Západočeská univerzita v Plzni Fakulta elektrotechnická

Katedra elektroenergetiky a ekologie

Diplomová práce

Možnosti použití studeného kelímku při tavení oxidů kovů

Plachý Jan

 $\mathbf{2014}$

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2013/2014

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Jan PLACHÝ
Osobní číslo:	E12N0170P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Elektroenergetika
Název tématu:	Možnosti použití studeného kelímku při tavení oxidů kovů
Zadávající katedra:	Katedra elektroenergetiky a ekologie

Zásady pro vypracování:

- 1. Uveďte teorii indukčního ohřevu.
- 2. Uveďte teorii sdílení tepla.
- 3. Zpracujte problematiku studeného kelímku se zaměřením na tavení oxidů kovů.
- 4. Vytvořte numerický model pro řešení elektromagnetického pole studeného kelímku používaného pro tavení oxidů kovů.

5. Uveďte závěry pro praxi.

Rozsah grafických prací:podle doporučení vedoucíhoRozsah pracovní zprávy:**30 - 40 stran**Forma zpracování diplomové práce:tištěná/elektronická

Seznam odborné literatury:

- 1. Langer, E. : Teorie indukčního a dielektrického tepla, Praha, Academia, 1979
- 2. Rudnev, V. : Handbook of induction heating, New York, Marcel Dekker, 2003
- 3. Starck, Axel von Mühlbauer, Alfred, Kramer, Carl : Handbook of thermoprocessing technologies, fundamentals, processes, components, safety, Essen, Vulkan-Verlag, 2005

4. Internet

Vedoucí diplomové práce:

Ing. David Rot, Ph.D. Katedra elektroenergetiky a ekologie

Datum zadání diplomové práce: Termín odevzdání diplomové práce:

14. října 2013 12. května 2014

Jiří Hammerbauer, Ph.D. Doc. děkan

V Plzni dne 14. října 2013

Doc. Ing. Karel Noháč, Ph.D. vedoucí katedry

Abstrakt

Tato práce řeší možnosti použití studeného kelímku při tavení oxidů kovů. Hlavním cílem této práce je vytvoření numerického modelu pro řešení výpočetní technikou a profesionálním programem ANSYS.

Abychom danou problematiku mohli řešit, je nejprve uvedena teorie indukčního ohřevu a sdílení tepla, jak je provedeno v kapitole 2 a 3. Dále je pak popsána problematika studeného kelímku při tavení oxidů kovů tj. konstrukční uspořádání studeného kelímku, startovací fáze pro započetí tavby nevodivých materiálů a následný proces tavby a vytvoření krusty na rozhraní kelímek tavenina. V 5. kapitole je uveden 3D matematický model pro řešení nejmenší části studeného kelímku v programu ANSYS.

V této práci je vytvořen 3D model nejmenší části studeného kelímku pro tavení oxidu hlinitého Al_2O_3 podle reálného zařízení z univerzity v Petrohradu. Došlo k vytvoření modelu a jeho řešení pomocí metody konečných prvků. Výsledkem tohoto řešení je rozložení vektorového potenciálu, indukce, intenzity, proudové hustoty a Jouleových ztrát elektromagnetického pole.

Výsledky této práce mohou posloužit k porovnání s metodou integrálního řešení ve 2D provedené na univerzitě v Petrohradu. Dále pak umožňují debatu o správnosti uspořádání a celkovém řešení dané problematiky.

Klíčová slova

Indukční ohřev, Sálání, Proudění, Vedení, Studený kelímek, Oxidy kovů, Oxid hlinitý Al_2O_3 , ANSYS, Numerické řešení, Metoda konečných prvků

Abstract

This thesis resolves possibility of using cold crucible for melting metal oxides. The main objective of this thesis is to create a numerical model for computing solutions and professional software ANSYS.

In order to solve the issue, the theory of induction heating and heat transfer is stated at first, as is done in Chapter 2 and 3. Then is discussed the issue of the cold crucible melting metal oxides i.e. the design of the cold crucible, start phase to begin melting nonconductive materials and the subsequent process of melting and creating skull interface crucible melt. In the 5. chapter provides a 3D mathematical model for the solution the smallest part of cold crucible in ANSYS.

In this thesis is created a 3D model with the smallest part of cold crucible for melting aluminum oxide Al_2O_3 by the real device of the University of St. Petersburg. There has to create the model and its solution using a the finite element method. The result of this solution are the layout of the vector potential, induction, intensity, current densities and Joule losses in electromagnetic field.

The results of this work could be used for comparing with the method of integral solutions in 2D carried out at the University of St. Petersburg. Then allow a debate on the correct layout and overall solution of the problem.

Key words

Induction heating, radiation, convection, conduction, cold crucible, metal oxide, aluminum oxide Al_2O_3 , ANSYS, numerical solution, finite element method

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni. Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce. Dále prohlašuji, že veškerý software použitý při řešení této diplomové práce je legální.

V Plzni dne

podpis

Poděkování

Děkuji Ing. Davidu Rotovi, Ph.D. za odbornou pomoc při tvorbě této práce. Konkrétně za mnoho cenných rad a připomínek, za pečlivé přečtení, korekci textu, pomoc při práci s programem ANSYS a za čas, který mi věnoval.

Obsah

1	Úvod			1
2	Teo	rie ind	lukčního ohřevu	4
	2.1	Rovin	né harmonické elektromagnetické vlnění [1]	4
		2.1.1	Popis rovinného elmg. vlnění	4
		2.1.2	Rovnice rovinného harmonického elmg. vlnění	6
	2.2	Válcov	vé harmonické elektromagnetické vlnění [1]	8
		2.2.1	Popis válcového elmg. vlnění	8
		2.2.2	Obecné rovnice válcového elmg. vlnění [1]	11
		2.2.3	Proud naindukovaný do válcové vsázky	13
		2.2.4	Impedance válcové vsázky	16
		2.2.5	Množství naindukovaného tepla ve válcové vsázce	19
	2.3	Elektr	$\operatorname{comagnetické pole}[4]$	21
		2.3.1	Podmínky na rozhraní	25
3	Teo	rie sdí	lení tepla	27
	3.1	Sdílen	í tepla vedením [6] \ldots \ldots \ldots \ldots \ldots \ldots	27
	3.2	Sdílen	í tepla prouděním [6]	28
	3.3	Sdílen	í tepla sáláním [6]	29
	3.4	Teplot	$tní pole [4] \dots \dots$	29
		3.4.1	Okrajové podmínky	30
4	Pro	blema	tika studeného kelímku při tavení oxidů kovů	32
	4.1	Konst	rukce studeného kelímku	32
		4.1.1	Studený kelímek s integrovaným induktorem	33
		4.1.2	Studený kelímek segmentový	33
	4.2	Starto	wací fáze	34

		4.2.1	Startování pomocí malého množství kovu	36
		4.2.2	Startování pomocí elektricky vodivého kruhu	37
		4.2.3	Startování pomocí povrchového ohřevu	38
	4.3	Rozta	vení materiálu a vytvoření krusty	39
5	Nur	nerick	ý model pro řešení elektromagnetického pole	41
	5.1	Řídící	systém	41
	5.2	Tvorb	a matematického modelu	46
		5.2.1	Obecný postup tvorby modelu	46
		5.2.2	Vlastní tvorba 3D modelu	48
	5.3	Výslec	lky řešeného problému	52
		5.3.1	Rozložení vektorového potenciálu	53
		5.3.2	Rozložení magnetické indukce	54
		5.3.3	Rozložení magnetické intenzity	55
		5.3.4	Rozložení proudové hustoty	56
		5.3.5	Rozložení Jouleových ztrát	57
6	Záv	ěr		58
\mathbf{A}	Výsl	ledky i	češení modelu	Ι
в	Prog	gram n	nodelu	VIII

Seznam tabulek

4.1	Hodnoty rezistivity a frekvence oxidů kovů	35
4.2	Měrná hmotnost kovů	36
5.1	Rozměry segmentového studeného kelímku	48
5.2	Materiálové parametry	50
5.3	Naměřené hodnoty reálného zařízení	52
5.4	Vypočítané hodnoty modelu	53

Seznam obrázků

2.1	Schématické znázornění rovné stěny vyzařující rovinné elm g. vlnění $[1]$	5
2.2	Prostorový element pro vyjádření rot \mathbf{H} [1]	8
2.3	Schematický řez válcovou cívkou [1]	9
2.4	Soustava válcových souřadnic [1]	9
2.5	Vnitřní povrch cívky vyzařuje válcové elm g. vlnění ${\bf S_{p1}}~[1]~\ldots~\ldots~\ldots$	10
2.6	Obrázek pro odvození rot \mathbf{H} a rot \mathbf{E} v dutině cívky [1]	12
2.7	Schematické uspořádání válcové cívky a souosé válcové vsázky $[1]$	13
2.8	Proud I_{21} na indukovaný do válcové vsázky v závislosti na argument u $x_2\ [1]$	15
2.9	$\operatorname{Průběh}$ hustoty proudu (absolutní hodnota) vyvolané současným dopadem	
	vlnění $\mathbf{S}'_{\mathbf{p}} \mathbf{S}''_{\mathbf{p}}$ v protějších bodech A a B [1]	15
2.10	Průběh funkcí $P(x)$ a $Q(x)$ v závislosti na argumentu x [1]	17
2.11	Obrázek pro odvození Jouleových ztrát $[1]$	19
4.1	Studený segmentový kelímek [8]	34
4.2	Závislost měrného odporu na teplotě [17]	35
4.3	Startovací fáze pomocí malého množství kovu [11]	37
4.4	Startovací fáze pomocí grafitového kruhu [10]	38
5.1	Blokové schéma řídícího systému [14]	42
5.2	Ekvivalentní elektrické schéma obvodu [14]	43
5.3	Ekvivalentní elektrické schéma induktoru se zátěží [14] $\ .$	44
5.4	Fázorový diagram proudů a napětí indukčního systému $[14]$	45
5.5	Geometrie segmentového studeného kelímku [14]	49
5.6	Nejmenší možná část studeného kelímku	49
5.7	Síťování oblastí \ldots	51
5.8	Rozložení vektorového potenciálu	53
5.9	Rozložení magnetické indukce $[T]$	54

5.10	Rozložení magnetické intenzity $[A/m]$	55
5.11	Rozložení proudové hustoty $[A/m^2]$	56
5.12	Rozložení Jouleových ztrát $[W/m^3]$	57
1	Rozložení vektorového potenciálu	Π
2	Rozložení magnetické indukce $[T]$	III
3	Rozložení magnetické intenzity $[A/m]$	V
4	Rozložení Jouleových ztrát $[W/m^3]$	V
5	Rozložení proudové hustoty $[A/m^2]$	VII

Seznam nejpoužívanějších jednotek a veličin

Značka	Název	Jednotka
Ι	elektrický proud	A
U	elektrické napětí	V
a	hloubka vniku naindukovaných proudů	m
ω	úhlová frekvence	rad/s
μ	permeabilita	H/m
μ_r	relativní permeabilita	_
γ	konduktivita	S/m
ε	permitivita	F/m
Н	intenzita magnetického pole	A/m
E	intenzita elektrického pole	V/m
D	elektrická indukce	C/m^2
В	magnetická indukce	Т
J	proudová hustota	A/m^2
ρ	objemová hustota náboje	C/m^3
σ	plošná hustota náboje	$C/^2$
Α	vektorový magnetický potenciál	Wb/m
Φ	magnetický indukční tok	Wb
K_N	hustota plošného proudu	A/m
w_J	jouleovo teplo	W/m^3
S	zářivý vektor	W/m^2
R	elektrický odpor	Ω
Z	impedance	Ω
ber	součet reálných členů	_
bei	součet imaginárních členů	_

