+ sinz(,n) (x), which were shown to exist in [28] for any n € N and p > 3 odd
integer.

In Chapter[5] the independent variable z stands for a complex number and the independent
variable z stands for a real variable. In the same spirit, sin,(z) stands for a complex valued
function and sin,(x) stands for a function of one real variable.
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5.2 Main results of [29]

In this section we summarize all main results of the paper [29] regardless of my contribution,
which will be specified in Section [5.3

Let Min, () denotes formal Maclaurin series of sin,(x) for p > 3 being an integer. It is
proved in [28] that

+00
M, (x) =Y apz*?t!, (5.2)
k=0

where ap > 0 and «aj, < 0 (all other coefficients are zero). The first result of [29] answers the
question by O. DOSLY affirmatively.

Theorem 5.2.1 (see [29], Theorem 2.1, p. 4). Let p = 4,6,8, ..., then the unique solution of
the initial value problem on |z| < mp/2 is the Maclaurin series (5.4).

LINDQVIST [38] suggested alternative definition of sin,(z) in complex domain as the solu-

tion of the equation equivalent to
d _
@) - Dur =0, w(0)=0, w/(0)=1. (5.3)

This definition works formally for p > 1. LINDQUIST also warned that siny,(z) defined in this
way in complex domain may be different from sin,(x) on R (see [29, Section 3, p. 6] for more
details). The following Theorem confirms the legitimacy of the warning.

Theorem 5.2.2 (see [29], Theorem 3.1, p. 7). Let p = 3,5,7.... Then the unique solution
u(z) of the complex initial value problem (5.1)) differs from the solution siny,(z) of the Cauchy

problem (4.3)) for z = x € (—m,/2,0).

The next result describes an interesting relationship between real and imaginary part of
sin,(z) for p =4, 8,12, ...

Theorem 5.2.3 (see [29], Theorem 4.1, p. 7). Let p=4,8,12,.... Then
R[siny(z)] = S[siny(i - 2)]
for all z € C: |z| < mp/2.

However, there is no such relationship for p = 2,6,10,14. ... Note, that this case includes
the classical sine function.

Theorem 5.2.4 (see [29], Theorem 4.2, p. 8). Letp = 2,6,10,14.... Then for all p € [0,2m)
there exists z € C: |z| < m,/2 such that

R[sin,(2)] # J[siny (e - 2)].

5.3 My contribution to [29]

This section is devoted to specifying of my contribution to [29]. This paper was mainly created
during numerous and intensive discussions among the both authors. Hence it is very difficult
to clearly separate my contribution. As was mentioned earlier, the paper [29] was motivated
by the question of O. DOSLY (see Section which was answered in Theorem The
proof of Theorem [5.2.1] followed my ideas however the final version of the proof was joint
work. The proof contained the following auxiliary Lemma [5.3.1
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Lemma 5.3.1 (see [29], Lemma 2.1, p. 5). There is § > 0 such that in Uy e {z € C: |z] < ¢}
the initial value problem (5.1)) has the unique solution u(z) which is an analytic function in
Up.

The result of Section 3 (Theorem followed the same ideas as the proof of Theorem
5.2.1] and this theorem was proved during the discussion. Theorem [5.2.3| and Theorem
were based on the observations of P. GIRG (see Figure 1 in [29], p. 12-13) and the proofs were
created together. Conversely, Sections 5 and 6 were worked by P. GIRG. Section 5 contains
an interesting link between p-trigonometric identity and complex analysis. Section 6 is
devoted to the visualization of sin,(z).
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DIFFERENTIABILITY PROPERTIES OF p-TRIGONOMETRIC
FUNCTIONS

PETR GIRG, LUKAS KOTRLA

ABSTRACT. p-trigonometric functions are generalizations of the trigonometric
functions. They appear in context of nonlinear differential equations and also
in analytical geometry of the p-circle in the plain. The most important p-
trigonometric function is sinp(z). For p > 1, this function is defined as the
unique solution of the initial-value problem

(I (@) P72/ (2))" = (p = Dlu(@) P u(z), u(0) =0, u'(0) =1,
for any x € R. We prove that the n-th derivative of sinp,(z) can be expressed

in the form
gn—2_q

Z Ak, n singk’” (z) coszl,iqk’" (z),

k=0
on (0,7p/2), where mp = fol(l — sP)~1/Pds, and cosp(z) = sing, (). Using this
formula, we proved the order of differentiability of the function sinp(x). The
most surprising (least expected) result is that siny(z) € C®°(—mp /2, mp/2) if
p is an even integer. This result was essentially used in the proof of theorem,
which says that the Maclaurin series of siny(x) converges on (—mp /2, 7p/2) if
p is an even integer. This completes previous results that were known e.g. by
Lindqvist and Peetre where this convergence was conjectured.

1. INTRODUCTION

In the previous two decades, p-trigonometric functions have attracted attention
of many researchers; see, e.g., [II, Bl [6, [7), 10} [1T], 12 13, [I5] 16l 25], and references
therein. The p-trigonometric functions arise from the study of the eigenvalue prob-
lem for the one-dimensional p-Laplacian. We assume p > 1 and say, that A € R is
an eigenvalue of

—(|[P72u) = Au[P?u =0 in (0,7,), (L1)
u(0) = u(mp) =0, ’
if there is a nonzero function u € WH?(0,m,) that satisfy (1.1} in a weak sense.

Here )
1 2
T, = 2/ ds = — . 1.2
P=2 ) e T pemte/p) (12)
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Let us note, that the problem can be considered on any bounded open interval, but
the choice (0,m,) significantly simplifies the calculations. The discreetness of the
spectrum of this eigenvalue problem was established already by Necas [2I]. This
eigenvalue problem was later studied by means of the initial-value problem
— (| [P72u") = NuP"2u =0 in (0,00),
uw(0) =0, «(0)=1;

see Elbert [I1] for initial work in this direction. Later it was independently studied
by del Pino-Elgueta-Manasevich [8], Otani [22] and Lindqvist [I4].

Let siny(z) denote the solution of (1.3) with A = (p — 1). It follows from [11]
that sin,(z) is positive on (0, 7,) and satisfies an identity

|sing (z)P + [sin) (z)[P =1 VzeR, (1.4)

(1.3)

which for p = 2 becomes the familiar identity for sine and cosine. This suggest the
definition cos,(z) := sin),(x) and justifies the notation sin,(z) and cos,(z). The
identity is called p-trigonometric identity. It also follows from [I1] that the
eigenvalues of form a sequence A\ = kP(p—1), k € N and corresponding eigen-
functions are functions sin,(kx), k € N. Thus all the eigenfunctions are determined
by the function sin,(z). It comes as no surprise that the properties of the function
sin,(z) were studied extensively in the previous 30 years. It was shown in [I1]
that sin,(x) can be expressed on [0,7,/2] (the p-trigonometric identity can
be thought of as the first integral of ) as the inverse of

¥ 1
arcsing (z) = /0 mds, z €10,1], (1.5)

which is extended to [0, mp] by reflection sin,(x) = sin, (7, — z) and to [—m,, 7] as
the odd function. Finally, it is extended to R as the 2m,-periodic function. The
function arcsin,(z) from (1.5)) is extended to [—1, 1] as an odd function. Then

sin,(arcsiny(z)) =z Vz € [-1,1]. (1.6)

Note that for p = 2, we obtain classical arcsine and sine from this definition.
The (now familiar) notation sin, appears in [§] for the first time, where the authors
studied homotopic deformation along p to calculate the degree of trivial solutions of
in order to establish existence results for the nonlinear problem (|u’|P~2u/)’ +
f(t,u) =0, u(0) =u(T) =0, p>1, T > 0. The homotopy result from [§] initiated
development of bifurcation theory for quasilinear bifurcations.

As a historical remark, let us mention that generalizations of arcsine similar
to were studied in a very different context by Lundberg [I7] in 1879. It is
interesting to mention that the p-trigonometric functions satisfy certain relations
to geometrical objects such as arclength and area of a circle in a noneuclidean
metric; see Elbert [11], and Lindgvist [I5]. The p-trigonometric functions also pos-
sesses some approximation properties in certain function spaces; see, e.g., Binding-
Boulton-Cepicka-Dréabek-Girg [1], Lang-Edmunds [I3] for theoretical research, and
Boulton-Lord [6] for a very interesting computational application in evolutionary
PDEs. In Wood [27], the particular case p = 4 was studied and “p-polar” coordi-
nates in the xy-plane were proposed.

In this article we focus on the differentiability and analyticity properties of p-
trigonometric functions. One can immediately see from (|1.2)), , and that
sin,(0) = 0 and siny(m,/2) = 1 for all p > 1. From (1.4) and the definition of
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cosp (), we obtain cos,(0) = 1 and cos,(m,/2) = 0. It follows from the results in [I1]
15l 22] that the possible differentiability issues are located at = 0 and & = 7, /2.
There are several results concerning differentiability and asymptotic behaviour of
sin,(z) at z = 0 and « = 7,/2 in Mandsevich-Taka¢ [19] and Benedikt-Girg-Tak4é
[2]. In Peetre [25], generalized formal Maclaurin series for sin,(z) were studied
and their convergence was conjectured on (—m,/2,m,/2). The local convergence of
the generalized Taylor series (and/or the generalized Maclaurin series) for sin,(z)
follows from Paredes-Uchiyama [24]. Taking into account that the point z = 0
is often considered as the center for the Taylor (i.e. the Maclaurin) series or the
generalized Taylor (i.e. the generalized Maclaurin) series for sin,(z), we decided
to provide detailed study of the convergence of these series towards sin,(z) on
(—mp/2,7,/2). We were also motivated by work of Otani [23], where he studies
properties of the solutions of

(Ju'|P~2/Y + |u|??u=0 in (a,b), =
u(a) = u(b) =0, (L.7)
for general exponents p, ¢ € (1,400) with p # q. Among other properties he proved
that for p = gz’iﬁ,m € {0} UN and for g even, any solution of belongs to
C*(a,b). In our case, p = g we find that sin,(z) belongs to C*(—mp/2,m,/2) if
and only if p is even. Let us also remark that local analytic solutions of the radial
variant of were studied in Bognér [4].

Though we are aware that our methods are elementary mathematics, we are
sure that our results will help to better understand the behavior of siny,(z) and its
derivatives in the vicinity of 0. This behavior is crucial in establishing asymptotic
estimates such as those in the proof of the Fredholm alternative for the p-Laplacian
in the degenerate case Benedikt-Girg-Takac [2 B]. Moreover, knowledge of the
convergence/nonconvergence of the Taylor and/or the Maclaurin series is very im-
portant in the development of numerical methods for calculating approximations
of function values of p-trigonometric functions. Recently, Marichev [20] from the
Wolfram Research, Inc., pointed out to the first author of this paper in a personal
communication that Mathematica from version 8.0 has a capability to effectively
compute coefficients for sin,(z) for formal generalized Maclaurin power series by
means of the Bell Polynomials. With few lines of Mathematica code one can obtain
partial sums of generalized Maclaurin series for sin,(x) of large order in a couple of
minutes. Thus the question of the convergence of the partial sums of the Maclaurin
series is becoming quite urgent. This was our main motivation to address this topic.

Our main result provides convergence of these partial sums. We treat two cases
separately, p > 2 is an even integer and p > 2 is an odd integer. Namely, for the par-
ticular case sing(ym41) (), m € N, x € (—m,/2, m,/2), we show that the Maclaurin se-
ries converges towards the values sing(, 41y () on the interval (—m,/2,7,/2). On the
other hand, we show that the Maclaurin series converge towards sing,,+1(z), m € N,
for z € (0,7,/2) and does not for « € (—m,/2,0). More precisely, the Maclaurin
series converges on « € (—m,/2,m,/2), but not towards values of singp,41(z), m € N
for x € (—m,/2,0).

The article is organized as follows. In Section 2, we give a definition of the
function sin,(x) by means of a differential equation and also introduce other useful
notation. In Section 3, we state and discuss our main results concerning differentia-
bility and/or non-differentiability of sin,(x) and convergence of Maclaurin series of
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sin,(z). In Section 4, we express higher derivatives of sin, () by means of powers of
sin,(z) and cosp(z). Finally, in Section 5, we prove our main results using formulas
for higher derivatives of siny(z) from Section 4. In Section 6, we conclude with
remarks and open problems.

2. DEFINITIONS OF p-TRIGONOMETRIC FUNCTIONS

Proposition 2.1. The initial-value problem
—(P2Y — (p— Du"2u =0 o)
u(0) =0, u'(0)=1, '

has the unique local solution and moreover any local solution to (2.1) can be con-
tinued to (—oo, +00).

For uniqueness of the solution see [8, Sect. 3|, and for the existence of global
solutions see [9, Lemma A.1].

Definition 2.2. The function sin,(z) is defined as the unique solution of the initial-
value problem (2.1)) on R.

For any ¢ > 1 and z € R we define

|2]9722 forz #£0,
= 2.2
#a(2) {0 for z=0. (2:2)

Note that ¢, (vp(2)) = wp(ep (2)) = z provided p > 1 and 1/p+ 1/p’ = 1. With
this notation, we can rewrite the initial-value problem ({2.1)) as an equivalent first-
order system

v'(z) = —(p — Depp(u(x)) (2.3)

Clearly, from the definition of Carathéodory solution, it follows that u(x) = sin,(x)
and v(x) = ¢, (sin) (z)) must be absolutely continuous on any compact interval

P
[-K, K], K > 0. Thus sin,(z) = @, (v(z)) is continuous on any [-K, K|, K > 0,
which entails that sin,(z) = ¢p (v(z)) is continuous on (—oo,+00). Thus the

following definition makes sense.
Definition 2.3. For x € R, we define cos),(x) = sin,, ().
Since cos,(0) = sin},(0) = 1 and cos,(z) is continuous, there exists an interval

(—¢,¢) such that cosy(x) > 0 on (—¢,c), ¢ > 0. Moreover, since sin},(0) = 1 and

sin, € C1(R), there exists an interval [0, s), s > 0, such that sin,(z) > 0 on [0, s).
Definition 2.4. For p > 1, let 7, denote
2sup{s > 0: Vx € (0, s) holds sin,(z) > 0 A cos,(x) > 0}.

It was shown in [T1], that

1
1 2
WPZQ/ 71/(11':.771—3
0o (1—ap)"/? p-sin(m/p)
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for p > 1. It was also shown in [I1], that sin,(x) can be expressed on [0, 7,/2] as
the inverse of

r 1
arcsinp(x) = /0 m ds T € [0, 1] s (24)

and, moreover, it extends to [0,m,] by reflection sin,(x) = sin,(m, — =) and to
[—7p, mp] as the odd function. Finally, it extends to R as the 2m,-periodic function.

Remark 2.5. In the following text, formulas containing higher order derivatives
and powers of sin,(z) and cos,(x) appear. We try to keep our notation as close
as possible to the usual notation for classical trigonometric functions. Thus the

derivatives are denoted by, e.g., siny,(z), ... ,Sing'(x)ﬁingv) (x) (primes and roman
numerals) and/or, e.g., sinz(gn)(z)7 sin](f”_l) and sin](f”) for n € N. On the other

hand, the powers are denoted by sinf,(x), sinf’j(x)7 sinl(z), ¢ € R. Where a confusion
may happen, we denote the powers by, e.g., (sin,(x))™, m € N, to distinguish them
clearly from derivatives. For the convenience of the reader, we write the values of
p as explicit as possible, with a few exceptions such as in the proofs of Theorems
and where this approach would produce very lengthy formulas.

3. MAIN RESULTS

In the sequel, we study derivatives of sin,(z) for p € N, p > 2 on the interval
x € (—mp/2,mp/2). We distinguish two cases p is even, ie., p = 2(m + 1) and
m € N, and p is odd; i.e., p=2m + 1 and m € N. In the first case p = 2(m + 1),
the p-trigonometric identity takes form

(sia (1) ()2 + (CoSa(m i1y () 2T =1, (3.1)

which is valid for any € R and hence on (—m,/2,m,/2). Note that there is no
absolute value, since there are even powers.

In the second case p = 2k + 1, we have to distinguish two subcases. For 0 < z <
%", the p-trigonometric identity takes form

(singpm 41 ()™ + (cosgmyr(z))?™ T =1. (3.2)
On the other hand, for —m,/2 < x < 0, the p-trigonometric identity takes form
— (singpmy1(2))?™ T 4 (cosgmyr (z))*™ T = 1. (3.3)

Since there is only one identity (3.1)) for p = 2(m+1), this case has nice smooth-
ness properties on (—m,/2, w,/2) and we obtain a rather surprising result concerning
smoothness of function sin,(z) for even p.

Theorem 3.1. Let p=2(m+1), m € N. Then

T2(m+1) T2(m+1) )
2 ’ 2 '
On the other hand, for p = 2m + 1, we have to distinguish two subcases (3.2)
and (3.3]), which has damaging effect on the differentiability of sin,(x). Thus the
smoothness is lost when p is odd. The smoothness is also lost if p is not an integer.

Sing(m+1) (I’) € COO( -

Theorem 3.2. Let p e R\ {2m}, m € N, p > 1. Then
sin, (z) € tolld (—mp/2,mp/2),

but
sing, (2) & CIP1HY (=7, /2,7, /2) .



106 P. GIRG, L. KOTRLA EJDE-2014/CONF/21

Here [p] := min{k € N : k > p}.

Our last result gives an explicit radius of convergence of the Maclaurin series
for even p > 2. To the best of our knowledge, all previous results concerning
convergence of series for sin,(z) were only local; see, e.g., [24].

Theorem 3.3. Let p = 2(m + 1) for m € N. Then the Maclaurin series of
S (1) () converges on (—L(’;“) , L(’;“) ).

Theorem 3.4. Let p = 2m + 1, m € N. Then the formal Maclaurin series of

singm1(x) converges on (—225+, Z222L) - Moreover, the formal Maclaurin series

of sin, () converges towards singp, +1(x) on [0, 25+L) | but does not converge towards
Sihgm41(x) on (=25 0).

The proofs of Theorems [3.1H{3.4] are postponed to Section
4. DERIVATIVES OF sin, ()
The following lemma summarizes basic properties of sin,(z) and cos,(z).

Lemma 4.1. Let p € R,p > 1. Functions sin,(z) and cos,(x) have the following
basic properties.

(1) siny(z) > 0 on (0,7,), siny(0) = 0, sin,(z) = sin, (7, — x) for z € (&, m,),
and siny,(z) = —sin,(—x) on (—mp,0). The function sin,(z) extends to R

as 2my-periodic function.

(2) siny(x) is strictly increasing on (—mp/2,7,/2).

(3) cosp(x) >0 on (—mp/2,7,/2), cosp(—7) = cosp(%) = 0 and cosy(x) <0
on [—mp, =) U (B2, mp).

(4) For allm e N, if sinf"_l)(x) exists on (—mp/2,m,/2), then it is even func-
tion on (—mp/2,m,/2).

(5) Foralln €N, if Sinz(f") (x) exists on (—mp/2,m,/2), then it is odd function
on (—mp/2,mp/2).

Statements follows from [I1]. Statements |4} and |5 are trivial consequence of
statement [I1

Lemma 4.2. Forallpe R,p>1

sin) (z) = —sin? () - cos; P(x) for x € (0,7,/2), (4.1)
sing) () = singfl(—x) -cos;P(x)  for w € (—m,/2,0). (4.2)

Proof. The identity (4.1]) is obtained by a straightforward calculation; see, e.g., [13].
For © € (—m,/2,0), we obtain from Lemma statement [1{ and [3| and the identity

i)

sinf (—z)+cosh (z) = |—=sin,(—z)|"+| cos, (x)[P = |sin,(z)["+| cosp(z)|” = 1. (4.3)
Taking
sinf (—z) + cosp(z) =1 (4.4)
into derivative we obtain
—p-sinf ! (—=x) - cosy(—a) + p - cosh ! (z) - sin)) (z) = 0. (4.5)

From Lemma statements [3] and [4] we obtain

sing_l(f:r) - cosp(x) = Cosgfl(x) - siny) (2)
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which yields

sinf) (z) = sinf " (—x) - cos, () .

Lemma 4.3. Let p € R\ {2} such that p > 1.
(1) If p > 2, then the function sin,(z) € CY(R) and sin,(z) ¢ C*(R).
(2) If p € (1,2), then the function sin,(z) € C%(R) and sin,(x) ¢ C3(R).

Proof. By the definition of cosy(x), sinj,(z) = cosy(x). The function cos,(z) €
C(R), for all p > 1. Thus sin,(z) € C'(R). By Lemma

sing (x) = — sing_l(x) . cosf,*p(:r) for x € (0,7,/2) .

Taking into account that
2

ziigisingfl(x) =1 and ziigllicosp_p(x) =400 forp>2,
2 2
we find that
119;1 sing (x) = —oo
T— 5 —

Thus the continuity of sin) () fails at © = m,/2 for p > 2 and the statement 1 of
Lemma [£.3] follows.

From (2.3)), we find that the function v'(z) = —(p—1)¢p,(sin,()) is continuous on
R as sin,(z) is continuous on R. We also find that cos,(z) = ¢ (v(z)) from (2.3).
Taking into account that ¢, € C'(R) for p € (1,2) (observe that p’ = oo > 2
in this case), we infer that cos,(z) = ¢, (v(z)) - v'(z) is continuous on R. Thus
sin,(z) is two times continuously differentiable on R for p € (1,2). On the other
hand, taking

sin’/ () = —sin? ! (z) - cos2 () on (0, %)

into derivative, we obtain

sin’ () = —(p — 1) sind " ?(z) - cosi P (z) — (2 — p) - sinb "' (2) - cos) P () - siny) (x) .