Elektromagnetické pole

Konstanty pro elektromagnetické pole

Značka	Název	Konstanta	
$arepsilon_0$	permitivita vakua	$(8,85419 \pm 0,00002)$. $10^{-12}F/m$	
μ_0	permeabilita vakua	4 . π . $10^{-7} H/m$	

Teplotní pole

Značka	Název	Jednotka
T	termodynamická teplota	K
T_0	počáteční rozložení teploty	K
ρ	hustota	kg/m^3
С	tepelná kapacita	$J.kg^{-1}.K^{-1}$
λ	tepelná vodivost	$W.m^{-1}.K^{-1}$
α	součinitel přestupu tepla prouděním	$W.m^{-2}.K^{-1}$
Q_0	objemová hustota tepelné energie	W/m^3
v	rychlost kontinua	m/s
q	plošná hustota energie	W/m^2
С	emisivita	—
t	čas	S

Konstanty pro teplotní pole

Značka	Název	Konstanta
ε	Stefan-Boltzmannova konstanta	$5,6697.10^{-8}W.m^{-2}.K^{-4}$

Rozlišení charakteru veličin typem písma

Rozložení v prostoru	Symbolika	Příklad
Skalár	kurzíva	E, H
Vektor	tučně	\mathbf{E},\mathbf{H}
Fázor	tučně s pruhem nahoře	$ar{\mathbf{E}},ar{\mathbf{H}}$

Kapitola 1

Úvod

Základy indukčního ohřevu kovů byly položeny roku 1831 anglickým fyzikem Michaelem Faradayem. Během experimentů se dvěma cívkami se společným jádrem zjistil, že pokud je spínač baterie připojen na primární cívku, momentální proud může být měřen pouze v jednom směru na galvanometru, umístěném v sérii s druhou cívkou. Pokud je spínač rozepnut, žádný proud sekundární cívkou neprochází. Po dalším sepnutí spínače byl proud v sekundární cívce znovu naměřen, ale v opačném směru než-li před rozepnutím.

Faraday dospěl k závěru, že tento elektrický proud může být vyvoláván měnícím se magnetickým polem. Jelikož obě cívky nebyly fyzicky ničím propojeny, usoudil, že se napětí z primární cívky naindukovalo do sekundární cívky a to poté vyvolalo proud. Faradayův indukční zákon tedy zní: "Elektromotorická síla vyvolaná v obvodu je přímo úměrná času za který se se změní magnetický tok v obvodu."

Německý fyzik Heinrich Lenz později formuloval Lenzův zákon, který zní: "Polarita indukovaného elektromotorického napětí je taková, že má tendenci vytvářet proud, který vytvoří magnetický tok působící proti změně magnetického toku ve smyčce."

Během následujících několika desetiletí byly tyto účinky použity k rozvoji a návrhu transformátorů, za účelem změny úrovně napětí z jednoho obvodu do jiného, pro efektivnější způsob přenosu elektrické energie a provozu elektrických zařízení. Vedlejším efektem tohoto rozvoje bylo teplo vznikající v magnetických jádrech transformátorů. Tato jádra byla tvořena vrstvami ocelových plechů ve snaze snížit vznikající teplo. Teprve ve druhé polovině 19. století došlo k situaci, že se tento topný účinek začal využívat za účelem tavení kovů. Postupným vývojem tak vznikly pece kelímkové a kanálkové. Dalším následným rozvojem tavící technologie jsme dospěli i k technologii studeného kelímku.

Tavení ve studeném kelímku je způsob tavení kovů ve vodou chlazené měděné nádobě uvnitř indukční cívky, ve vakuu či ochranné atmosféře. To se provádí kov na kov bez vyzdívky. Měděný kelímek sestává z vodou chlazených segmentů nebo lamel . Magnetické pole vytvářené cívkou prochází kelímkem, vyvolá vířivé proudy a ty následně teplo v kovové vsázce a způsobí tak její roztavení. Pole dále působí na taveninu. Tenká vrstva kovu, která zůstává ztuhlá proti dnu a okrajům kelímku tvoří krustu. Nízká rychlost mezní vrstvy taveniny přiléhající ke krustě, spolu s krustou samotnou a rozhraním krusty s kelímkem tvoří dohromady tepelné odpory, které tak snižují teplo vedené z taveniny do studeného kelímku.

Když se kelímek, cívka, frekvence a úroveň výkonu správně navrhnou, jsou strany tekutého kovu tlačeny dovnitř, od vnitřních bočních stěn kelímku. Ve skutečnosti jsou stěny tekutého kovu od kelímku izolovány magneticky. Absence fyzického kontaktu s bočními stěnami zabraňuje zkratování segmentů kelímku a dále snižuje tepelné ztráty do kelímku.

Pro lepší představu funkce studeného kelímku při tavení, vodivých i nevodivých materiálů, je tato práce rozdělena do šesti částí včetně tohoto úvodu a závěru.

Teorie indukčního ohřevu a sdílení tepla

Tyto dvě kapitoly se zabývají teoretickými základy a specifickými elektromagnetickými jevy využívanými pro návrh optimálního indukčního systému. Jsou zde popsány základní tepelné jevy a tři způsoby přenosu tepla, jakož i změny vlastností materiálu s nárůstem teploty.

Metody pro výpočet jsou založeny na nekonečně dlouhé cívce a vsázce. Bohužel, je tento předpoklad zřídka platící. Cívky mají obvykle několik málo závitů a nemohou být tak považovány za nekonečně dlouhé.

Pro řešení jednotlivých problémů indukčního tavení se uvádí několik metod. Tyto metody jsou popsány v různých interních zprávách, specializovaných časopisech či odborné literatuře, často nedostupné běžným inženýrům. V této kapitole není cílem rozepsat veškeré dostupné metody výpočtů. Nicméně, aby bylo možné správně se zorientovat v dané problematice, je nezbytné uvést alespoň obecné základy indukčního ohřevu a sdílení tepla.

Popis rovinného harmonického vlnění, válcového harmonického vlnění a odvození vektorových potenciálů, je nezbytnou součástí pro pochopení následujících částí.

Problematika studeného kelímku

V této části se práce zaměřuje na danou problematiku tavení oxidů kovů ve studeném kelímku. Jelikož se problematikou indukčního tavení se studeném kelímku zabývá řada renomovaných pracovišť po celém světě, je zde popsáno několik možností řešení a zjednodušení dané problematiky.

V první řadě je popsán princip tavení oxidů kovů ve studeném kelímku. Dále pak konstrukční řešení studených kelímků. Existují dva typy studených kelímků a to kelímek s integrovaným induktorem a kelímek tvořený segmenty, kdy induktor je vně kelímku, toto řešení je technicky náročnější. Pro potřeby tavení oxidů kovů se používá kelímek tvořený segmenty.

Dále je pak popsán postup při nutnosti použití startovací fáze pro započetí tavení vsázky. Existuje několik variant. Každá z variant má ale své výhody a nevýhody, které jsou v této části podrobně rozepsány. A nakonec je popsána část, kde dojde k roztavení materiálu a následnému vytvoření krusty na přechodu kelímek, segmenty.

Numerický model

Tato část je primárním cílem této diplomové práce. Jedná se o vytvoření matematického modelu za pomoci výpočetní techniky a profesionálního programu ANSYS. Konkrétně se jedná o řešení nejmenší části studeného segmentového kelímku při započetí tavby bez přenosu hmoty.

Kapitola 2

Teorie indukčního ohřevu

Indukční teplo vzniká vždy při dopadu elektromagnetického (elmg.) vlnění na vodivou stěnu. Část vlnění se při dopadu odrazí a vrací zpět, druhá část proniká do stěny a vyvolá v ní indukované (vířivé) proudy. Energie elmg. vlnění se spotřebuje na uvedení do pohybu volných elektronů v materiálu stěny. Elektrony se pohybují ve směru intenzity elektrického pole, nabývají i na krátkých volných drahách značných rychlostí, a tím poměrně značné kinetické energie. Při nárazu elektronů na atomy vodiče předají elektrony svou kinetickou energii atomům, tím zvýší jejich rozkmit, což jinými slovy znamená zvýšení teploty materiálu. Elmg. vlnění se ve stěně utlumí a jeho energie se přemění na tepelnou.[1]

Následující kapitoly budou věnovány popisu obecných rovnic harmonického vlnění pro vodivé i nevodivé prostředí.

2.1 Rovinné harmonické elektromagnetické vlnění [1]

2.1.1 Popis rovinného elmg. vlnění

Zdrojem rovinného elmg. vlnění může být pouze rovná vodivá stěna, kterou prochází jedním směrem střídavý, harmonicky proměnný proud. Zvolme pravoúhlou souřadnicovou soustavu tak, aby vyzařující rovina, to je rozhraní mezi vodivou stěnou a nevodivým prostředím, procházela osami Y a Z (obr 2.1)

V teoretických úvahách předpokládejme, že je tato stěna rozprostřena ve směrech Y a Z do nekonečna. Rozdělme stěnu na pruhy o šířce 1 m, ve směru osy Y. Každým pruhem nechť protéká týž střídavý harmonicky proměnný proud o hodnotě I_{11} [$A \cdot m^{-1}$]. Předpokládejme, že zdroj je schopen napájet všechny pruhy mezi nekonečně vzdálenými

Obrázek 2.1: Schématické znázornění rovné stěny vyzařující rovinné elmg. vlnění [1]

body 4 a 1 synchronně týmž proudem I_{11} $[A . m^{-1}]$. Dále učiníme předpoklad, že rychlost šíření proudové vlny ve všech pruzích ve směru osy Y je nekonečně veliká. Za učiněných předpokladů můžeme naši úvahu uzavřít zjištěním, že okamžitá hodnota proudu i_{11} $[A . m^{-1}]$ v každém zvoleném okamžiku je ve všech bodech do nekonečna rozprostřené vyzařující roviny všude stejná.

Zvolme ve vyzařující rovině bod A_1 . Proud $\mathbf{I_{11}}$ je vyvolán složkou intenzity elektrického pole $\mathbf{E_1} [V.m^{-1}]$, kterou dodává zdroj. Procházející proud $\mathbf{I_{11}}$ vyvolá v rozhraní intenzitu magnetického pole $\mathbf{H_1} [A \cdot m^{-1}]$. Směr $\mathbf{H_1}$ splývá s osou Z. Odvodíme, že $\mathbf{H_1} = -\mathbf{I_{11}}$. Magnetický tok vybuzený proudem $\mathbf{I_{11}}$ vybudí v rozhraní indukované napětí $\mathbf{E_i} [V.m^{-1}]$. Má směr osy Y, avšak má smysl proti proudu $\mathbf{I_{11}}$, resp. proti $\mathbf{E_1}$. Toto napětí $\mathbf{E_1}$ je totožné s fázorem $\mathbf{barE_p}$ vyzářené elektrické vlny, $\mathbf{E_1} = \mathbf{barE_p}$. Dále odvodíme, že vzájemný vztah fázoru $\mathbf{\bar{E_p}}$ a fázoru $\mathbf{\bar{H_1}}$ je určen charakteristickou impedancí $\mathbf{\bar{Z}}$ pro rovinné vlnění v nevodivém prostředí.

$$\bar{\mathbf{E}}_{\mathbf{p}} = \bar{\mathbf{Z}}\bar{\mathbf{H}}_{\mathbf{1}} = \sqrt{\frac{\mu}{\varepsilon}}\bar{\mathbf{H}}_{\mathbf{1}}$$
(2.1)