"
P

sin)’(z) = —(p — 1) sin} () - cosi P(x) + (2 — p) - sin?*(x) - cosi P (x).

Substituting for sin; () from the later equation into the former, we have

Since limg_,o4 sin,(z) = 0 and lim, o4 cos,(x) = 1, we obtain

. s _
gclilr(r)l+ sin,,(z) = —o0
for p € (1,2). This concludes the proof of statement 2 of Lemma |

Let us define the following ‘symbolic’ operators (rewriting rules) defined on ex-
pressions of the form

a - sind(z) - cosfl;q(o:) with a,qg € R (4.6)
as follows
a-q-sin?(z) - cosp TV (z) ¢#0
D a-sinf(z) - cos)~9(z) := P P ’ (4.7)
0 q=0.
—a-(1—a) - sin?tP1(g) . cogt—@tP—1) 1
Dc a- Sinq(.’IJ) . COSl_q({E) = a ( q) Slnp (I) COSp (1’) q 7é )
P p 0 q= 1.

(4.8)
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Let us observe that the results of application Dy and D, have the form (4.6).
Hence they are also in the domain of definition of Dy and D.. Thus we can consider
compositions of D, and Dy of arbitrary length. We will show that the first derivative
of sin?(xz) - cos,?(x) (here a = 1) can be written using these symbolic operators as
follows

% sing(z) - cosllfq(x)

= Dgsinf(z) - cosll,_q(x) + Desing(z) - cos;_q(x) .

To show this, we have to distinguish three cases ¢ € R\ {0,1}, ¢ =1, and ¢ = 0.
Case ¢ € R\ {0,1}. Here

d

s sing (z) - cosllfq(x)

= gsind ™! (z) - cos; V() — (1 — ) sin? P! (2) - cos), TP ()
= D, sinf(z) - cos),~(x) + Desing(z) - cos) ().

Note that the distance between the exponents of sin,(z) in the resulting terms, i.e.,
sin® ! (z) - cos2™%(x) and sinf° P! . cos2 P90 (), is exactly p. This is crucial in
the sequel of the paper, because in a sum of the type

cosind’ () - cos;_qO () + 1 singo+p(x) . coszlg_(q°+p)(x)

the terms combine together as in the diagram depicted on Fig. 1

Case ¢ = 1. In this case the term sinf(x) - cos, () = sin,(x). Thus the derivative
of this term is the single term cos,(z). By the definitions of Dy, D, we find that
D, siny(z) = cos,(z) and D, sin,(z) = 0. Thus & sin, () = Dy sin, () + D, sin, ().
The fact D, sin,(x) = 0 will be reflected in our diagrams by omitting ‘right-down’
edge departing from this node, see Figure 2.

Case ¢ = 0. This case corresponds to sinf(z) - cos)(x) = cos,(z). Thus the de-

rivative of this term is the single term — singfl(a:) cos;f(p -b (). By the definitions
of Dy, D, we find that D, cos,(z) = 0 and

D, cosp(z) = — sing_1 (x) cos;f(pfl) (z).

Thus & cos,(z) = D, cos,(2)+De cos,(z). The fact D, cos,(z) = 0 will be reflected
in our diagrams by omitting ‘left-down’ edge departing from this node, see Figure
3. Note that since in our diagrams we write powers only, the node corresponding
to — sing_l(:n) Coszlj_(p_l)(:c) is labeled by sb~! c;_(p_l).

In the same way, we can express higher order derivatives, thus, e.g., the second
derivative of sinf(z) - cos)~4(x) (here a = 1) can be written as

d2
12 sing(z) - cos;fq(:r)
x
= (Ds o Dg) sing(z) - Cos;,*q(x) + (Dc o Dy) sinf(x) - cosllfq(x)

+ (Ds 0 D,) sind(z) - cos) () + (De 0 D) sind (z) - cos) ().

To better understand our methods of proof, it is good to have in mind the diagrams
Figures

The way how the term in the n-th derivative on the k-th position was derived
from sing(x) can be recovered from n and k as follows. First let us recall some
notation from formal languages.
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q=0qo+p

cl @ ghorp
+p

~(Go+p-1) LGot+p-1
cp TPy

FIGURE 1. Rewriting diagram of the first derivative of ¢ sin’ () -

1-(o-1) o1 ~(@+2p-1) o+2p-1
Cp S5 < sy

cosp ™9 () + ¢1 sinf P (z) - cos}f(qOer) (x). For the lack of space,
we do not write the coefficients standing in front of these terms and
use short-cuts, i.e., we write s instead of sinl(z) and ¢, instead

of cos}™9(x)

q=1+p
ct—(l*fp) S};p

+p

~1 +p-1

~(1+p-1) J+p-1 1-(1+2 p-1) d+2p-1
crarebg, canzeng)

+p

FIGURE 2. Rewriting diagram of the case ¢ = 1. Recall that we

write s? instead of sinf(z) and ¢}~ instead of cos)~9(z) and do

not write the coefficients

+p—l\ /

p-1.1-(p-1)

1-(2p-1) Zp-1
% $

FIGURE 3. Rewriting diagram of the case ¢ = 0. Recall that we
write s? instead of sinf(z) and ¢}~ instead of cos,~¢(z) and do
not write the coefficients

Definition 4.4. (Salomaa-Soittola [26] 1.2, p. 4,], and/or Manna [I8, p. 2-3, p.
47, p. 78]) An alphabet (denoted by V') is a finite nonempty set of letters. A word
(denoted by w) over an alphabet V is a finite string of zero or more letters from
the alphabet V. The word consisting of zero letters is called the empty word. The
set of all words over an alphabet V' is denoted by V* and the set of all nonempty
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words over an alphabet V is denoted by VT. For strings w; and ws over V,
their juxtaposition wiws is called catenation of wy and wsy, in operator notation
cat : V* x V* — V* and cat(wy,w2) = wiwe. We also define the length of the
word w, in operator notation len : V* — {0} UN, which for a given word w yields
the number of letters in w when each letter is counted as many times as it occurs
in w. We also use reverse function rev : V* — V* which reverses the order of the
letters in any word w (see [I8, p. 47, p. 78]).

For our purposes here, we consider the alphabet V' = {0,1} and the set of all
nonempty words V. Thus words in V' are, e.g.,

LAO” 551” “0177 44107’ “1 177 .
For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010”
len(“010011000”) = 9.

Let n € N, k € {0} UN,0 <k <272 -1 and (k)2,—2 be the string of bits of the
length n — 2 which represents binary expansion of k (it means, e.g., for K = 3 and
n=2>5, (3)2,5—2 = “011”). Now we are ready to define Dy ,, in two steps as follows.

Step 1 We create an ordered n—2-tuple d, ,,—2 € {Ds, D }"~? (cartesian product of
sets {Dg, D.} of length n—2) from rev((k)2 ,—2) such that for 1 <i <n-—2,
di,n—2 contains Dy on the i-th position if rev((k)2,,—2) contains “0” on the
i-th position, and dj , contains D, on the i-th position if rev((k)a,—2)
contains “1” on the i-th position (it means, e.g., for k = 3, and n = 5, we
obtain ds 5_2 = (D¢, D¢, Dy)).

Step 2 We define Dy, as the composition of operators Dy, D, in the order they
appear in the ordered n-tuple d ,,—2 (it means, e.g., for k = 3, and n = 5,
we obtain D35 = (D.oD,oDy)).

The following Lemma implies that

an—2_1
sinz()”)(a:) = Z Dy, sing) () (4.9)
k=0
for all z € (0,7,/2).

Lemma 4.5. Letp e R, p > 1, n € N. Then siné")(x) exists on (0,7,/2) and it is
continuous. Moreover,

forn=1: sin,(z)=cosy(z), (4.10)
o . . _ . —1 2—
forn=2: sinj(x) = —sinh ™ (x) - cos; P(x), (4.11)

and forn =3,4,5,...,k=0,1,2,3,...,2" "2 —1 there exists apn €R, lgp, mpy, €
Z such that

Dk},TL Sing(x) = ak,n . Sing-lk,n'i‘mk,n ("E) . Cosllj*p'lk,n*mk,n (‘T) , (4.12)
and
2n—2_1
sinl(,”)(a:) = Z Aoy - SIDE R TR () cosjlfp'l’“’"fmk’" (x). (4.13)

k=0
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Moreover, let j(k) € {0} UN be the digit sum of the binary expansion of k =
0,1,2,...,2"72 — 1 (thus j(k) is the number of occurrences of D, in Dy, ) and let
Dg.n sing(x) #0. Then, for k=0,1,2,...,2""2 — 1, the exponents
Qe =D lion + Mg (4.14)
satisfy
Gk = J(K)(p = 1) + (n =2 —j(k))(-1) +p—1. (4.15)

Proof. The cases n = 1 and n = 2 follows immediately from the definition of cos,(x)
and from Lemma

We proceed by induction to prove the validity of the statement for n = 3,4,5,....
Step 1. Taking (4.11]) into derivative, we obtain

s _ . p—2 3— . 2p—2 3—2

sin, (r) = —(p — 1) - sin) () - cos,, P(x) + (2 — p) - sin,”"“(z) - cos;,” () .
For k=0,1 we obtain ag3 =—(p—1),a13=(2—-p), log=1,l13=2mp3 = -2,
and m; 3 = —2. Hence

1
sy (2) = 3 g - sinh 0 (@) - cosy 7T a)
k=0

Since we assume p > 1 we obtain p — 1 # 0 and thus by the definition of Dy and
Dk,n

Do 3 sin)) () = D,(—sin? " (z) - cos2 P ()
=—(p-1) ~sin§‘2(x) - cospy P (x)
=ag3 - sing'lo’ﬁmov?’(x) . coszlj_p'l‘“_m“ ().
Analogously, by the definition of D, and Dy, for p # 2, we find
Dy 3sin))(z) = D.(—sinf ' (z) - cos2 P ()
=—(-1)-(2-p)- sinﬁp*Q(a:) - cosy P (x)
=ay3- singll’”ml*3 (x) - cosll,_p'llﬂs_mlﬂg'(x) ,
and for p = 2, we obtain
Dy 3sin))(x) = D¢ (— siny(x) - cosy(x)) = 0.
Hence,
singl(x) =D, sing(gc) +D. sing(:zj)

= Dy 3 siny () + Dy 3 siny (x)

1
= Z Dy, 3 siny) (z) .
k=0

Step 2. Let us assume that siné") (x) exists, it is continuous on (0, 7,/2), and for
all k=0,1,2,...,272 — 1 there exist akn € R, lgn, My n € Z such that

Di.n sinl(jn) () = akn - sing'l"‘="+m’“v" (x) - cos;_p'l""”_mk’" (z), (4.16)
and
an—2_1
sinl(,”)(a:) = Z Aoy - SIDE R TR () cos}fp'lk’"fmk’" (x). (4.17)

k=0
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By the additivity rule of the derivative, we find that

2m—2_1
Sinz(jn-"_l)(x) = a Z Qf,m - Sing'lk,n-‘rmk,n (CL‘) 00811, Pli,n =Mk n (1‘)
o (4.18)
. d
= > 4 (@ sinB e (1) - cos) P TR ()
k=0
For all k=0,1,2,...,2" 2 — 1, we find
d b 1=l
a(ak,n ssind ton R (1) - cos, PR T (1))
= - (P Loy + M) - sind Br a1 () - cosy, ~ im0
+agn(l =p-lgn — mpp) - sind besnFMien (1) . cos,l, Prlin=Mi,n 1(90) siny) ()

=apn - (p-lon+mpn)- singl’“v’ﬁmk’"—l(x) cos ~(Plentm, ”_1)( )

(L=l — i) - sind (PR () - oy " T T ),

(4.19)
For k=0,1,2,...,2" 2 — 1, we denote

A2kn+1 = Ak - (Dl + Min) (4.20)
A2kt1n+1 = =0k - (1 =Dl — Min), (4.21)
laknt1 = lin, (4.22)
Mok nt1 = Mpy — 1, (4.23)
lok+1,n+1 = lgn + 1, (4.24)
M2kt1,nt1 = Mpy — 1. (4.25)

Hence from , , and f we obtain

2n—l g
siné""‘l)(x) = Z Ak n+1 -singl’“'”wﬁmk"”*l(m) cos Pl T ().

o (4.26)

Note that sin,(x) > 0 and cos,(x) > 0 for z € (0,7,/2) by Lemma statements
and [3] and continuous by Lemma [£:3] Moreover, the function z — 24, defined for
z > O and q € R belongs to C*°(0,400). Thus the function on the right-hand side
of (4.26) is continuous for z € (0, 7,/2) which implies the continuity of sm(”H)( )
for x € (O Tp/2).

Now, we show that forall k' = 0,1,2,...,2"2=1: ar 41 € R, lgr o1, Mes i1 €
Z and, moreover,

Dk’,n+1 Sinz()”) (J}) = Qg Sinp U/ g1 TMps i1 (31‘) . Coszlo—p‘lk/,n+1—mk/,n+1 (l‘) )
(4.27)
Let us set
D2k,n+1 :=Dgo Dk,n y (428)
D2k+1,n+1 = DC 9 Dk,n . (429)

Then it follows easily from corresponding binary expansion of k£ and 2k that

(2k)2,—1 = cat((k)2,n—2, “07),



EJDE-2014/CONF/21 p-TRIGONOMETRIC FUNCTIONS 113

(2]€ + 1)2771_1 = Cat((k‘)z,n_Q, “1”)

and also that (4.28), (#.29) cover all 27! of ¥’ = 0,1,...2""! — 1. Thus our
definitions (4.28) and (4.29) conform the relation between binary expansion of k' =
2k and/or k' = 2k 4+ 1 and order of compositions of Dy, D, in Dy pp41.
For k' =0,2,4,...,2""! — 2 even,
Dis ny18iny () = Do g1 sing () = Dy 0 Dy, sing () . (4.30)
From the induction assumption (4.16]), the definition of Dy (4.7)) and (4.20), (4.22),
[£.23), we find

D, (D, sing ()

_ Ds(ak,n . Singlk’"erk’" ({L‘) . COSZI}*p-lk,nfmk,n (x))

= Qi (Dl + i) -sindy =1 @) - cosy T ()

s p- 1-plok,nt1— n
= Aok nt1 -smg lok, nt1+M2k ni1 ($) - cosy Prl2k,n4+1—M2k, +1($).
We can treat k' =1,3,5,...,2" ! — 1 in the same way using D.. instead of D, and

(4.8) and (4.21)), (4.24), (4.25). This concludes the proof by induction.

It remains to show (4.15). In fact, from the definition of D, each occurrence
of the symbolic operator D, in Dy, increases the exponent g of sin}(x) by p — 1.
Analogously, from the definition of of Dy, each occurrence of the symbolic
operator Dy in Dy, ,, decreases the exponent g of sing(x) by 1. Taking into account
these facts and also that ¢; 2 = p — 1, the formula follows. This concludes

the proof of Lemma [4.5 (]
Lemma 4.6. Letpe N, p> 1, and for alln e N, n > 2
2n—271
siné,”)(x) = Z g n singm (z) -cosp " (). (4.31)
k=0

Then for alln € N, n >2, and all k € {0} UN, k <2772 — 1
Qrn € {0} UN. (4.32)

Proof. From the definitions (4.7) and (4.8)),

G2k n+1 = qen — 1 (we applied Dg on the expression) 133
Q2k+1,n+1 = Gk, + P — 1 (we applied D¢ on the expression) (4.33)

The proof proceeds by induction in n.
Step 1. From Lemma for sin}) () on (0,7,/2) we obtain the formula

sing)(z) = —sin? " () - cosy P (x) .
Thus q1,2 =p— 1. By assumption p € N, p > 1 we find ¢, » € N.

Step 2. We distinguish two cases, qr.n € N and gr, = 0. Let gi, € N. Then from
, p €N, p> 1, we obtain

@kl = Qe — 1 € {0} UN,

Q2k+1,n+1 = qen +P— 1 EN,
which satisfies . Let gx,, = 0. Then the corresponding term in has

form
Ak,m - COSp(T) , (4.34)



114 P. GIRG, L. KOTRLA EJDE-2014/CONF/21

since sin ( ) =1 for z € (0,7,/2). Taking (4.34) into derivative, we find

Qg - COSy (1) = —ag - sinh ™! (z) - cosy P (x)
and gagt+1n+1 = p— 1 € N, because p € N, p > 1. This concludes the proof by
induction. 0

Lemma 4.7. Letp € N, p > 3. Then for alln e N, n > 2
sinz()”)(x) <0 on (0, %) .

Proof. By Lemma and substitution (4.14)), we have
2n72 1
sin{" Z ke - siDTF" (1) - cosp " (). (4.35)

Let Q,, denote the set of all values of i, attained in the previous expression (this
is to handle possible multiplicities), i.e.,

Qn="{qpn:k=0,...,2""2 -1}, (4.36)
By Lemma for all n > 2 and for all ¥ < 2”72 — 1, we have g, € {0} UN.
Clearly, @, C {0} UN has at most 2”72 elements and thus there exists i € N: 0 <
ip < 2”72 — 1 and bijective mapping
G, :{0,1,2,.. .50} = Qy (4.37)
satisfying the order condition
Vi, =0,1,...00:0 <= <7 (4.38)

In the sequel, g, stands for g, (7). With this at hand, we add together the co-
efficients in (4.35) corresponding to the same value of powers g, and for any
1=0,1,...,i9 define

Cin = Z Gk - (4.39)

k=0,1,...2n—2_1
qk,n=9i,n

Now, we rewrite (4.35) using coefficients c¢; ,,:

sm Zc,n smp (x) - cos}, Ei’"(m). (4.40)

Later, we will prove by mductlon that
Vi=0,1,...,% : ¢ < 0. (4.41)
By Lemma statementsand sin, () > 0 and cosp(x) > 0 on (0, Z), which
implies that for all ¢,r € {0} UN and z € (0,7,/2)
sinl(z) - cosy(z) > 0. (4.42)
Thus from (4.40) - ) the statement of Lemma follows.

Now it remains to prove by induction in n that -) holds.
Step 1. By Lemma [£.2] we find that

sinp(a:) =— singfl(x) -cosffp(x) (4.43)

for all z € (0,7,/2) and so 0072 =-1<0.
Taking the derivative of (4.43) (and after some straightforward rearrangements),

sing/(x) = —(p— 1) - sinh ™~ 2(x)~cos§’,*p( )+ (2 —p) - sin2? 3 (x) - cosi P (x) (4.44)
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for x € (0,7,/2). Since p > 3, we have cp3 = —(p—1) < -2 < 0 and ¢1 3 =
(2 —p) < —1<0 as desired. Taking the derivative (4.44]),
sin{") = —(p — 1) - (p — 2) - sinf () - coss P (x)+

F(p—1)- (3= p) - sin¥3(z) - cost 2 (z)
+2-p)-(2p-2)- sm2” 3(2) - cos4 2p( )

—(2-p)-(3—2p)- sm?’p 3(x) - cos 37 () (4.45)
—(p—1)-(p—2)-sinb~*(x) - cos, P (x)

(r—1)-(B—p)+2—p) 2p—2) - sin?3(z) - cost 2 (z)
—(2-p) (3= 2p) - sinZ3(x) - cost~I(z)

for all x € (0,7,/2). Since p > 3 we have cpu = —(p—1)-(p—2) < -2 <0,
c14 = (p=1)-(3—p)+(2—p)-(2p—2) < 4 < 0,and ¢34 = —(2—p)-(3—2p) < -3 <0
Step 2. Let us assume that sin;") (z) for n > 4 can be written in the form (4.40)
and

”S’U

_|_

Vi <ip :cin <0. (4.46)
The proof falls naturally into two parts.
Case 1. If
Qi =1, (4.47)
then taking the ¢-th term of , which is
Cim - sinzi’" (z) - cos,l,_ai’" (x), (4.48)

into derivative we obtain
—_ . 4; n71 1-— ql n+1
Ciyn " qQip - SMp’ (z) - cosp (z)
+Cin - (1=G;,) - singi'" (z) - cos;l,_ai’"_l(x) . sing(x) )
Substituting (4.43) for sing(x) into the previous expression, we obtain

Cin '@’n . Sinzi’nil(x) . COS}%*@,,TL (x)

Gy ntP—

- i,m +2
—Cig (1= ;) - simy 7 (@) - cosy, " (@),

Let us denote
a’/Zifl,n%»l = Cin Qin
al2i,n+1 =cin (@,—1).
By the induction assumption (4.46) and assumption of Case 1 (4.47), we have

a/2i—l,n+1’ a/2i,n+1 <0.
Case 2. If g;,, = 0, then i = 0 (by the ordering) and the corresponding term of

() i

Con - sing(:ﬂ) . cosé(x). (4.49)
Taking derivatives in we find
—Com - sing_l(z) . cosf;p(x) . (4.50)
Denote a’l)n 11 = —co,n which is clearly nonnegative by the induction assumption
(4.46]). We consider the second term of (i = 1) and take the derivative,
d —cin -sin " (2) - cosp ()

dx
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T ().