Z uvedeného vyplývá, že intenzita elektrického pole $\mathbf{E}_{\mathbf{p}}$ je ve všech bodech vyzařujícího rozhraní stejná, nezávisí na souřadnicích y a z. Totéž platí pro intenzitu \mathbf{H}_{1} . Jejich deri-

vace jsou proto rovny nule

$$\frac{d\mathbf{E}}{dy} = \frac{d\mathbf{E}}{dz} = 0, \quad \frac{d\mathbf{H}}{dy} = \frac{d\mathbf{H}}{dz} = 0.$$
(2.2)

Určeme zářivý vektor z fázorů $\overline{\mathbf{E}}_1$ a $\overline{\mathbf{H}}_1$

$$\mathbf{S}_1 = [\bar{\mathbf{E}}_1 \bar{\mathbf{H}}_1]. \tag{2.3}$$

Ze vzájemné orientace vektorů $\mathbf{E_1}$ a $\mathbf{H_1}$ vychází smysl vektoru $\mathbf{S_1}$ do vyzařující stěny. Tento vektor značí ztráty, které vzniknou ve vodivé stěně při průchodu proudu $\mathbf{I_{11}}$. Určeme ještě zářivý vektor z fázorů $\mathbf{\bar{E_p}}$ $\mathbf{\bar{H_1}}$.

$$\mathbf{S}_{\mathbf{p}} = [\bar{\mathbf{E}}_{\mathbf{p}}\bar{\mathbf{H}}_{\mathbf{1}}]. \tag{2.4}$$

Vektor $\mathbf{S}_{\mathbf{p}}$ vystupuje kolmo z rozhraní a udává hustotu toku elmg. energie vyzářené uvažovanou vodivou stěnou v bodě A_1 . Za učiněných předpokladů vyzařují všechny body nekonečně rozprostřeného rozhraní tok emlg. energie o hustotě $\mathbf{S}_{\mathbf{p}}$. Stěna vyzařuje rovinné elmg. vlnění.

Uvedené podmínky pro rovinné elmg. vlnění jsou nesplnitelné pro stěnu rozprostřenou ve směrech Y a Z do nekonečna. Ve skutečnosti se však setkáváme s vyzařujícími rovinami poměrně malých rozměrů ve srovnání s vlnovou délkou λ , odpovídající použitému kmitočtu. Potom je podmínka téže okamžité hodnoty proudu i_{11} v každém místě vyzařující stěny s postačující přesností splněna.

2.1.2 Rovnice rovinného harmonického elmg. vlnění

Vyjdeme z obecných fázorových rovnic

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \tag{2.5}$$

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0 \tag{2.6}$$

Vyjádříme Laplaceův operátor v soustavě pravoúhlých souřadnic

$$\left[\frac{\partial^2 \mathbf{E}}{\partial x^2} + \frac{\partial^2 \mathbf{E}}{\partial y^2} + \frac{\partial^2 \mathbf{E}}{\partial z^2}\right] + k^2 \mathbf{E} = 0.$$
(2.7)

Rovinné elmg. vlnění je charakterizováno tím, že vektory \mathbf{E} a \mathbf{H} jsou invariantní k souřadnicím y a z, derivace \mathbf{E} a \mathbf{H} podle y a z jsou proto rovny nule. V Laplaceově

operátoru odpadnou druhé derivace podle y a z. Fázorové rovnice ${\bf E}$ a ${\bf H}$ pro rovinné vlnění budou

$$\frac{d^2 \mathbf{E}}{dx^2} + k^2 \mathbf{E} = 0 \tag{2.8}$$

$$\frac{d^2\mathbf{H}}{dx^2} + k^2\mathbf{H} = 0 \tag{2.9}$$

Rešení těchto homogenních diferenciálních rovnic 2. řádu, 1. stupně je velmi snadné. Výsledkem řešení je lineární kombinace dvou exponenciálních funkcí typu: $\mathbf{H} = \mathbf{A}e^{\lambda x}$. Exponent λ dostaneme z charakteristické rovnice

$$\lambda^2 \mathbf{A} e^{\lambda x} + k^2 \mathbf{A} e^{\lambda x} = 0,$$

$$\lambda_{1,2} = \pm jk = \pm j(\alpha - j\beta) = \pm (\beta + j\alpha)$$
(2.10)

 $\dot{\text{Resenf}}$ rovnice (2.9) bude

$$\mathbf{H} = \mathbf{A}_{\mathbf{1}} e^{jkx'} + \mathbf{A}_{\mathbf{2}} e^{-jkx'} = \mathbf{H}_{\mathbf{p}} + \mathbf{H}_{\mathbf{r}}.$$
 (2.11)

Výraz (2.11) udává obecné řešení harmonického rovinného elmg. vlnění pro prostředí vodivé i nevodivé. A_1 , A_2 jsou integrační konstanty, které se v konkrétním případě určí z mezních podmínek. První člen na pravé straně je elmg. vlnění postupující, vcházející ze zářiče. Druhý člen značí elmg. vlnění odražené zpět od předpokládané rovné vodivé stěny, umístěné kolmo ke směru šíření. Pro názornost je výhodné, položíme-li počátek souřadnice x' do odrážející roviny. Fyzikální povaha uvažovaného děje předpokládá, že kladný smysl souřadnice x' je odprava doleva. Protože důsledně dodržujeme kladný smysl x odleva doprava, změní se ve výraze (2.11) znaménko obou exponentů, (x = -x'), takže

$$\mathbf{H} = \mathbf{A}_1 e^{-jkx} + \mathbf{A}_2 e^{jkx} = \mathbf{H}_{\mathbf{p}} + \mathbf{H}_{\mathbf{r}}$$
(2.12)

K fázoru $\mathbf{\bar{H}}$ podle (2.12) je třeba ještě přiřadit fázor elektrického pole $\mathbf{\bar{E}}$. Vzájemný vztah udává 1. Maxwellova rovnice

$$rot \mathbf{H} = \gamma \mathbf{E} + j\omega\varepsilon \mathbf{E} = (\gamma + j\omega\varepsilon)\mathbf{E}$$
(2.13)

Hodnotu rot H vyčíslíme s přihlédnutím k obr. 2.2

Uvažujeme v prostoru kolmo ke směru šíření elmg. vlnění element o rozměrech ($\Delta y \Delta z$), o tloušťce dx ve směru šíření. Ve vzdálenosti x je hodnota fázoru **H**, ve vzdálenosti

Obrázek 2.2: Prostorový element pro vyjádření $rot \mathbf{H}$ [1]

(x + dx) je fázor $[\mathbf{H} + (\partial \mathbf{H}/\partial x)dx]$. Máme-li určit rot **H**, zapíšeme do čitatele výrazu (2.9) práci, kterou vykoná jednotka magnetického množství, pohybuje-li se po obvodu elementární plošky 1 - 2 - 3 - 4 - 1. Na úsecích 2 - 3 a 4 - 1 se práce nekoná, protože směr dráhy je kolmý ke směru síly **H**. Do jmenovatele zapíšeme obsah elementární plošky $(\Delta z \, dx)$. Dělíme-li čitatele jmenovatelem, dostaneme hledanou velikost rot **H**

$$rot \mathbf{H} = \frac{\mathbf{H}\Delta z - (\mathbf{H} + \frac{\partial \mathbf{H}}{\partial x} dx)\Delta z}{\Delta z \, dx} = -\frac{\partial \mathbf{H}}{\partial x}$$
(2.14)

Podle výrazu (2.14) dostaneme *rot* **H** derivováním výrazu (2.12)

$$rot \mathbf{H} = -\frac{\partial \mathbf{H}}{\partial x} = jk\mathbf{A_1}e^{-jkx} - jk\mathbf{A_2}e^{jkx} = jk[\mathbf{A_1}e^{-jkx} - \mathbf{A_2}e^{jkx}]$$
(2.15)

Rot H dosadíme do 1. Maxwellovy rovnice (2.13) a dostaneme hledaný výsledek

$$\mathbf{E} = \mathbf{Z}[\mathbf{A}_1 e^{-jkx} - \mathbf{A}_2 e^{jkx}] = \mathbf{E}_{\mathbf{p}} + \mathbf{E}_{\mathbf{r}}$$
(2.16)

Výrazy (2.12) a (2.16) jsou obecné výrazy pro fázory $\overline{\mathbf{E}}$ a $\overline{\mathbf{H}}$ harmonického rovinného elmg. vlnění. Platí pro vodivé i nevodivé prostředí.

2.2 Válcové harmonické elektromagnetické vlnění [1]

2.2.1 Popis válcového elmg. vlnění

Zdrojem válcového elmg.vlnění je válcová plocha o poloměru r_1 , nekonečné délky, protékaná střídavým proudem tak, že proudová vlákna leží v rovinách kolmých k ose válce.

Uvažovanou vyzařující válcovou plochu můžeme přibližně realizovat tak, že ji navineme jako cívku z vodiče obdélníkového průřezu, přičemž předpokládáme nulovou tloušťku izolace mezi závity. Předpokládejme, že stoupání závitů je zanedbatelně malé proti poloměru r_1 cívky, takže je přibližně splněna podmínka, aby proudová vlákna ležela v rovinách kolmých k ose cívky. Dále předpokládáme, že rychlost šíření proudové vlny závity cívky je nekonečně veliká.

Obrázek 2.3: Schematický řez válcovou cívkou [1]

Obrázek 2.4: Soustava válcových souřadnic [1]

Okamžitá hodnota proudové hustoty i_{11} [$A \cdot m^{-1}$], připadající na část válcové plochy o osové délce 1 m, je v každém zvoleném okamžiku po celé délce cívky stejná. Takováto plocha vyzařuje do své dutiny válcové elmg. vlnění.

Umístíme vyzařující válec tak, aby jeho osa splynula s osou Z válcového souřadnicového systému (obr. 2.4). Vektory $\mathbf{E}, \mathbf{H}, \mathbf{S}$ v kterémkoli místě A o souřadnicích (r, φ , z) v dutině válce jsou pouze funkcí poloměru r a nezávisí na úhlu natočení φ od nějaké zvolené výchozí polohy ani na vzdálenosti z od zvolené výchozí roviny. Určíme-li dále veličiny $\mathbf{\bar{E}}$ a $\mathbf{\bar{H}}$ v uvažovaném bodě ve vzdálenosti r od osy Z, potom budou mít všechny body souosé válcové plochy o poloměru r tytéž hodnoty $\mathbf{\bar{E}}$ a $\mathbf{\bar{H}}$. Na obr. 2.3 je schematicky vyznačena uvažovaná vyzařující válcová plocha. Počet závitů připadající na část cívky o osové délce 1 m označme N_{11} [1 . m^{-1}]. Proud v závitech cívky nechť je $\mathbf{I_1}$ [A], takže proudová hustota $\mathbf{I_{11}}$ bude

$$I_{11} = N_{11}.I_{1} \qquad [A \cdot m^{-1}]. \qquad (2.17)$$

Obrázek 2.5: Vnitřní povrch cívky vyzařuje válcové elmg. vlnění \mathbf{S}_{p1} [1]

E

Sledujme podle obr. 2.5 vzájemnou prostorovou orientaci jednotlivých vektorů v bodě *A* na vnitřním povrchu cívky. Teče-li proud I_{11} vyznačeným směrem, má intenzita elektrického pole E_1 na poloměru r_1 stejný směr i smysl. Vektor intenzity magnetického pole H_1 na poloměru r_1 směřuje vzhůru, což vyplývá ze smyslu vektoru I_{11} v obr. 2.5. Vektorový součin $[E_1H_1]$ určuje zářivý vektor S_1 , kolmý k jejich rovině. Jeho smysl je takový, že vstupuje kolmo do stěny cívky a značí velikost ztrát v cívce. Proud I_1 v závitech cívky vybudí v dutině cívky magnetický tok, který indukuje v závitech napětí E_i opačného smyslu, než je intenzita E_1 . Intenzita magnetického pole H_1 a indukovaného napětí E_i vytvoří zářivý vektor $S_{p1} = [E_iH_1]$, který je kolmý k vnitřnímu povrchu cívky, avšak směřuje radiálně k její ose. Vnitřní povrch cívky tedy vyzařuje do své dutiny jalový elektromagnetický tok o hustotě $S_{p1} = [VA \cdot m^{-2}]$.