=Dsc1n blnp "(x) - cos,, ql’"( )+ Deein -singl’" (z) -cos,l,

Since gy, = 0, G, = p (see Figure || . Note that the right-hand side of
Dy ¢y sinp () - cos;, P(x) =p-cip-sinh” Yx) - cosf, P(x) (4.51)
has the same exponent ¢ = p—1 as has. It remains to prove that p-c; ,—cp n <

0. Using (n — 2)-th derivative of sin,(x) we obtain (4.50)),
(DcoDgoDy)eg p—2 - Sinf,(x) cosgl(x) = (D.oDy)2 - ¢ p—2 - sing(z)
=D.2-¢cop—_2 - cosp(x) (4.52)

=—2-copn-2 'singfl(a:) cosffp(x)

and (T50),

(DsoDgsoD¢)eon—2 - Sin2(a:) cosfl(x)
= (DsoDy)econ—2- sm P (x) cos, P ()
=D,(1+p) - con—2 - sinf(x) - cos) P (x)
=p-(L+p)-con—2-sind " (z) - cos> P (x).
Comparing with , we find that
—Con = —2-Con—2-
In addition, comparing and (| -7 we find
pcin=p-(p+1) con-2.

From the induction assumption, cp,—2 < 0 and for p > 3, we easily find

(4.53)

P-Cin—Con = p-(p+1)— 2)Co,n—2 <0
by adding the previous two identities.
In the definition of ¢; n, we are adding coefficients
aﬁc,n, k=0,1,...,2(ig + 1)
corresponding to the same value of exponent §g. From the both cases, we obtain

Cing1 S O0foralli e N, 7 <4y, 0 <y < 271 — 1. This concludes the proof by
induction. [l

no=2+0p

/\/\/\

1 =1+1p Gy =1+2p gy =1+3p

v /\/R/\

Typp=2+1p Ty =2+2p

w1 =1+0p

‘ Gon=0+0p ‘ Gy, =0+1p T, =0+2p Gy, =0+3p Gy, =0+4p ‘
Ds
-1
‘ Not Defined ‘ Ty = —1+1p ‘ Ty = —1+2p s =-143p 1=-1+4p Ty = -1+5p

FIGURE 4. Rewriting diagram - starting with qg ,, 2,71 ,,—2, 72,2
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5. PROOFS OF MAIN RESULTS
Proof of Theorem[3.1 By Lemma and substitution (4.14]), we can write

2" 21
1
smé(gnﬂ Z Qkp - sm2(m+1)( x) - cos (m+1)( z),

where
Gk = (2(m+1) =1) - j(k) + (n = (k) =2) +2(m + 1) -
and j(k) has the same meaning as in Lemma Thus ag,,, € Z.

From Lemma statement 4 and 5, we also know that sm;() _H)(x) is even

(n)

function for n odd and 81112( 1)

T € (_WJ))

(z) is odd function for n even. It follows that for

;o (n)
—sin —z) for n even,
Smé(zﬂ-n( )_{ (n )2(m+1)( ) " ad (5.1)
siny,, +1)( x) or n odd.
Now we assume p = 2(m + 1), m € N, and
Gkn = (2(m+1) = 1)j(k) + (n—j(k) =2) + 2(m +1) — 1
=2m+1) -1k +)+jk)+2—n
=2m+1)Gk)+1)—n+1
which implies g, is odd for n even. Thus we obtain
on— 2 -1
(n) Ak,n 1—qr,n
s1n2(m+1) —x) Z akn81n2(m+1)( x) - cosQ(mH)( x)
(5.2)
2n2 1
Z ag.n sind (2) - cost o (z).
k,n 2(m+1) 2(m+1)
Analogously, gk, is even for n odd and
2n21
sin(™ (—z) = Z a Qk,n 1—qkn [
2(m+1) = Fon SiTg(rn ) (=) - €08y, 1 (=)
(5.3)
n—2 __
_ ? ' 1—qk,n
= Z g sing(n ) (@) - cosy 1 ()
Hence from (j5.2)), (5.3]), we obtain
2n=2 1
() Lok 5.4
s11r12(m_~_1 Z ag nsm2(m+1)( x) - COS2(m+1)($) (5.4)

fOI‘ all T ( 71'2(m+1) sz(m+1)) \ {0}
Now, we prove the continuity of sméz)nﬂ)(x) for all o € (—T2ptD T2t py

induction in n.
Step 1. For z € (— 22z T2t ) the function

v(T) = Pa(m+1)(cOS2(m1) (7)) >0
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and so we can take the first equation in (2.3]) into its derivative and obtain
2m +1
2m

u'(z) = ¢, (v(x))v'(x), where p’ =
Since v’ is continuous and ¢, € C*(0,+00) (p,(2) = 2P~ for z > 0), we obtain
continuity of smg(gnﬂ)( ) for n = 2.
Step 2. Let us assume that sin (2n+1)( ) is continuous on (—

From Lemma we know that smg(l;; Jr)l)(x) is continuous on (0, w) Now
(n+1)

we distinguish two cases: n + 1 is odd then sz(m+1)

statement and n+1 is even then sin;?;ir)l)( ) is odd by Lemma statement

T2(m+1) T2(m+1) )
2 ’ 2 .

(z) is even by Lemma ,

In both cases, smg(TiQU( ) € C(0, 22+ implies smé(iyl)( ) € C(—220 0).
It remains to prove the continuity at x = 0. From we know that
wli%lﬁ sm(?;_gl)( )= hm smg(;_gl)( ). (5.5)

At the end we compute the derivative of sin;(?n +1)(0) from its definition:

(n) h (n) 0
. (n+1) . Sln2(m+1)( ) — Sln2(m+1)( )
81n2(m+1)(0) = }17.1—>H10 W .
It is a limit of the type “0/0”. Since the limit limj_,o siné?ﬂtfl)(h) exists, we obtain
smg’(”ri)l)(O) = limy_o sing@?l)(h) by L’Hospital’s rule. Note that by Lemma

qkn > 0foralln € Ny n>2 and all k € {0} UN, k < 272 — 1, these limits are
finite and we obtain continuity. This proves the continuity of sm( nt1) (x) for all

2(m+1)
T2(m+1) T2(m+1
e (~Tagen, Tagon -
Proof of Theorem[3.3 By Lemma [4.5] and substitution (4.14]), we have
2n21
sm(") Z ke - SINZE" () - cosp ™" (z) on (O,%).

Moreover, by Lemma [£.1] statement [4 and [5} we obtain

sin(™

P

—sin{™ (=) for n even
<x>={ o (o) i ’ (5.6)

sinz(,") (—x) for n odd,

for & € (—m,/2,0). Since sin{™ (z) is continuous for z € (0,7,/2), it is also contin-
uous on z € (—m,/2,0) by (5.6). Thanks to (5.6]) it is enough to study the behavior
of sin,(z) in the right neighborhood of 0. From Lemma we have that

G =Jk) (=1 +(-1)-(n—-2-j)+p-1=p-(jk)+1)+1-n. (57)
forallm e N, n>2and all k € {0} UN, k < 2772 — 1. Since j(k) € {0} UN we
find that

Gknz2p+1l—n.
Then, for n < p+ 1, we have i, > 0 for all k € {0} UN, k <2772 — 1. And so

using the theorem of the algebra of the limits from any classical analysis textbook,
we find that

lim 51n(")( )=0.

r—0+
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From (/5.6)),

lim sini()") (z) =

z—0—

—lim, o4 sin](gn)(ac) =0 forn even,
limg_,o4 Sinz()”)(a:) =0  for nodd.
The continuity at = = 0 follows from L’Hospital’s rule used recurrently from n = 2

ton = [p].
By Lemma sin(2m+2)(x) satisfies

2(m+1)
olpT—1_1
. +1 o . Uy
Smém Nz) = kz_o Dy fp418iny (z) on (0, Ep)
Since g, > 0 for all n < [p] and all k& € {0} UN, k < 2/?I — 1, the function
Ds ay.p - sing>" (z) - cos;,_qk'” (x) does not vanish identically. Thus ag 141 # 0.

Since ag, 141 # 0, we can apply (5.7) for j(0) = 0 which gives
qo,rp1+1 =P — [p] £0.

From the fact that j(k) > 5(0) for all k € {0} UN, k < 2/P1=1 — 1 and from (5.7)
we know that

Qk,[p1+1 > 9o,[p]+1 -

Moreover from ({5.7)),
i fp1+1 = (§(k) + 1) -p+1—=([pl +1) = (k) +1)-p—[p] >0
for j(k) > 1 and p > 1. Since, for all g5, > 0,

lim ag ,, - sinf* () - cos,l,fq’“’" (r) =0,
z—0

we obtain
Ilirél+ Sinz()[p]+1)(x) = mli%lJr ao,[p]41 " Sing*hﬂ (z) - coszlf” ()
ofP1-1_
+ Z Ak, [pl+1 -sing” P (1) ~cos;,_q’“’[p”1(a:) (5.8)
k=1

= i g1 - sind 71 (2) - cos) PP (2)

by the theorem of the algebra of the limits.
Now the proof falls into two cases, p=2m + 1 and p € R\ N, p > 1.
Case 1. For p = 2m + 1, we have by (5.8)

. . (2m+2) .
lim siny, "\ () = lm ag2m42 - cosp(x) = ag,2m42 # 0.
z—0-+ z—0-+

Since 2m+2 is even, sinéii’fl% (x) is odd function by Lemma statement |5l Thus

. . (2m+2) o
Jim sing, 7 (2) = —ao2mr2-

Hence singm?)(a:) is not continuous at z = 0.
Case 2. Since for p € R\ N, p > 1, we have
;cli%ﬂr sinz(,rp]"’l)(x) = xl—i%l-‘r ao,[p]+1 .Sing—m (x) .Coszl)—zﬂr [p] (r) = +o0
from (5.8). Hence sianHl(x) is discontinuous at = 0. This concludes the proof.
O
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Proof of Theorem[3.3 It follows from [24, Thm. 1.1, consider p = ¢ and o = 0]
that there exists a unique analytic function F'(z) near origin such that the unique
solution u(x) = sin,(x) of the initial value problem (2.1)); i.e.,
—([/ 7)Y = (p = DulPu =0
w(0) =0, u'(0)=1,
takes the form sin,(z) = u(z) = zF(|x|p) Note that for p =2(m+1) and m € N,

sin,(z) = z - F(|z|’) = = - F(aP) Zal 2P where F(z Zalz

which is also an analytic function in a nelghborhood of z = 0. In the sequel of this
proof p = 2(m + 1), m € N. By the uniqueness of the Maclaurin series of analytic
function, we see that

= sm(l P+ (0)

+oo
Ll L lpt1
;O‘l 2 =D, (p+rnt °

1=0
where the right-hand side also converges to sin,(x) on some neighbourhood of z = 0.
Note that sinl()k)(O) =0 for any k € N such that
Vie{0bUN:k#1 p+1
as it follows from Lemma [£5] and Lemma L6l

Tp Tp

Since the restriction of sin,(z) to [~3, 5] is the inverse function of arcsiny, (),
by the identity (L.6); i.e.,
Vz € [-1,1] : siny(arcsin, (x)) = x.