U cívky nekonečné délky můžeme pouze teoreticky předpokládat tutéž okamžitou hodnotu hustoty proudu i_{11} v celé délce cívky. U skutečných cívek, jejichž rozměry jsou zpravidla velmi malé proti vlnové délce λ elmg. vlnění při použitém kmitočtu, je předpoklad téže okamžité hodnoty hustoty proudu i_{11} po celé délce cívky splněn s velkou přesností (např. pro kmitočet $f = 10^4$ Hz je vlnová délka ve vzduchu $\lambda = 30$ km, průměr a délka cívky jsou řádově asi 1 metr).

Předpokládáme-li v teoretických úvahách, že cívka má nekonečnou délku, potom se konečný magnetický tok buzený v dutině cívky vrací nekonečným prostorem vně cívky, má nekonečný průřez, a tedy nulovou intenzitu magnetického pole. Proto je intenzita magnetického pole \mathbf{H}_3 na vnějším poloměru r_3 rovna nule. Z obr. 2.3 odvodíme intenzitu \mathbf{H}_1 na poloměru r_1

$$\mathbf{I_{11}} = \oint_{s} \mathbf{H} \, d\mathbf{s} = \mathbf{H_1} . 1 - \mathbf{H_3} . 1 = \mathbf{H_1} \qquad [A \cdot m^{-1}].$$
(2.18)

Na příčných drahách 4-1, 2-3 a stejně 8-5, 6-7 se práce nekoná, protože intenzita \mathbf{H} se rovná nule. Proud $\mathbf{I_{11}}$ vybudí na dráze 6-7 intenzitu \mathbf{H}' , avšak stejný proud $\mathbf{I_{11}}$ v sousedním pruhu o šířce 1 m vybudí stejnou intenzitu \mathbf{H}'' v opačném smyslu.

2.2.2 Obecné rovnice válcového elmg. vlnění [1]

Platí pro prostředí vodivé i nevodivé. Vyjdeme z obecných fázorových rovnic

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0, \nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
(2.19)

Protože pro válcové elmg. vlnění používáme válcovou soustavu souřadnic, je třeba Laplaceův operátor $\nabla^2 \mathbf{H}$ také převést do této soustavy. Laplaceův operátor vektoru je možné převést ze soustavy pravoúhlých souřadnic do soustavy válcových souřadnic za předpokladu, že uvažovaný vektor má směr osy Z válcového souřadnicového systému. Tato podmínka je zde splněna pouze pro vektor **H**. Můžeme napsat obecný výraz pro $\nabla^2 \mathbf{H}$ v soustavě válcových souřadnic.

$$\nabla^{2}\mathbf{H} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\mathbf{H}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}\mathbf{H}}{\partial\varphi^{2}} + \frac{\partial^{2}\mathbf{H}}{\partial z^{2}}$$
(2.20)

Protože u válcového vlnění závisí intenzita **H** pouze na poloměru r, avšak nemění se souřadnicí φ a z jsou derivace

$$\frac{\partial \mathbf{H}}{\partial \varphi} = 0 , \frac{\partial \mathbf{H}}{\partial z} = 0 ,$$

Dosadíme za $\nabla^2 \mathbf{H}$ do výrazu (2.19)

$$\frac{d^2\mathbf{H}}{dr^2} + \frac{1}{r}\frac{d\mathbf{H}}{dr} + k^2\mathbf{H} = 0$$
(2.21)

Dělíme-li výraz (2.21) konstantou šíření k^2 , dostaneme Besselovu diferenciální rovnici nultého řádu pro argument (kr)

$$\frac{d^2\mathbf{H}}{d(kr)^2} + \frac{1}{(kr)}\frac{d\mathbf{H}}{d(kr)} + \mathbf{H} = 0$$
(2.22)

Jejím řešením je lineární kombinace cylindrických funkcí

$$\mathbf{H} = \mathbf{C}_1 J_0(kr) + \mathbf{C}_2 N_0(kr) \qquad [A \cdot m^{-1}]$$
(2.23)

Znaky C_1, C_2 jsou integrační konstanty, které určíme z mezních podmínek. $J_0(kr)$, $N_0(kr)$ jsou cylindrické funkce nultého řádu prvního a druhého druhu pro argument (kr).

K výrazu (2.23) pro intenzitu \mathbf{H} v místě o poloměru r je třeba ještě odvodit výraz pro intenzitu elektrického pole \mathbf{E} . Vzájemný vztah je dán 1. Maxwellovou rovnicí

$$rot\mathbf{H} = \gamma \mathbf{E} + j\omega\varepsilon \mathbf{E} = (\gamma + j\omega\varepsilon)\mathbf{E}.$$
(2.24)

Velikost rotace **H** určíme z obr. 2.6.

Obrázek 2.6: Obrázek pro odvození rot \mathbf{H} a rot \mathbf{E} v dutině cívky [1]

Na obecném poloměru r jsme vyznačili vektor intenzity **H** a na poloměru (r + dr) je magnetická intenzita o diferenciál větší: $\mathbf{H} + (\frac{\partial \mathbf{H}}{\partial r})dr$. Vytkli jsme část cívky o osové délce 1 m. Vyznačme elementární plochu o vrcholech 1 - 2 - 3 - 4. Rotaci **H** na poloměru rdostaneme, vyjádříme-li práci, kterou vykoná jednotka magnetického množství po obvodu plošky 1 - 2 - 3 - 4 - 1. Výsledek potom dělíme velikostí této plošky. Vektor *rot* **H** je kolmý k vyznačené plošce a vystupuje proti nám, takže při pohledu proti ose Z má záporný smysl.

$$-rot \mathbf{H} = \frac{(\mathbf{H} + \frac{\partial \mathbf{H}}{\partial r} dr)\mathbf{1} - \mathbf{H} \mathbf{1}}{1 dr} = \frac{\partial \mathbf{H}}{\partial r}$$
(2.25)

Spojením (2.24) a (2.25) dostaneme **E**

$$\mathbf{E} = -\frac{1}{\gamma + j\omega\varepsilon} \frac{\partial \mathbf{H}}{\partial r}.$$

Intenzitu \mathbf{E} dostaneme derivací výrazu (2.23), to jest derivací obou cylindrických funkcí.

$$\mathbf{E} = \frac{k}{\gamma + j\omega\varepsilon} [\mathbf{C}_1 J_1(kr) + \mathbf{C}_2 N_1(kr)] \qquad [V \cdot m^{-1}]$$
(2.26)

2.2.3 Proud naindukovaný do válcové vsázky

Obrázek 2.7: Schematické uspořádání válcové cívky a souosé válcové vsázky [1]

Vyjdeme z obr. 2.7. Ve válcové vsázce vytkneme dvěma řezy, kolmými k ose vsázky, část o osové délce 1m. Na poloměru r vytkněme válcový element o radiální tloušťce dr, výšce 1m. Uvažovaným elementem protéká naindukovaný proud $d\mathbf{I}_{21}$ (**J** je hustota na poloměru r)

$$d\mathbf{I_{21}} = (1 \ dr)\mathbf{J} = \mathbf{J} \ dr.$$

Integrací v mezích $0 < r < r_2$ dostaneme hledaný naindukovaný proud **I**₂₁

$$\mathbf{I_{21}} = \int_0^{r_2} \mathbf{J} \ dr = \sqrt{-j\frac{\sqrt{2}}{a\gamma}} \ \frac{\mathbf{H_2}}{J_0(x_2\sqrt{-j})} \int_0^{r_2} J_1(x \ \sqrt{-j}) dr$$
(2.27)

$$\int J_1(x \ \sqrt{-j}) dx = -\mathbf{H}_2 \frac{J_0(x_2 \sqrt{-j}) - 1}{J_0(x_2 \sqrt{-j})} \qquad [A \cdot m^{-1}]$$
(2.28)

Odvoď me ještě absolutní hodnotu výrazu (2.28)

$$\mathbf{I_{21}} = -\mathbf{H_2} \frac{(ber \ x_2 - 1) - j \ bei \ x_2}{ber \ x_2 + j \ bei \ x_2}],$$
(2.29)

$$I_{21} = H_2 \sqrt{\left[\frac{(ber \ x_2 - 1)^2 + bei^2 \ x_2}{ber^2 \ x_2 + bei^2 \ x_2}\right]}$$
(2.30)

Z výrazu (2.28) vidíme, že naindukovaný proud I_{21} závisí na parametru x_2 , tedy na fyzikálních vlastnostech γ a μ_r vsázky, na kmitočtu a poloměru r_2 .

Pro větší hodnoty argumentu x_2 rostou rychle obě složky funkce $J_0(x_2\sqrt{-j}) = ber x_2 - j bei x_2$. Např. pro $x_2 = 10, 0$: ber $x_2 = 138, 84, bei x_2 = -56, 37$. Můžeme proto v takovém případě zanedbat v čitateli (2.29) 1 proti ber x_2 a po vykrácení

$$I_{21x\to\infty} = I_{21\infty} = -H_2 = -H_1 = -N_{11}I_1 = -I_{11}$$
 (2.31)

U tavicích pecí (obvykle je $a_2 \ll r_2$) nezávisí naindukovaný proud $\mathbf{I}_{21\infty}$ ve vsázce ani na fyzikálních vlastnostech γ a μ_r vsázky, ani na kmitočtu a poloměru r_2 . Vybuzený proud $\mathbf{I}_{21\infty}$ je stejně veliký jako proud budicí \mathbf{I}_{11} , má však opačný smysl. Za použití výsledku (2.31) bude poloměr amplitud $I_{21}/I_{21\infty}$ dán výrazem

$$\frac{I_{21}}{I_{21\infty}} = \sqrt{\frac{(ber \ x_2 - 1)^2 + bei^2 \ x_2}{ber^2 \ x_2 + bei^2 \ x_2}}$$
(2.32)

Z obr. 2.8 vidíme, že naindukovaný proud I_{21} je malý pro
 malé hodnoty parametru x_2 . Pro $x_2 > 7,0$ se blíží své limitní hodnot
ě $I_{21} = I_{21\infty}$.

Pro snadné pochopení odvozeného výsledku použijeme obr. 2.9. Obrázek je pouze přibližný, nerespektuje vzájemný fázový posuv hustoty proudu v jednotlivých bodech, je však velmi názorný.

V obrázku je řez válcovou vsázkou, na kterou dopadá radiálně z cívky válcové elmg. vlnění. Sledujme na libovolném průměru koncové body A a B. Z levé strany dopadá vlnění, znázorněné zářivým vektorem S'_p , z pravé strany vektor S''_p . Průběh amplitudy

Obrázek 2.8: Proud I_{21} na
indukovaný do válcové vsázky v závislosti na argument
u $x_2 \ [1]$

Obrázek 2.9: Průběh hustoty proudu (absolutní hodnota) vyvolané současným dopadem vlnění $\mathbf{S}'_{\mathbf{p}} \ \mathbf{S}''_{\mathbf{p}}$ v protějších bodech A a B [1]

hustoty naindukovaného proudu vyvolaného vlněním S'_p je dán křivkou J'. Druhá křivka J'' udává průběh amplitudy hustoty proudu, vyvolané vlněním S''_p z pravé strany. Určeme hustotu proudu ve zvoleném bodě C na spojnici AB. Vlnění z levé strany vyvolá hustotu J', směřující nahoru. Vlnění z pravé strany však vyvolá hustotu J'' opačného smyslu. Výsledkem bude poměrně malý rozdíl obou hustot. Vyznačené průběhy J' a J'' platí v případě, že parametr x_2 je malý. Obě vlnění se setkávají, působí proti sobě, výsledný naindukovaný proud I_{21} je malý.

V obrázku jsou dále zakresleny křivky J^+ a J^{++} , které značí opět průběhy amplitud hustoty proudu vyvolané vlněním z obou stran, avšak v případě, že $a_2 \ll r_2$, x_2 je veliké. Z obrázku vidíme, že obě elmg. vlnění, postupující proti sobě, se prakticky zcela utlumí dříve, než se setkají. Nemohou na sebe vzájemně působit a naindukovaný proud má plnou hodnotu $I_{21} = I_{21\infty} = -\mathbf{H_2} = -\mathbf{I_{11}}$.

2.2.4 Impedance válcové vsázky

Impedance vsázky převádíme do cívky, přesněji do proudového vlákna o poloměru r_1 . Volíme tento postup:

Určíme magnetické toky v dutině cívky, je to magnetický tok v mezeře mezi cívkou a vsázkou a magnetický tok ve vsázce. Časová změna těchto toků vybudí v uvažované části cívky (o délce 1 m) určité naindukované napětí. Abychom stejné uvažované magnetické toky vytvořili, musíme na uvažovanou část cívky dodávat ze zdroje napětí rovné naindukovanému napětí, avšak opačného smyslu. Dělíme-li toto napětí přiváděné na uvažovanou část cívky proudem v cívce, dostaneme impedanci vsázky převedenou do cívky.

Závity cívky protéká proud \mathbf{I}_1 [A], na část cívky v osové délce 1 m připadá "budící proud" $\mathbf{I}_{11} = N_{11}\mathbf{I}_1[A \cdot m^{-1}]$. V mezeře mezi cívkou a vsázkou je magnetický tok $\boldsymbol{\Phi}_{\mathbf{m}}$, tok ve vsázce je $\boldsymbol{\Phi}_{\mathbf{v}}$

$$\mathbf{\Phi}_{\mathbf{m}} = \pi (r_1^2 - r_2^2) \mu \mathbf{H}_1 \qquad [Wb],$$

$$\Phi_{\mathbf{v}} = 2\pi\mu \frac{a^2}{2} \int_0^{x_2} \mathbf{H} x dx = \pi\mu a^2 \frac{\mathbf{H_1}}{J_0(x_2\sqrt{-j})} \int_0^{x_2} J_0(x\sqrt{-j}) x dx.$$

Časová změna obou toků indukuje v 1 závitu napětí $(-\mathbf{U}_1)$, v části cívky o osové délce 1 m napětí $(-N_{11}\mathbf{U}_1)$ [V]. Na vytvoření stejných toků je třeba přivádět na 1 m délky cívky napětí téže velikosti, avšak opačného smyslu

$$+N_{11}\mathbf{U}_1 = N_{11}\left(\frac{d\mathbf{\Phi}_{\mathbf{m}}}{dt} + \frac{d\mathbf{\Phi}_{\mathbf{v}}}{dt}\right)$$
(2.33)

$$\frac{d\mathbf{\Phi}_{\mathbf{v}}}{dt} = j\omega\pi\mu a^2 \frac{\mathbf{H}_1}{J_0(x_2\sqrt{-j})} \int_0^{x_2} J_0(x\sqrt{-j})xdx \tag{2.34}$$

Po vyřešení integrálu dostaneme

$$\frac{d\mathbf{\Phi}_{\mathbf{v}}}{dt} = j\omega\pi\mu a^2 \mathbf{H}_1 \sqrt{j} x_2 \frac{J_1(x_2\sqrt{-j})}{J_0(x_2\sqrt{-j})}$$
(2.35)

Odvoď me poměr obou cylindrických funkcí

$$\frac{J_1(x\sqrt{-j})}{J_0(x\sqrt{-j})} = \frac{-\sqrt{-j}(ber' \ x-j \ bei' \ x)}{ber \ x-j \ bei \ x} =$$

$$= -\sqrt{j} \left[\frac{ber \ x \ ber' \ x+bei \ x+bei' \ x}{ber^2 \ x+bei^2 \ x} + j\frac{-ber \ x \ bei' \ x+bei' \ x \ bei' \ x}{ber^2 \ x+bei^2 \ x}\right] =$$

$$= -\sqrt{j} \left[P(x) + j \ Q(x)\right]$$
(2.36)

Poměr obou cylindrických funkcí má složku reálnou, kterou jsme označili P(x), a imaginární Q(x). Graficky je průběh obou znázorněn na obr. 2.10

Obrázek 2.10: Průběh funkcí P(x) a Q(x) v závislosti na argumentu x [1]

Dosaď
me dílčí výsledky do výrazu (2.33). Místo $\mathbf{H_1}$ pišm
e $N_{11}\mathbf{I_1}$

$$N_{11}\mathbf{U}_{1} = j\omega\pi\mu(r_{1}^{2} - r_{2}^{2})N_{11}^{2}\mathbf{I}_{1} + j\omega\pi\mu a^{2}x_{2}\sqrt{j}(-\sqrt{j}) .$$

$$. [P(x_{2}) + j Q(x_{2})]N_{11}^{2}\mathbf{I}_{1} = \{\omega\pi\mu a^{2}x_{2}N_{11}^{2}P(x_{2}) + j[\omega\pi\mu(r_{1}^{2} - r_{2}^{2}) .$$

$$. N_{11}^{2} + \omega\pi\mu a^{2}x_{2}N_{11}^{2}Q(x_{2})]\}\mathbf{I}_{1}$$

$$(2.37)$$

Z výrazu pro hloubku vniku můžeme vyjádřit: $\omega \mu = 2/\gamma a^2$. Dosaď me do (2.37). Dělíme-li proudem **I**₁, dostaneme hledanou impedanci **Z**₂₁ části vsázky o délce 1 m převedenou do cívky (na poloměr r_1)

$$\mathbf{Z_{21}} = \frac{N_{11}\mathbf{U_1}}{\mathbf{I_1}} = \left\{\frac{2\pi x_2}{\gamma}N_{11}^2 P(x_2) + j[\omega\mu\pi(r_1^2 - r_2^2)N_{11}^2 + \frac{2\pi x_2}{\gamma}N_{11}^2 Q(x_2)]\right\}$$
(2.38)

Impedance vsázky převedená do cívky má složku reálnou (činný odpor R_{21} vsázky) a složku imaginární, to je reaktanci ωL_{21} vsázky a mezery mezi cívkou a vsázkou.

$$R_{21} = \frac{2\pi x_2}{\gamma} N_{11}^2 P(x_2) \qquad [\Omega \cdot m^{-1}]$$
(2.39)

$$\omega L_{21} = \omega \mu \pi (r_1^2 - r_2^2) N_{11}^2 + \frac{2\pi x_2}{\gamma} N_{11}^2 Q(x_2) \qquad [\Omega \cdot m^{-1}]$$
(2.40)

Výrazy pro činný odpor a reaktanci vsázky převedené do cívky se značně zjednoduší, dosahuje-li parametr x_2 velkých hodnot, jako je to zpravidla u tavících pecí $(a_2 \ll r_2)$. To souvisí s tím, že funkce $P(x_2)$ a $Q(x_2)$ se blíží svým limitním hodnotám.

Pro $x_2 > 4$ platí s chybou 1

$$P(x_2) \doteq \frac{1}{\sqrt{2}} - \frac{1}{2x_2}, Q(x_2) \doteq \frac{1}{\sqrt{2}} \doteq 0,707107$$
(2.41)

Pro $x_2>15$ můžeme ve výrazu (2.41) pro ${\cal P}(x_2)$ zanedbat druhý člen, takže

$$P(x_2) \doteq \frac{1}{\sqrt{2}} \doteq 0,707107$$
 (2.42)

Z obr. 2.10 vidíme, že funkce $Q(x_2)$ velmi strmě stoupá s rostoucím parametrem x_2 a již při $x_2 > 4,0$ dosáhne téměř sví limitní hodnoty 0,707. Funkce $P(x_2)$ stoupá méně strmě a trvá déle, než dosáhne své limitní hodnoty, rovněž 0,707.

Dosadíme-li do výrazu (2.39) limitní hodnotu za $P(x_2)$, dostaneme velmi jednoduchý výraz pro činný odpor vsázky s velkým parametrem x_2

$$R_{21} = \frac{2\pi x_2}{\gamma} N_{11}^2 P(x_2) = \rho \frac{2\pi r_2 \sqrt{2}}{a} \frac{1}{\sqrt{2}} N_{11}^2 = \rho \frac{2\pi r_2}{a \cdot 1} N_{11}^2$$
(2.43)

Výraz (2.43) udává činný odpor části vsázky o délce 1 m převedený do cívky. Součinitel N_{11}^2 je převodní poměr, takže "ekvivalentní" odpor vsázky R'_{21} je dán výrazem

$$R'_{21} = \rho \frac{2\pi r_2}{a \cdot 1} \qquad [\Omega \cdot m^{-1}] \tag{2.44}$$

Výraz (2.44) znamená, že činný odpor válcové vsázky počítáme jako odpor povrchové vrstvy o tloušťce rovné hloubce vniku. Tento důležitý výsledek umožňuje zjednodušení výpočtů kelímkových indukčních pecí ($2\pi r_2$ je délka odporu, (a . 1) jeho průřez).

2.2.5 Množství naindukovaného tepla ve válcové vsázce

Při průchodu naindukovaných proudů vsázkou vzniká teplo. Jeho množství můžeme odvodit několika různými způsoby.

Přímé odvození množství tepla (Jouleovy ztráty)

Tento způsob je fyzikálně velmi názorný. Vyjdeme z obr. 2.11. Na poloměru r uvažujeme proudový element o délce $2\pi r$, o průřezu (1.dr), kterým protéká proud $d\mathbf{I_{21}} = (dr.1)\mathbf{J}$. Odpor tohoto elementu

$$dR_{21} = \rho \frac{2\pi r}{dr.1}$$

Množství tepla dP_{21} v uvažovaném elementu

$$dP_{21} = dR_{21} \frac{1}{2} dI_{21}^2 = \rho \frac{2\pi r}{dr} \frac{1}{2} J^2 dr^2 = \pi \rho J^2 r dr$$
(2.45)

Obrázek 2.11: Obrázek pro odvození Jouleových ztrát [1]

Měrný příkon, to je množství tepla v jednotce objemu, je opět

$$\sigma = \frac{dP_{21}}{2\pi r dr.1} = \frac{1}{2\gamma} J^2 \tag{2.46}$$

Z výrazu (2.45) dostaneme integrací hledané množství vyvinutého tepla P_{21} v části vsázky o osové délce 1 m

$$P_{21}=\pi\rho\int_0^{r_2}J^2rdr$$

Zaveď
'me do (2.47) argument xmísto poloměr
ur

$$x = \frac{r}{a}\sqrt{2}, \quad rdr = \frac{a^2}{2}xdx,$$

$$P_{21} = \pi \rho \frac{a^2}{2} \int_0^{r_2} J^2 x dx \tag{2.47}$$

Pro hustotu J použijeme výraz

$$J^{2} = \frac{2}{a^{2}} H_{2}^{2} \frac{ber'^{2} x + bei'^{2} x}{ber^{2} x + bei^{2} x}$$
(2.48)

Dosadíme do (2.47)

$$P_{21} = \frac{\pi\rho \ H_2^2}{ber^2 \ x_2 + bei^2 \ x_2} \left[\int_0^{x_2} x \ ber'^2 \ x \ dx + \int_0^{x_2} x \ bei'^2 \ x \ dx \right] \qquad [W \ . \ m^{-1}]$$
(2.49)

Oba integrály v závorce vyřešíme integrací řad, kterými jsou definovány funkce $ber' \; x$ a $bei' \; x$

ber'
$$x = \left(-\frac{x^3}{2^2.4} + \frac{x^7}{(2.4.6)^2.8} - \frac{x^{11}}{(2.4.6.8.10)^2.12} + \ldots\right),$$

bei' $x = \left(-\frac{x}{2} + \frac{x^5}{(2.4)^2.6} - \frac{x^9}{(2.4.6.8)^2.10} + \ldots\right).$

Integrování řady "můžeme použít pouze v případě, že řada konverguje. Řady ber' x a bei' x konvergují tím rychleji, čím menší je hodnota argumentu x.