It is well known see, e.g., [13] that

arcsin,(z) = / (1- sp)fids
0
S - 2F1(1,p,1+* Sp)
p

41
_ Z ( ) l . xn-p—&-l
(n-p+1) n!

for € (0,1). Observe that for our spemal case p = 2(m + 1) with m € N, this
formula is valid on [—1,1]. Note also that in our special case, is in fact the
Maclaurin series for arcsin,(x) and, moreover, all coefficients are nonnegative (the
explicitly written coefficients are positive, the other ones are zero).

To apply the formula for composite formal power series, we need to consider
series for sin,(z) and arcsin,(z) including the zero terms. For this reason, we
define for all j € N

o = sinl)(0) /1 = {

a; ifj=1ip+1 for someie {0}UN,

. (5.10)
0 otherwise

and

) L j = ip+ 1 for some i € {0} UN
ﬂ; o F(%)(’ﬂ'lﬂ’l) n! J p ’ (511)

0 otherwise .
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Thus by well-known composite formal power series formula

“+oo
sin, (arcsing (z)) = Z cnx”, (5.12)
n=1
where
Cp = Z af BBy 3, . (5.13)

kEN7jl7j2a"'7jk eN

Jitjet-tje=n
Since both functions sin,(x) and arcsin,(z) are analytic in some neighborhood of
x = 0, the series from with coefficients given by is convergent towards
the identity = — x on some neighborhood of x = 0. From this fact, we infer that
cp =1and ¢, =0 for all n € N,n > 2. Thus for any z € R

+oo
z=) 2" > o BBy B (514)
n=l keijlana"'ajkEN
JitJat g =mn

and in particular
—+oo
=2 2 OBy BBy (519)
n=l ke N7 j17j27"'7jk €N
Atjet+ik=n

Now we show that also
+oo
2 2 oh- By By Bl (56)
n=1 k S N7 jlvav"‘vjk S N
Jit+je+-+ik=n

is convergent. By Lemma and @ we see that a; <O0forall jeNj>2
and of = cos,(0) = 1. Moreover, from (5.11)) it follows that 3} > 0 for all j € N.
Thus the product ay - 3} - B, - -+ 3], is positive if and only if k¥ = 1. All
positive terms can be written as o} - 8, = ), for n € N (if k = 1 then j; = n
is the only decomposition of n). Since the sum of all positive terms in is

2 Bl = arcsing (1) = 2 < 400, the sum of all negative terms must be finite
too and equals 1 — Z2. Thus (5.16) converges. This means that the series
converges absolutely to 1 and any rearrangement of this series must converge. Also
any subseries of any rearrangement of this series must converge absolutely. Let
Sy = 2%21 B.,. Then the series S/ o - (spr)* is a subseries of one of the
rearrangements of and it is convergent. Observe that s;; is nondecreasing
and converging to >, 3/ = m,/2 as M — +oco. Thus the Maclaurin series for
sing(z) = Y205 af, - a®
function.

Now it remains to show that it converges towards sin,(x) on (—m,/2,m,/2). This
last step follows from the formal identity , which on the established range of
convergence holds also analytically and the fact that the function siny(z) is the
only function that satisfies the identity . O

is convergent for any x € (—m,/2,m,/2) to some analytic
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Proof of Theorem[3] From [24, Thm. 1.1, consider p = q and ¢ = 0] it follows
that, for any p > 1, there exists a unique analytic function F'(z) near origin such
that sin,(z) = « - F(|z|?); thus we have

sin,(z) =z - F(|z|’) = Zal |z|"P | where F(z Zal

Note that for p = 2m + 1, m € N, the series

+oo
Zal gl (5.17)
1=0

defines an analytic function G(z) in a neighborhood of = 0 and also that
siny (z Z o - 2Pt = G(x) for x>0 (5.18)

on a neighborhood of 0. Our aim is to show that the radius of convergence of ([5.17)
is mp/2 for p=2m+1, m € N. By (p.18]), the following derivatives are equal

“+o0o
- (n n Cp+1)Y iy
) = ) = 3 o g Pt
=252 '

for z > 0 on the neighborhood of 0 where the series converges. Now take a one-sided
limit from the right in the previous equation

() () = GtV i
Forj::”TTlG{O}UN, we obtain
i Lp+ D! pnn (J-p+1)
1 p—ntl _ oo .
zi%l+zal p—i—l—n)m & (G-p+1—n)!
Thus
(G- p+1)

lim sin(™(z) = a; -

a—0+ P j-p+1—n)

(J
for j € {0} UN. By Lemma limg_,o4+ sin 1(, () <0forn>2 peNandp>3.
Thus o; <0 for j € N,j > 1.

The rest of the proof of the theorem is identical to the proof of Theorem [3.3]
and we find that the convergence radius of the series is =& for p =2m + 1,
m € N. The only difference against the proof of Theorem - is that the series
converges towards siny(z) only on (0,7,/2) for p = 2m + 1, m € N. Note
that the series is still convergent on (—m,/2,0) towards G(x) # sin,(z) for z < 0.
The changes in the proof are obvious and are left to the reader. O
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N 1w

N I=

NI

7 -

N 1w

FIGURE 5. Graph of sing(z) obtained by high-precision numeri-
cal integration of (thin line) versus graph of partial sum of
the Maclaurin series for sing(z) up to the power 1'% (thick line).
Notice that the Maclaurin series does not converge to sing(z) for
r<0and x> %

\ |/
7

NE

—15)

—-20)

FIGURE 6. Graph of the function log,, |sing(z) — 2711(1)1 al,z"|

where 27110201 al xz™ is the partial sum of the Maclaurin series of
sing(z). The values of sing(x) were obtained by high-precision nu-
merical integration of using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sing(x) for x < 0 and = >
7T3/2

6. CONCLUDING REMARKS AND OPEN PROBLEMS

As it was mentioned in the proofs of Theorems and it follows from [24]
Thm. 1.1, consider p = ¢ and o = 0] that, for any p > 1, there exists a unique
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N 1w

N I=

FIGURE 7. Graph of sing(z) obtained by high-precision numerical
integration of (1.3]) (thin line) versus graph of partial sum of the
Maclaurin series for sing(z) up to the power 2% (thick line)

-20

FIGURE 8. Graph of the function log;, |sing(z) — Z::fl ol x

where ZiLO:Ol al x™ is the partial sum of the Maclaurin series of
sing(x). The values of sing(z) were obtained by high-precision nu-
merical integration of using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sing(z) for |z| > m4/2

"

analytic function F'(z) near origin such that

sin,(z) =z - F(|z|?).
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Thus the function sin,(z) can be expanded into generalized Maclaurin series near
the origin:

+oo +oo
sing(z) =z - F(|z|?) = Zal -z - |z|'?,  where F(z) = Zal 2t
1=0 =0

Remark 6.1. (Convergence of generalized Maclaurin series) Let p = 2m + 1 for
m € N. It follows from the symmetry of the function sing,,+1(z) with respect
to the origin and from the proof of Theorem that the generalized Maclau-

rin series Zliog’ ap - x - |z|" ™) converges towards the values of sing,, 1(x) on
(_Tf2m+1 7T2m+1)
2 7 2

Remark 6.2 (Complex argument for p even). Let p = 2(m + 1) for m € N. Tt
follows from the proof of Theoremthat the Maclaurin series Zliog -t 2mHD+1
converges towards the values of sing(,,1)(z) on (— 25+ 220 ) absolutely. This
enables us to extend the range of definition of the function sing(,,41)(z) to the
complex open disc
7T2(m+1)}

2
by setting sing(my1)(2) = >y oy - 22D+ Since all the powers of z are of
positive-integer order [-2(m + 1) + 1, the function sing(,,11)(2) is an analytic com-
plex function on B,, and thus is single-valued. Unfortunately, this easy approach
works only for p = 2(m + 1) with m € N; cf [I5].

B, ={z€eC:|z| <

Our methods for proving convergence of the Maclaurin or generalized Maclaurin
series are based on the fact that p is an integer. Thus a natural question appears.

Open Problem 6.3 (Convergence for p > 1 not integer). Consider p > 1, p ¢ N.
Prove (or find a counterexample) that the generalized Maclaurin series correspond-
ing to sin,(x) ’suggests the convergence’ on (—m,/2,m,/2) towards the values of
sin, ().

For the sake of completeness, we remark that [15] claims the convergence of the
generalized Maclaurin series on (—m,/2,7,/2) for any p > 1, but there is no proof
nor any indication for the proof of this claim.

Moreover, we are not able to decide about the convergence at the endpoints.
This is another open question.

Open Problem 6.4 (Endpoints of the interval). Consider p > 1. Prove (or find a
counterexample) that the generalized Maclaurin series of sin,(z) converge at —Z&
and/or ZZ.

Remark 6.5 (Function cos, for p even). Let p = 2(m + 1) for m € N. Since
cosy(x) = siny,(x) by definition, the Maclaurin series for cosa(m1)(2) can be ob-
tained by taking into derivative the Maclaurin series for sing(,,41)(7) term by

term. The Maclaurin series for cosy(m1)(2) then converges towards the value

COSa (1) (@) for any z € (—22lptl) T2lmil)

Remark 6.6 (Function cos, for p odd). Let p = 2m+1 for m € N. In this case the
Maclaurin series for coss,,+1(x) can also be obtained by taking into derivative the
Maclaurin series for sing,,11(z) term by term. This Maclaurin series then converges
for x € (-T2, B2niL) However, the Maclaurin series for cosgy41(x) converges
towards the value cosgy41(x) for « € [0, Z5+2), but it does not converge towards

the value cosgm1(z) for any x € (—™25++,0).
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GENERALIZED TRIGONOMETRIC FUNCTIONS IN COMPLEX
DOMAIN

PETR GIRG, Plzen, LUKAS KOTRLA, Plzen

(Received October, 2013)

Abstract. In this paper we study extension of p-trigonometric functions sin, and cos, to
complex domain. For p =4,6,8,..., the function sin, satisfies initial value problem which
is equivalent to

_ (u/)p72 u' = upfl _ 07
) u(0) = 0,
u’(0) = 1

in R. In our recent paper [2], we showed that sin,(z) is a real analytic function for p =
4,6,8,... on (—mp/2,m,/2), where m,/2 = fol(l — sP)"Y/P. This allows us to extend sin,
to complex domain by its Maclaurin series convergent on disc {z € C: |z| < mp/2}. The
question is whether this extensions sin,(z) satisfies (*) in the sense of differential equations
in complex domain. This interesting question was posed by DOSLY and we show that the
answer is affirmative. We also discuss difficulties concerning extension of sin, to complex
domain for p = 3,5,7.... Moreover, we show that the structure of the complex valued initial
value problem (*) does not allow entire solutions for any p € N, p > 2. Finally, we provide
some graphs of real and imaginary parts of sin,(z) and suggest some new conjectures.