Vzhledem k rychle postupující konvergenci řad *ber' x* a *bei' x* omezíme naše řešení na určitý interval argumentu x (např. 0 < x < 4, 0). Budeme potom ve výsledku sledovat členy s potencemi až do $x^{1}6$. Řady s potencemi vyššími nejsou již úplné, a proto je ve výsledku označíme pouze symbolicky $\sum x^{20}, \sum x^{24}$ atd. Jejich hodnoty jsou malé proti součtu předchozích členů.

Naznačeným postupem jsme dostali pro množství tepla ${\cal P}_{21}$ výraz

$$P_{21} = \frac{\pi \rho H_2^2}{ber^2 x_2 + bei^2 x_2} \left[\frac{x_2^4}{2^2 \cdot 4} + \frac{x_2^8}{(2 \cdot 4)^2 \cdot 8 \cdot 12} + \frac{x_2^{12}}{(2 \cdot 4 \cdot 6 \cdot 8)^2 \cdot 10 \cdot 12} + \frac{x_2^{16}}{(2 \cdot 4 \cdot 6 \cdot 8)^8 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16} + \sum x_2^{20} + \sum x_2^{24} + \dots \right] \qquad [W \cdot m^{-1}]$$
(2.50)

Výsledek (2.50) je fyzikálně správný, avšak pro svou složitost není vhodný pro praktické výpočty.

Nepřímé odvození množství tepla ve vsázce

Použijeme způsobu, který se běžně používá u transformátorů, kdy hodnotu impedance ze sekundární strany převádíme na stranu primární.

V předchozí části jsme odvodili výraz (2.39) pro činný odpor vsázky R_{21} , převedený do cívky

$$R_{21} = \frac{2\pi x_2}{\gamma} N_{11}^2 P(x_2)$$

Prochází-li tímto odporem cívkový proud I_1 (max. hodnota), vznikne množství tepla P'_{21}

$$P'_{21} = \frac{1}{2}R_{21}I_1^2 = \frac{2\pi x_2}{\gamma}N_{11}^2P(x_2)\frac{1}{2}I_1^2 = \pi\rho x_2P(x_2)(N_{11}I_1)^2 = = \pi\rho x_2P(x_2)H_2^2 \qquad [W \cdot m^{-1}]$$
(2.51)

Funkce $P(x_2)$ je

$$P(x_2) = \frac{ber \ x_2 ber' \ x_2 + bei \ x_2 bei' \ x_2}{ber^2 \ x_2 + bei^2 \ x_2}$$
(2.52)

Dosad'me (2.52) do (2.51),

$$P_{21}' = \frac{\pi \rho H_2^2}{ber^2 x_2 + bei^2 x_2} [x_2 \ ber \ x_2 \ .ber' \ x_2 + x_2 \ bei \ x_2 \ .bei' \ x_2]$$
(2.53)

Rady jsou konvergentní, opět uvažujeme parametr x_2 v rozmezí $0 < x_2 < 4, 0$. Při násobení řad mezi sebou uvažujeme vždy pouze několik málo členů na začátku každé řady. Po vynásobení a sečtení členů týchž potencí jsme dostali výsledek shodný s (2.50).

Můžeme-li zanedbat potence x_2^{20} a vyšší, jejichž součtové řady nejsou úplné, což můžeme učinit v našem případě, kdy parametr x_2 je menší než 4,0, zjistíme totožnost: $P'_{21} = P_{21}$.

Odvodili jsme, že pro menší hodnoty parametru x_2 nemusíme při výpočtu tepla ve válcové vsázce používat složitého výrazu (2.50), avšak můžeme použít velmi jednoduchého výrazu (2.51).

2.3 Elektromagnetické pole [4]

Elektromagnetické pole je obecně popsáno Maxwellovými rovnicemi. Tyto rovnice mohou být uvedeny ve tvaru diferenciálním či integračním. Zde jsou uvedeny ve tvaru diferenciálním:

$$rot \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}, \qquad (2.54)$$

$$rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},\tag{2.55}$$

$$div \mathbf{D} = \rho_v, \tag{2.56}$$

$$div \mathbf{B} = 0, \tag{2.57}$$

Maxwellovy rovnice jsou však nevýhodné pro numerické výpočty, jelikož popisují elektromagnetické pole pomocí vektorových veličin **E**, **D**, **B**, **H** a **J**. Tyto veličiny mají na rozhraních různé podmínky, které však definují spojitost pouze jedné složky vektorů. Pokud bychom je uvažovali z obecného hlediska, není jisté zda by se chovali na rozhraní spojitě. Z tohoto důvodu je výhodné popisovat elektromagnetické pole pomocí potenciálů.

Pro odvození popisu elektromagnetického pole pomocí potenciálů vyjdeme ze čtvrté Maxwellovy rovnice (2.57). Z této rovnice vyplývá, že vektorové pole magnetické indukce je nezřídlové. Pro jeho popis použijeme vektorový potenciál \mathbf{A} , který je definován následujícím vztahem

$$\mathbf{B} = rot \ \mathbf{A} \tag{2.58}$$

Pokud dosadíme definiční vztah (2.58) do 2. Maxwellovy rovnice, po úpravě dostaneme tvar

$$rot \left(\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t}\right) = 0 \tag{2.59}$$

Jelikož výraz v závorce v rovnici (2.59) má nulovou rotaci, lze ho vyjádřit jako gradient skalárního potenciálu Φ .

$$-grad\Phi = \mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \tag{2.60}$$

Po úpravě získáme intenzitu elektrického pole závislou pouze na potenciálech.

$$\mathbf{E} = -grad\Phi - \frac{\partial \mathbf{A}}{\partial t} \tag{2.61}$$
Pokud vyjdeme z materiálových vztahů $\mathbf{D} = \varepsilon \mathbf{E}$, $\mathbf{B} = \mu \mathbf{H}$ a $\mathbf{J} = \gamma (\mathbf{E} + \mathbf{E}_{ext}) = \gamma \mathbf{E} + \mathbf{J}_{ext}$ a dosadíme vztahy (2.58) a (2.61) do 1. a 2. Maxwellovy rovnice, získáme rovnice, které popisují elektromagnetické pole pouze potenciály \mathbf{A} a Φ .

$$rot \ \frac{1}{\mu}rot \ \mathbf{A} + \gamma(grad\Phi + \frac{\partial \mathbf{A}}{\partial t}) + \frac{\partial}{\partial t}\varepsilon(grad\Phi + \frac{\partial \mathbf{A}}{\partial t}) = \mathbf{J}_{\mathbf{ext}}, \tag{2.62}$$

$$div \ \varepsilon \ grad\Phi + div\varepsilon \frac{\partial \mathbf{A}}{\partial t} = -\rho \tag{2.63}$$

První člen rovnice (2.62) a druhý člen rovnice (2.63) obsahuje divergenci vektorového potenciálu, která není ničím dána a lze ji tak libovolně zvolit.

Předchozí rovnice (2.62) a (2.63) byly odvozeny bez zjednodušujících podmínek z Maxwellových rovnic. Tudíž jsou tyto rovnice obecně platné. V následujících částech využijeme zjednodušující předpoklady vycházející ze znalostí vlastností jednotlivých prostředí a pole.

Pole dělíme pro využití předpokladů na:

- Nestacionární pole
- Kvazistacionární pole
- Stacionární pole

Prostředí dělíme pro využití předpokladů na:

- Prostředí s časově konstantními parametry
- Prostředí s prostorově konstantními parametry
- Prostředí s časově proměnnými parametry
- Prostředí s prostorově proměnnými parametry
- Prostředí lineární
- Prostředí nelineární

Nestacionární pole

U nestacionárního pole není možné zanedbat posuvný proud. Avšak i zde můžeme použít zjednodušující předpoklady, jsou-li splněny podmínky, kdy je prostředí lineární, nevodivé, s prostorově i časově konstantní permitivitou ε . Abychom získali dvě nezávislé rovnice, můžeme použít Lorentzovu kalibrační podmínku.

$$div \mathbf{A} = -\mu \varepsilon \frac{\partial \Phi}{\partial t} \tag{2.64}$$

Je-li prostorově konstantní také permeabilita μ , získáme za pomoci Lorentzovy kalibrační podmínky (2.64) a vektorové identity *rot rot* $\mathbf{A} = grad \ div \ \mathbf{A} - \Delta \mathbf{A}$ následující nezávislé rovnice.

$$\Delta \mathbf{A} - \varepsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J}_{\mathbf{ext}}$$
(2.65)

$$\Delta \Phi - \varepsilon \mu \frac{\partial^2 \Phi}{\partial t^2} = -\frac{\rho}{\varepsilon} \tag{2.66}$$

U modelování indukčních ohřevů se nestacionární pole nevyskytuje.

Kvazistacionární pole

Uvažujeme-li kvazistacionární pole, můžeme zanedbat posuvný proud. V rovnici (2.62) tak dojde k odstranění členu $\frac{\partial}{\partial t} \varepsilon (grad\Phi + \frac{\partial \mathbf{A}}{\partial t})$. Pokud se k tomuto přidá lineární a prostorově konstantní permitivita ε a volný náboj $\rho = 0$ v celém prostoru, pak je vhodné použít Coulombovu kalibrační podmínku.

$$div \mathbf{A} = 0 \tag{2.67}$$

Rovnice (2.63) pak má na libovolné oblasti tvar

$$\Delta \Phi = 0 \tag{2.68}$$

Gradient skalárního potenciálu pak lze považovat za nulový

$$grad\Phi = 0 \tag{2.69}$$

Jelikož zanedbáváme posuvný proud, použijeme vztah (2.69) a po dosazení a úpravě rovnice (2.62) získáme

$$rot\frac{1}{\mu}rot\mathbf{A} + \gamma\frac{\partial\mathbf{A}}{\partial t} = \mathbf{J}_{\mathbf{ext}}$$
(2.70)

Je-li prostorově konstantní a lineární permeabilita μ , získáme za pomoci Coulombovy kalibrační podmínky (2.67) a vektorové identity *rot rot* $\mathbf{A} = grad \ div \ \mathbf{A} - \Delta \mathbf{A}$ následující tvar rovnice

$$-\Delta \mathbf{A} + \gamma \frac{\partial \mathbf{A}}{\partial t} = \mathbf{J}_{\mathbf{ext}} \tag{2.71}$$

U modelování indukčních ohřevů je kvazistacionární pole používáno ve vodivých oblastech. Z toho vyplývá, že lze zanedbat posuvný proud oproti proudu vodivostnímu. Především důsledkem dostatečné vodivosti těchto oblastí.

Stacionární pole

Stacionární pole je pole časově konstantní. Zanedbávají se tak všechny časové derivace. Pokud znovu použijeme Coulombovu kalibrační podmínku (2.67) a zároveň bude permitivita ε prostorově konstantní, získáme opět z rovnice (2.63) rovnici (2.68) a $grad\Phi = 0$. Z rovnice (2.62) pak vzejde tvar

$$rot \frac{1}{\mu} rot \mathbf{A} = \mathbf{J}_{\mathbf{ext}} \tag{2.72}$$

Je-li prostorově konstantní a lineární permeabilita μ , získáme za pomoci Coulombovy kalibrační podmínky (2.67) a vektorové identity rot rot $\mathbf{A} = grad \ div \ \mathbf{A} - \Delta \mathbf{A}$ následující tvar rovnice

$$-\Delta \mathbf{A} = \mathbf{J}_{\mathbf{ext}} \tag{2.73}$$

U modelů indukčních ohřevů jsou rovnice stacionárního pole (2.72) nebo (2.73) používány pro výpočet nevodivých oblastí. Pro často používané frekvence u indukčních ohřevů je totiž vlnová délka elektromagnetického vlnění mnohem větší, než rozměry zařízení.

Pokud porovnáme rovnice (2.70) a (2.71) s rovnicemi (2.72) a (2.73). Dojdeme k závěru, že se liší pouze členem s vodivostí. To je velmi praktické, protože pak lze pro vodivé i nevodivé oblasti použít rovnice (2.70) a (2.71). S tím předpokladem, že pro nevodivé oblasti bude $\gamma = 0$.

2.3.1 Podmínky na rozhraní

Počítaný model se skládá z více oblastí s různými materiálovými vlastnostmi. Pokud spolu sousedí dvě oblasti s různými materiálovými vlastnostmi, není možné jejich hranice považovat za regulární body a neplatí na nich dříve odvozené diferenciální rovnice. Pro takovéto hranice platí

$$\mathbf{A_1} = \mathbf{A_2}$$

$$\frac{1}{\mu_1} rot \ \mathbf{A_1} - \frac{1}{\mu_2} rot \ \mathbf{A_2} = K_N$$
(2.74)

Proto je nutné zadávat při vytváření modelů také podmínky pro body tvořící rozhraní Γ počítaného modelu. Nejběžnějšími podmínkami pro modely elektromagnetického pole při tavení ve studeném kelímku jsou Dirichletova a Neumannova.

Dirichletova okrajová podmínka

Tato podmínka udává přímo požadovanou velikost zjišťované veličiny v každém bodě rozhraní Γ

$$\mathbf{A}(\Gamma, t) = \mathbf{A}_{\Gamma}(\Gamma, t) \tag{2.75}$$

 ${\bf A}$... neznámá hodnota vektorového potenciálu

 \mathbf{A}_{Γ} ...zadaná hodnota vektorového potenciálu pro body rozhraní Γ

Dirichletova podmínka také určuje derivaci vektorového potenciálu v libovolném tečném směru k hranici Γ , a tím i normálovou složku rotace \mathbf{A} , což je normálová složka magnetické indukce. Pomocí Dirichletovy okrajové podmínky můžeme zadat požadovanou hodnotu normálové magnetické indukce $\mathbf{B}_{\mathbf{N}}$ Pokud zadáme \mathbf{A}_{Γ} konstantní na určité části rozhraní, pak bude $\mathbf{B}_{\mathbf{N}}$ na této dané části nulové. Toho se využívá především u symetrických modelů, kde je rozhraní totožné se siločárou.

Neumannova okrajová podmínka

Tato podmínka udává derivaci A podle vnější normály rozhraní.

$$\frac{\partial \mathbf{A}}{\partial \mathbf{n}}(\Gamma, t) = f(\Gamma, t) \tag{2.76}$$

f...požadovaná hodnota derivace podle vnější normály

Neumannova okrajová podmínka určuje velikost tečné složky vektoru **B**. Je-li Neumannova okrajová podmínka rovna nule, bude mít vektor $\mathbf{B}(\Gamma, t)$ směr normály k rozhraní. Toho se opět využívá u symetrických modelů, pokud víme, že jsou siločáry kolmé k rozhraní Γ .

Kapitola 3

Teorie sdílení tepla

Sdílením tepla rozumíme přenos tepla v důsledku existence teplotního gradientu. Existuje-li tedy v libovolném prostředí rozdíl teplot, zákonitě musí docházet k přenosu tepla. Pokud máme systém bez vnějších zdrojů, proudí tepelná energie z míst s vyšší teplotou do míst s nižší teplotou.

3.1 Sdílení tepla vedením [6]

Přenos tepla vedením je způsoben přímým kontaktem částic v látce. Přenos energie je tak zprostředkován přímým tlakem molekul v tekutinách nebo pohybem volných elektronů v kovech. Tento přenos tepla má největší význam u tuhých materiálů, kde jsou molekuly v těsném kontaktu. U kapalin a plynů nejsou molekuly tak blízko u sebe a je tedy snížena jejich šance na kolizi a předání tepelné energie.

Nejlepšími vodiči tepelné energie jsou kovy. Ty mají kovovou vazbu, ve které valenční elektrony atomů tvoří tzv. elektronový plyn. Elektrony jsou sdílené všemi atomy a mohou se v mřížce volně pohybovat. Tyto elektrony jsou schopny rychle přenést tepelnou energii z jednoho místa na druhé.

Schopnost přenosu tepla lze určit tepelnou vodivostí λ . Ta je definována jako množství tepla Q, které lze přenést za jednotku času Δt přes stěnu jednotkové tloušťky Δl ve směru normály vyvolané jednotkovým teplotním gradientem ΔT .

Hustotu tepelného toku vedením lze vyjádřit jako

$$q_{cond.}' = -\lambda.grad \ T \tag{3.1}$$

Dále se zavádí teplotní gradient vztahem

$$\mathbf{G} = -grad \ T \tag{3.2}$$

Z toho vyplývá vztah mezi teplotním gradientem (3.2) a hustotou tepelného toku (3.1)

$$\mathbf{q} = \lambda \mathbf{G} \tag{3.3}$$

Teplotní pole je obecně zřídlové a nevírové. Musí tedy platit rovnice teplotního gradientu

$$rot \mathbf{G} = 0 \tag{3.4}$$

$$\oint_{c} \mathbf{G} d\mathbf{l} = 0 \tag{3.5}$$

A rovnice kontinuity tepelného toku pro stacionární případ

$$div \mathbf{q} = p \tag{3.6}$$

$$\oint_{S} \mathbf{q} d\mathbf{S} = P \tag{3.7}$$

3.2 Sdílení tepla prouděním [6]

Prouděním rozumíme přenos tepla z jednoho místa do druhého prostřednictvím tekutiny nebo plynu. Tento způsob přenosu je v těchto skupenstvích dominantní.

Přenos tepla prouděním je přenos tepelné energie mezi tuhými tělesy a proudícími tekutinami či plyny. S rychlostí pohybu tekutiny se také zvyšuje tepelný tok způsobený prouděním. Proudění lze rozdělit na dvě základní kategorie:

- Přirozené proudění je podmíněno přítomností tuhého tělesa v tekutině a rozdílem teplot jeho povrchu a okolního prostředí
- Vnucené proudění je vyvoláno nuceným pohybem tekutiny v okolí tuhého tělesa

Hustotu proudícího tepelného toku lze zapsat jako

$$q_{conv.}' = \alpha (T - T_{ext}) \tag{3.8}$$

 $\alpha\ldots$ koeficient přestupu tepla, obecně závisející na hustotě, rychlosti a teplotě proudící tekutiny

3.3 Sdílení tepla sáláním [6]

Přenos tepla sáláním je rozuměn přenos tepla do okolního prostoru elektromagnetickými vlnami. Tuto energii emituje každé těleso s nenulovou teplotou. Například tepelná energie ze Slunce putuje ve formě elektromagnetického vlnění až k naší planetě.

Schopnost tělesa pohlcovat nebo vyzařovat elektromagnetické záření je závislá na vlnové délce. Množství energie vyzářené tělesem se tedy mění s frekvencí a její množství je popsáno Wienovým posunovacím zákonem

$$\lambda_{max} = \frac{b}{T} \tag{3.9}$$

Emisivita povrchu každého tělesa závisí na vlnové délce elektromagnetického záření vysílaného tělesem a tedy i na teplotě povrchu. Z toho plyne, že každé těleso s nenulovou termodynamickou teplotou září.

Hustotu tepelného toku emitovaného sáláním lze vyjádřit jako

$$q'_{rad.} = \varepsilon \sigma (T^4 - T_{ext}^4) \tag{3.10}$$

3.4 Teplotní pole [4]

Vzhledem k předchozím částem je celé teplotní pole obecně popsáno rovnicí

$$Q_0 = -div \ \lambda grad \ T + \rho c_p \frac{dT}{dt} + \lambda \tau_r \frac{\partial^2 T}{\partial t^2}$$
(3.11)

Člen obsahující druhou derivaci teploty podle času v rovnici (3.11) respektuje konečnou rychlost šíření tepla. Tento člen lze zanedbat, jelikož neuvažujeme rychlé změny teploty.

Druhý člen rovnice (3.11) obsahuje substanciální derivaci, kterou lze rozepsat jako

$$\frac{dT}{dt} = \frac{\partial T}{\partial t} + \mathbf{v}.grad \ T \tag{3.12}$$

Clen \mathbf{v} .grad T se u indukčních ohřevů pevných látek uplatní u kontinuálního ohřevu, například dlouhá tyč projíždějící krátkým induktorem. To se naší aplikace ale netýká a proto pokládáme vždy $\mathbf{v} = 0$ a úplnou derivaci nahrazujeme parciální derivací.

V rovnici (3.11) značí Q_0 objemovou hustotu tepelné energie, která v daném bodě vzniká za jednotku času. Vznikem tepelné energie je myšlena přeměna energie z libovolné formy na formu tepelnou. U modelů indukčních ohřevů se Q_0 obvykle nahrazuje Jouleovým teplem W_j S respektováním všech uvedených skutečností, můžeme pro tepelné pole modelů indukčních ohřevů psát Fourierovu rovnici ve tvaru

$$-div \ \lambda \ grad \ T + \rho \ c_p \frac{\partial T}{\partial t} + \rho \ c_p \ \mathbf{v} \ . \ grad \ T = W_j \tag{3.13}$$

Podle toho, zda lze v rovnici (3.13) zanedbat časovou derivaci, můžeme teplotní pole rozdělit na stacionární a nestacionární.

3.4.1 Okrajové podmínky

Stejně jako u elektromagnetického pole je i u teplotního pole nutné znát okrajové podmínky na rozhraní dvou prostředí.