Keywords: p-Laplacian, differential equations in complex domain, extension of sin,.

MSC 2010: 33E30, 34B15, 34M05, 34M99

1. INTRODUCTION
The initial value problem

_ (|u/|p—2u/)’ _ (p _ 1)|u|p—2u _
(1.1) u(0

The research has been supported by the Grant Agency of the Czech Republic, project no.
13-00863S.



arises in connection with nonlinear boundary value problems for p > 1 (see e.g.
[4, 5, 7]). The solution of (1.1) is known as sin,, see e.g. [4], and cos, 2 sin,. Since
the functions sin, and cos, satisfy well-known p-trigonometric identity, see e.g. [5],

(1.2) |'sing, (z)[P + | cosp(x)|P =1,

they are also known as the p-trigonometric and/or generalized trigonometric func-
tions. Note that (1.2) is in fact the so-called first integral of (1.1) (see e.g. [5]). It
follows from this identity (see e.g. [5]) that

sing ()
/ (1fsp)*1/pds:x
0

for 0 < z < m,/2, where sin,(z) > 0 and cos,(z) > 0 and where

1
Tp def 2/0 (1—sP)"V/Pds.

Thus it is natural to define
(1.3) arcsin, (z) ef / (1-s")"YPds = for0<z <1,
0

and extend it to [—1, 1] as an odd function. The function sin,, is the inverse function
to arcsin,(z) on [—m,/2,m,/2]. Moreover, sin,(z) = sin, (7, — x) for x € (7,/2, 7p)
and siny(z) = —sin,(—=x) for z € [—m,,0]. Finally, sin,(x) = sin,(z + 27,) for all
x € R (see [5] for details).

Smoothness of sin, on (—m,/2,7,/2) for p > 1 was studied in [2]. The most
surprising result of [2] is that sin, is a real analytic function on (—m,/2,m,/2) for
p=4,6,8...,ie., sin,(x) equals to its Maclaurin on (—m,/2,7,/2) for p =4,6,8....
This approach naturally allows to extend sin, for p = 4,6,8... to an open disk

{ze€C:|z| <mp/2}

in the complex domain using power series (cf. [7], where the convergence of the
series is conjectured without proof). When our recent result was presented in the
conference “Nonlinear Analysis Plzeii 2013”7, O. DOSLY posed an interesting question
if this extension satisfies (1.1) in the sense of differential equations in complex domain.
This paper addresses his question. For p = 4,6, 8, ..., the initial value problem (1.1)
in R is equivalent to

_ (u/)p—2 u! — Pl = 0,
(1.4) u(0) = 0,
u'(0) =1



Note that for p > 1 real not being an even positive integer, we cannot get rid off the
absolute values in (1.1). Thus the equation (1.1) does not make sense for general
p > 1 in the complex domain. In this paper we consider the (1.4) in complex domain
for integer p > 2. The complex valued ordinary differential equations are studied by
means of power series (mostly by Maclaurin series). Note that, by [2, Theorem 3.2
on p. 5], siné”)(O) exists for 1 < n < p, but sing)”)(O) does not ezxist when p > 3 is
odd integer and n > p. Thus, by the formal Maclaurin series of siny(z), we mean
a series calculated from the limits of the derivatives lim, o+ sinz()") (x), which were
shown to exist in [2] for any n € N and p > 3 odd integer.

In Section 2, we prove that, for p = 4,6,8, ..., the function sin, can be extended by
its Maclaurin series to the disc {z € C: |z| < m,/2} and that this series solves the or-
dinary differential equation (1.4) in the sense of differential equations in the complex
domain. On the other hand, in Section 3, we show that the complex valued formal
Maclaurin series Mgin, () of the real function sin,(x) does not satisfy (1.4) in the
sense of differential equations in the complex domain for odd powers p = 3,5,7,....
In Section 4, we explain relations between the real and imaginary components of the
complex valued function sin,(z) for p = 2,6,10,... and p = 4,8,12,..., and also
the complex valued formal Maclaurin series Mg, (2) of the real function sin,(z) for
p=3,5,7,.... In Section 5, we show that the fact that the function sin,(z) cannot
be extended as an entire function follows from an interesting connection between
p-trigonometric identity and some classical results from complex analysis. Finally,
in Section 6, we visualize some of our result.

In the whole paper, the independent variable z stands for a complex number and
the independent variable x stands for a real number. In the same spirit, siny(z)
stands for a complex valued function and sin,(x) stands for a function of one real
variable.

2. EXTENSION OF sin, FOR p =4,6,8... TO COMPLEX DOMAIN.

We assume that p = 4,6,8... throughout this section unless specified differently.
In [2, Thm. 3.3] we proved the following result.

Proposition 2.1 ([2], Theorem 3.3 on p. 6). Let p = 4,6,8,.... Then the
Maclaurin series of siny,(x) converges on (—mp/2,m,/2).

Let Mgin, (x) denotes the formal Maclaurin series of sin,(z), p = 3,4,5,6,... (any
integer greater than 2). We also proved in the paper [2] that this Maclaurin series
has the following particular structure

+oo
(21) Msinp (.’ﬂ) = Z akxkp+1 9
k=0



where g > 0 and o < 0 (all other coefficients are zero).
The following result answers the question by O. DOSLY in the positive way.

Theorem 2.1. Let p = 4,6,8, ..., then the unique solution of the initial value
problem (1.4) on |z| < m,/2 is the Maclaurin series (2.1).

In order to prove this result, we need to state several auxilliar results. First of
all, let us note that the equation (1.4) is of second order. In order to apply known
theory, we rewrite (1.4) as an equivalent system. Using the substitution v’ = v, we
get the following first order system

v o= v,

v = —uPT P2
(2.2) wo0) = 0,
v(0) = 1.

To study systems of equations like (2.2) in complex domain, we need to use complex
functions of several variables. We will often make use of the following result.

Proposition 2.2 ([6], Theorem 16 on p. 33). Let f and g be holomorphic func-
tions in open set M C C", r € N. Then the functions f + g, f — g and fg are
holomorphic in M. Moreover if g(z) # 0 for all z € M, then 5 is holomorphic on
M.

Let us consider first order ODE system

(2.3) { y/ = f(Z’ y) )

Y(Zo) = Yo,

where y = (y1, Y2, - - -, yn)T eC"and f = (fi(z,y), fo(z, ¥), ---, fn(z,y))T eCn
and the function £ : C**! — C” is analytic complex function of n 4+ 1 complex
variables. The folowing result concerning existence and uniqueness of the initial

values problem in the complex domain is crucial in our proofs.

Proposition 2.3 ([3], Theorem 9.1 on p. 76). Let function f: C**! — C" be
analytic and bounded in the region

R:|z— 2| < «, lw —wol < 5,

where a > 0, 8 > 0, and let

def def . B
p= sup |f(z,w)[, v =min{a=].
(z,w)ER 1%

Then there exists in the disk Dy: |z — zo| < v a unique analytic function w: C — C™
which is the solution of (2.3).



Lemma 2.1. There is § > 0 such that in Uy % {z € C: |z| < 0} the initial value
problem (1.4) has the unique solution u(z) which is an analytic function in Up.

Proof. Consider (2.2) in complex domain. Let us denote

and (recall p =4,6,8,... by assumption of this section)

def £2m+1
fa(z,&,m) = S where z, £, n € C and m € N.

Naturally, the functions f = £ and g = n are holomorphic in entire complex plane.
Thus by Proposition 2.2, functions f;(z,&,n) and fa(z,£,n) are holomorphic on some
neighborhood of [0,0, 1]. Let R denote the maximal closed subset of this neighorhood.
Then the functions f; and fo are holomorphic on the closed domain R and so they
are continuous on R. Hence they are bounded on R (see [6], p. 37). Therefore, the
system (2.2) has unique solution by Proposition 2.3. O

The previous lemma yields local solution u(z) of (1.4) in a small neighborhood
Up of 0 in C. Since u(z) is analytic in Up, it can be written as a power series
u(z) = > poarz”, where this power series converges towards u(z) for all z € Uj.
Our next aim is to show that the series corresponding to u(z) has the same coefficients
as the series corresponding to sin,(z), which is the unique solution to the real-
valued initial value problem (1.1). For this purpose, we will use the following result

concerning sum of two powers series.

Proposition 2.4 ([9], Theorem 16.6 on p. 352). If the sum of two power series
in the variable z — zy coincide on a set of points E for which zq is a limit point and
zo ¢ E, then identical powers of z — zy have identical coefficients, i.e., there is a
unique power series in the variable z — zo which has given sum on the set E.

Now we are ready to prove the main result of this section.

Proof of Theorem 2.1. By Lemma 2.1, u(z) = > 5, arz" is the unique solution of
(1.4) in any point z € Uy. Observe that the solution u(z) = Y p-, arz® solves also
the real-valued Cauchy problem (1.4) in the sense of real analysis. On the other
hand, sin, is the unique solution of the real-valued Cauchy problem (1.4). Since
the Maclaurin series (2.1) of sin, converges towards sin, in (—m,/2,7,/2) under the
assumption of this section, we find that (2.1) satisfies (1.4) in (—m,/2,m,/2). More-
over, convergence of (2.1) on (—,/2,,/2) implies convergence of >, az"P+1 for



all z € C: |z| < mp/2. Therefore,

+oo +0o0
Zajzj = Zakzka for all z € Uy N (—mp/2,m,/2) .
§=0 k=0

Now we consider the set of points z, = n%_l, n € N. From the previous equation,
we have
—+o0 —+o0 400
. — )
E ajz%—g agz Pt :O:E 0.2 .
j=0 k=0 J=0

By Proposition 2.4, we find that these two series must coincide on Uy. Hence the
Maclaurin series (2.1) satisfies (1.4) on Uy. Let u be given by the series (2.1). Then

"
U K

(u')P~2,uP~1 have the radius of convergence m,/2 for p > 2,p € N. Since any
power series converges absolutely within the radius of its convergence, we see from
(1.4) that

p—2 —1

too " Too p
E apzkPtt ) — E a2kt =0= 0.z
k=0 k=0

Jj=0

+oo !
— E akzip-&-l
k=0

for all z, = %, n € N. Thus, by Proposition 2.4, u given by the series (2.1) is the
solution of (1.4) on the disc D = {z € C: |2| < mp/2}. O

3. OBSTACLES FOR EXTENSION OF sin, FOR p = 3,5,7... TO COMPLEX DOMAIN.
Lindqvist [7] proposed alternative definition of sin, as the solution of

d

o @) T =00 w(0)=0, w/(0)=1

(3.1)
in complex domain for p > 1 (considered only formally). In [7, Section 7], he conjec-
tures the possibility that solutions to (3.1) and real Cauchy problem

(3.2) (\u'\p*%')/ﬂuv’*zu, w(0) =0, w'(0)=1

could produce different solutions on R. We address this question in this section.
However, we have different definition of 7, and sin,, in this paper than in [7]. Turning
to our definitions of 7, and sin,, we get an equation corresponding to (3.1):

d np—1 p—1 ’
(3.3) d—(w) +(p-DwP™ =0, w0)=0, w'(0)=1

z
which is equivalent to (1.4), which is equivalent to (2.2). Since the p — 1-th power
is multivalued complex function, we will limit ourselves to p € N,p > 1, in order



to be able to perform rigorous analysis. The question is whether (3.3) produces a
solution which is different from solution (1.1) on R. In the previous section we proved
that for p = 4,6,8,... (and of course for p = 2) the solutions of (3.3) and (1.1) are
identical. Now we show that for p = 3,5,7, ... the solutions are different for negative
arguments.

This proposition is crucial for the proof of the main result of this section.

Proposition 3.1 ([2], Theorem 3.4 on p. 6). Let p=3,5,7,.... Then the formal
Maclaurin series of sin,(z) (the solution of the Cauchy problem (1.1)) converges on
(—mp/2,mp/2). Moreover, the formal Maclaurin series of sin,(x) converges towards
sin,(z) on [0,7,/2), but does not converge towards sin,(x) on (—m,/2,0).

Now we are ready to formulate main result of this section.

Theorem 3.1. Let p=3,5,7.... Then the unique solution u(z) of the complex
initial value problem (1.4) differs from the solution sin,(x) of the Cauchy problem
(1.1) for z =z € (—mp/2,0).

Proof. Let us recall that (3.3) is equivalent to (2.2). There exists unique solution
of (2.2) on some nonempty open disc in C containing 0 by Proposition 2.3. In the
same way as in the proof of Theorem 2.1 (with obvious modifications), it follows
that Mg, (2) solves (3.3) on the open disc |z| < m,/2 and it is the unique solution
on this disc. Since sin,(x) is the unique solution of (1.1), sin,(z) # Mg, (z) for
xz € (—m,/2,0) by Proposition 3.1, we see that (1.1) and (3.3) produce different
solutions on R. ]

4. RELATIONS BETWEEN REAL AND IMAGINARY PARTS

Let us mention an interesting relationship between real and imaginary part of
sin,(z) for p = 4, 8,12, .... One can see in the Figure 1, that the graph of the
imaginary part of sing(z) is the graph of the real part, rotated by —m/2.

Theorem 4.1. Let p=4,8,12,.... Then
R[sin, (2)] = Ysiny(i - 2)]

for all z € C: |z| < m,/2.

Proof. Note that by (2.1)

—+o0 +oo
sing, (z) = E a2l =2 E e
k=0 k=0



for z € C: |z| < mp/2. We assume p = 4] where | = 1,2,3... and thus

“+o0
sin,(2) = = Z a2t
k=0

Substituting i - z into this formula we find

+oo “+o0
sin,(i-z) =1-2 Z ap(i-2)* =i. Z a2 =1 sin, (2) .
k=0 k=0

Now the result easily follows from comparison of the real and imaginary parts of
sin,(z) and i - sin,(2). This ends the proof. O

Theorem 4.2. Let p = 2,6,10,14.... Then for all ¢ € [0,27) there exists
z € C: |z| < m,/2 such that

R[sin, (2)] # I[sin, (e - 2)].

Proof. Tt is known from [2], that the series Mgy, (2) has the form

+oo

§ kp+1
Msinp(z) == (677% Pt )

k=0

where the other coefficients are known to be zero. At first we show that ag = 1 and

o = < 0 (cfe.g. [7]). In fact, evaluating the integral in (1.3), we see that

__ 1
p(p+1)

¥ 11 1
arcsin, (z) = / (1—sP)"YPds = ,F, (, -1+ ,CL‘p) z for0<z<1,
0 pp p

where oF; is the Gauss’s hypergeometric function. Using the known series

oF1(a,b,¢,2) = (a)kc)()k’;z for|z] < 1,
) k!

+

e
I
=3

where (a), = H?ZO(a + k —1) for any a € R stands for the rising factorial, we find

1\ ok
(3), w
Pk

—  forO<w<1.

oo
arcsin, (w) = w Z

1 |
‘ (1 + p)k k!
Hence

arcsing, (w) = w + wPt + O (w?t) for0<w<1.

p(p+1)



Denoting w = sin,(z), we find

T=w+ o wPtl 4+ 0 (w2p+1) ,

pp+1)
which yields
1
(41) w = — mwp+l + O (w2p+1) .

Substituting (4.1) into itself we obtain

1 1 P
S (x 0 (WH)) 1O () |

w =
pp+1) p(p+1)
Hence
(4.2) sin,(z) =z — mxpﬂ +0 (w2p+1) ,
which gives desired formulas for a; = 1 and as = — With this at hand, we
p(p+1)
can write
LSS
(43) Minp (z) -y = .ptl 4 amzmerl _
p(p+1) ~
P an ) too
— = 2pHl mp
TSV mzzjoam“z

Let z =a, a € R: 0 < a < m,/2 for simplicity. Then ¢g = 7/2 is the unique angle
in [0,27) such that R[z] = J[e!?° 2]. Assumption on p of this theorem is that there
exists [ € NU {0} such that p = 41 + 2. Thus R[2PT!] = R[z4 3] = R[a*T3]. On the
other hand, 3[(el? 2)P*1] = 3[(ia)**+3] = —a**3 for ¢9 = 7/2. Pluging z = a and
z = ia into (4.3), taking real and imaginary part, respectively, and subtracting, we
get

(44) R [Man, (a)] — S[Main, (ia)] =

+00 =

> am+2am”] -9 [Z'QPH > am+2(ia)mp]>
m=0 m=0

Since the series on the right-hand side are convergent on disc {z € C: |z| < m,/2},

then
+oo
( [Z Qmi22 p] -9 [iQpH Z a,n_kg(iz)mp])
m=0

_ 2 (g
pp+1)

A
o [o\Smp/a}

< 400




exists and from (4.4) we find

S[Msin, (ia aP 1—# aP
0 [, 0]~ 300 i) 02— 2] < e

1/
Taking 0 < a < min {7?10/47 (m) p}7 we see that R [Min, (a)] — S[Main, (ia)] #

0. This concludes the proof.

5. CONSEQUENCE OF COMPLEX p-TRIGONOMETRIC IDENTITY

As it was mentioned earlier, the maximal possible radius of convergence for the
(formal) Maclaurin series for functions sin, and cos, is m,/2. This fact was antici-
pated in [7] and studied in detail in [2]. In this section we explain that there was no
hope for these series to have their radius of convergence infinite for p = 3,4,5,6,. ...
To the contrary what one would think, we will show that it is not the absolute
value in (1.1) that produces the main difficulty. It is a complex analogy of the p-
trigonometric identity that produces the impossibility of sin, to be an entire complex
functions for p = 3,4,5,6,....

Let us reconsider (1.4), i.e.,

(u/)p 2 W — Pl = 0,
u(0) = 0,
u’(0) = 1,
now for any p = 3,4,5,6, ... in a complex domain. Let us assume that u is a solution

which is a holomorphic function on some neighborhood Uy of 0. Multiplying the
equation of (1.4) by v’ and integrating from 0 to z € Uy, we obtain

('(2))" = (/(0))” + (u(2))" — (u(0))” = 0.
Now using the initial conditions of (1.4) we get
(5.1) ('(2))" + (u(2))” = 1,

which is the first integral of (1.4) and we can think of it as complex p-trigonometric
identity for holomorphic solutions of (1.4) for p = 3,4,5,6,....
Now we state the very classical result from complex analysis.

Proposition 5.1 ([1], Theorem 12.20 on p. 433). Let f and g be entire functions
and for some positive integer satisfy identity

ff+g"=1.

10



(i) If n = 2, then there is an entire function h such that f = cosoh, g = sinoh.
(ii) If n > 2, then f and g are each constant.

It follows from this result that holomorphic solution u of (1.4) cannot be entire
function for any p = 3,4,5,6,..., since the derivative of entire function is entire
function as well and w and v’ must satisfy (5.1). Thus by Proposition 5.1 v and u’
are constant which contradicts u'(0) = 1.

In particular for p = 4,6,8,..., with u(z) = sin,(z) and v'(z) = cos,(z) this
becomes

cosh(z) +sinf(2) =1
and we see that sin, and cos, cannot be entire functions.

Note that it was an interesting internet discussion [11] that called our attention
towards this connection between complex analysis (including the classical reference
[1, Thm. 12.20]) and p-trigonometric functions. It seems to us that this connection
was overlooked by the ‘p-trigonometric community’.

6. VISUALIZATION OF sin,(z) AND THEIR MACLAURIN SERIES

In this section we visualize graphs of extension of sin,(z) by its Maclaurin series
for p = 4,6 and the formal Maclaurin series for p = 3,5,7 and compare it to the
classical result sin,(z) = sina(z). To the best of our knowledge, these figures in
complex domain are new and we believe that they will help to stimulate discussion
on this topic. We also formulate some conjectures in the caption of Figure 3. The
authors would like to thank to O. Marichev [8] from Wolfram Research, for his
valuable advices concerning series representation of functions and their inverses in
the software package Mathematica®.

11
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FIGURE l.mContourlines of the real and imaginary%part of sin,(2)
for p = 2,4,6 and Mgy, (2) for p = 3,5,6. Note that imaginary part
of sing(z) is its real part rotated by —m /2.
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FIGURE 2. Comparison of real parts of sin,(z) for p even (extended

by the Maclaurin series) and the real parts of the formal Maclaurin

series Mgin, () and the real function sin, () for p odd.
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p even p odd
R[sin, (mp/2€™?)].. . solid line R[Miin, (m,/2 €™)]. . . solid line
Qsiny(mp/2€™)]. .. dashed line S[Mgin, (/2 €™?)]. . . dashed line

FIGURE 3. Numerical comparison of the real and the imaginary
parts of sin,(m,/2€™¢) for p = 2,4,6 (extended by Maclaurin series)
and the real and the imaginary parts of Mgy, (m,/2¢™%) for p =
3,5,7. Note that these graphs are only an illustration, because we
do not know about the convergence of the series for z € C: |z| =
mp/2. From these pictures we conjecture this convergence. It is
interesting to note at these pictures that for larger p, the graph
of real part is a small perturbation of m,/2cos¢ and the graph of
imaginary part is a small perturbation of 7,/2sin ¢. We conjecture
that this phenomena occurs due to the fact that the Maclaurin series
Miin, (2) = z — mz”“ + O(2?P*1) and for large p the higher
order terms are negligible. Moreover, lim, 4. m,/2 = 1. Thus we
conjecture that these graphs tend to graphs of sin¢ and cos ¢ for
p — 400, respectively.
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