Dirichletova okrajová podmínka

Tato podmínka je použitelná pouze tehdy, je-li známá teplota na hranici Γ

$$T(\Gamma, t) = T_{\Gamma}(\Gamma, t) \tag{3.14}$$

Neumannova okrajová podmínka

Neumannova okrajová podmínka je použitelná tehdy, je-li známá velikost toku energie přes hranici Γ

$$\lambda \frac{\partial T}{\partial \mathbf{n}}(\Gamma, t) = f_0(\Gamma, t) \tag{3.15}$$

Newtonova okrajová podmínka

Tato podmínka se používá u modelování sdílení tepla prouděním. Používá se na rozhraních pevné fáze s kapalinou či plynem. U indukčních ohřevů je přestup tepla pomocí proudění významný při nižších teplotách přibližně do 500°C.

$$\lambda \frac{\partial T}{\partial \mathbf{n}} = \alpha (T_k - T) \tag{3.16}$$

Okrajové podmínky 4. druhu

Jako okrajové podmínky 4. druhu se označují podmínky respektující přestup tepla sáláním. Teto sdílení tepla je definováno Stefan-Boltzmannovým zákonem a uplatňuje se při vyšších teplotách na 500°C.

$$\lambda \frac{\partial T}{\partial \mathbf{n}} = \varepsilon c (T_{ext}^4 - T^4) \tag{3.17}$$

Velmi často bývá těleso či látka ohřívaná od nízkých teplot až po vysoké a je proto nutné respektovat jak přestup tepla sáláním, tak i přestup prouděním. Pro tento případ se podmínka změní na tvar

$$\lambda \frac{\partial T}{\partial \mathbf{n}} = \alpha (T_k - T) + \varepsilon c (T_{ext}^4 - T^4)$$
(3.18)

Kapitola 4

Problematika studeného kelímku při tavení oxidů kovů

Problematikou indukčního tavení ve studeném kelímku se zabývá řada pracovišť na celém světě. Princip tavení je takový, že při průchodu střídavého elektrického proudu, o frekvenci 90 kHz až 5 MHz, měděným induktorem se vytvoří elektromagnetické pole. Vzniklé elmg. pole indukuje ve vsázce či startovacím materiálu vířivé proudy, které se uzavírají uvnitř vsázky a ohřívají ji. Jednou z největších předností této metody je možnost dosahovat teploty taveniny vyšší než 3000 °C a zároveň tím zabránit i znečištění vsázky stykem s jiným materiálem, např. k tomuto jevu dochází u tavení v klasické kelímkové peci. V případě tavení ve studeném kelímku, se materiál (vsázka) taví sám v sobě a v místech, kde dochází ke styku taveniny s kelímkem, nedochází k jeho roztavení. Kelímek je intenzivně chlazen. V místě styku kelímku a vsázky se vytvoří tenká ztuhlá vrstva nazývaná "skull", která dosahuje teploty přibližně okolo 100 °C.

Tavení elektricky nevodivých materiálů ve studeném kelímku je velmi složité. Musí se zde kontrolovat veškeré etapy procesu. Klíčovou etapou tavby je samotné nastartování pomocí jiného zdroje tepla, než vířivými proudy v samotné vsázce. V další etapě se do taveniny přidávají směsi k dosažení požadovaného objemu. V poslední etapě se tavenina udržuje na konstantní teplotě po stanovenou dobu pro dokončení celého procesu.

4.1 Konstrukce studeného kelímku

V současnosti se využívají dva druhy studených kelímků. Kelímek s integrovaným induktorem a segmentový kelímek.

4.1.1 Studený kelímek s integrovaným induktorem

Kelímek s integrovaným induktorem je technicky náročnější. Dříve se tento typ konstrukčního řešení nepoužíval, jelikož napájecí zdroje byly elektronkové generátory, které pracovaly s vysokým napětím pohybujícím se okolo 10 kV. To způsobovalo mezizávitové zkraty na přívodním pásovém vedení. V současné době se začínají používat k napájení tranzistorové generátory, které pracují s nižším napětím než generátory elektronkové a umožňují tak toto konstrukční řešení studeného kelímku. [7]

Studený kelímek s integrovaným induktorem je tvořen jedním měděným závitem induktoru, ve kterém je vytvořeno několik dutin umístěných nad sebou. Každou dutinou protéká voda a dochází tak k ochlazování. Dno kelímku je rovněž měděné a chlazené vodou. Jak bylo řečeno už dříve. Vlivem intenzivního chlazení dojde k vytvoření ztuhlé vrstvy mezi kelímkem a taveninou o nižší teplotě než samotné taveniny.

Výhodou tohoto konstrukčního řešení je vyšší elektrická účinnost a nižší ztráty. Odpadá zde problém s naindukovanými proudy v kelímku a nevznikají ztráty v mědi. Nevýhodou je složitější konstrukce induktoru, který je třeba intenzivně chladit. Při dokonalé izolaci je napájen 1 kV. Pro účely tavení oxidů kovů se příliš nehodí, jelikož v tomto případě nelze řídit fázi jejich krystalizace. Tohoto způsobu uspořádání se využívá především pro tavení skel.

4.1.2 Studený kelímek segmentový

Měděné segmenty jsou duté a intenzivně chlazené vodou. Průřez segmentů je obdélníkového nebo kruhového tvaru. Ve spodní části jsou segmenty napojeny na přívodní a zpětné potrubí sloužící k přívodu a odvodu chladící vody. Induktor bývá zpravidla vícezávitový, zhotovený z mědi a intenzivně chlazen vodou. dno kelímku je taktéž vyrobeno z mědi a opatřeno chladícím systémem. Mezera mezi segmenty bývá zpravidla okolo 1 mm (menší mezeru je složité konstrukčně vyřešit). Tato velikost však vyhovuje tomu, aby nedocházelo k nedovolenému odtoku taveniny přes segmenty směrem k induktoru. Tvar chladících segmentů nemá na funkčnost kelímku podstatný vliv. Obdélníkový tvar segmentů je poměrně složité vyrobit a z tohoto důvodu je možné se nejčastěji setkat s kruhovým průřezem chladících segmentů. Vzhledem k vysokým tlakům dosahovaným uvnitř chladícího segmentu je vhodné volit tloušťku stěny segmentu nejméně 1,5 mm. Vnitřní průměr chladícího kruhového segmentu by neměl být menší než 4 mm. [7]

Tento způsob uspořádání má za následek nižší tepelnou účinnost, jelikož se vytvoří elektrický kontakt mezi povrchem kelímku a vsázkou.

Obrázek 4.1: Studený segmentový kelímek [8]

Při tavení špatně vodivých materiálů jako jsou v našem případě oxidy kovů se dosahuje účinnosti až 90%. Proces tavení je podobný jako u tavení vodivých materiálů, ale zde dochází k problémům se samotným nastartováním tavby.

4.2 Startovací fáze

Nejčastěji se ve studeném kelímku taví špatně elektricky vodivé materiály jako jsou oxidy a skla. Za pokojové teploty mají velmi malou elektrickou vodivost, pohybující se v rozmezí $10^{-12} - 10^{-2} S \cdot m^{-1}$. z toho plyne, že musí k dojít k nastartovaní tavby jiným procesem než-li indukčním ohřevem. U tavení elektricky nevodivých materiálů je nezbytně nutné dbát na na správné určení parametrů. Nejdůležitějšími vlastnostmi jsou závislosti elektrického odporu na teplotě (obr.4.2) a použití optimální frekvence. Tavení pomocí indukce se provádí při teplotách 2000 °C až 3000 °C . V těchto případech je rezistence taveného materiálu mnohem nižší než u materiálu v pevném skupenství.

Obrázek 4.2: Závislost měrného odporu na teplotě [17]

Materiál	Skupenství	Teplota [°C]	Rezistivita $[\Omega\ .\ cm]$	Frekvence [kHz]
Al_2O_3	pevné	1875	$2,2$. 10^4	$6, 6.10^{7}$
Al_2O_3	kapalné	2200	$1 . 10^{-1}$	300
Y_2O_3	pevné	1500	$3 . 10^{1}$	90.10^{3}
Y_2O_3	kapalné	2430	$5 . 10^{-2}$	150
ZrO_2	pevné	2000	1	$3 . 10^3$

Tabulka 4.1: Hodnoty rezistivity a frekvence oxidů kovů

Abychom docílili zvýšení energie elektromagnetického pole u těchto nevodivých materiálů, je nutné použít velmi vysoké frekvence, kterou lze určit ze vztahu

$$f_{min} \ge 3 \cdot 10^6 \frac{\rho}{D \cdot v^2} \qquad [Hz]$$
 (4.1)

Z tohoto vztahu můžeme určit, že pokud použijeme jako vsázku oxid zirkoničitý o průměru 10 cm musíme docílit minimální frekvence 300 MHz. V praxi se ale používají frekvence do 10 MHz. Proto je nutné docílit ohřátí vsázky na teplotu takovou, při které dojde ke snížení rezistivity vsázky na dostatečnou úroveň.

Jak bylo již dříve řečeno, musíme dodržovat chemickou čistotu materiálu. Toho lze docílit různými způsoby nastartováním tavby, vždy na požadované čistotě a daném materiálu vsázky.

4.2.1 Startování pomocí malého množství kovu

Tento způsob je založen na vložení malého množství elektricky vodivého kovu (nejčastěji hliníku či zirkonia) ve formě drátků, granulí nebo prášku. Aby se snížili tepelné ztráty, je poté vložený materiál zasypán vrstvou oxidu. Tento kov je následně zahříván vířivými proudy a tak dochází k jeho oxidaci. Při správné teplotě dochází k mísení s taveninou, dále pak ke změně elektrické vodivosti vsázky a jejímu roztavení. Při vyšších teplotách může dojít ke vzplanutí oxidu a následně kontaminaci vsázky. Proto musíme brát ohled na vkládaný materiál jak z hlediska fyzikálního tak i chemického.

Tato metoda startovací fáze je nejvíce používaná právě pro tavení oxidů kovů např. Al_2O_3, Y_2O_3, ZrO_2 a dalších. V případě tavení právě oxidu zirkoničitého ZrO_2 se používá jako startovací materiál metalický zirkon, který vsázku negativně neovlivňuje. Pro stanovení vhodného množství přidaného kovu do známého objemu vsázky V_T se používá vzorec

$$g = Z \cdot V_T \qquad [kg] \tag{4.2}$$

Tabulka 4.2: Měrná hmotnost kovů

Materiál	Titan	Hliník	Zirkon	Chrom	Berylium	Ytrium	Skandium
$Z [kg.m^{-3}]$	550	480	1150	1220	420	985	515

Abychom snížili energetické ztráty, je nezbytné, aby oxidace vloženého kovu byla co

nejkratší. Doba vzplanutí kovu je ovlivněna velikostí a plochou částic přidaného kovu do taveniny.

Tato metoda startování není vhodná pro tavení žárupevných oxidů kovů alkalických zemin jako jsou např. Mg, Ca, Ba, Sr aj. Oxidy těchto zemin mají vyšší teplotu tání než je teplota vznícení jejich par.

Obrázek 4.3: Startovací fáze pomocí malého množství kovu [11]

4.2.2 Startování pomocí elektricky vodivého kruhu

Tohoto způsobu je využíváno u tavení skel a *YBCO*. Jedná se o způsob, kdy se vloží elektricky vodivý materiál (nejčastěji grafit, karbon či iridium) v podobě kruhu na vsázku. Tento kruh je stejně jako v předchozím případě ohříván vířivými proudy vyvolanými elektromagnetickým polem. Po dostatečném zvýšení elektrické vodivosti je pak tento kruh vyjmut a materiál se taví sám v sobě bez kontaminace.

Obrázek 4.4: Startovací fáze pomocí grafitového kruhu [10]

4.2.3 Startování pomocí povrchového ohřevu

Tento způsob ohřevu se používá na ohřev horní části vsázky, která není ve styku se studeným kelímkem. Existuje několik reálně používaných variant povrchového ohřevu.

Plazmový hořák

Používá se nejčastěji u tavby skel. Plazma je elektricky vodivý plyn složený z iontů a elektronů, vznikající odtržením elektronů z obalu atomů plynů, či ionizací. Jde o nejrozšířenější formu látky. Nejpoužívanějšími plyny u této technologie jsou argon, dusík, směs argonu a vodíku nebo směs kyslíku a vzduchu. Plazmový hořák pracuje na principu přeměny elektrické energie na energii tepelnou usměrněnou proudem plazmatu. Vzniklý elektrický oblouk je pak možno stabilizovat pomocí vody či plynu. Při použití pro elektricky nevodivé materiály se pak používá hořák s tzv. netransferovaným obloukem. Hoření oblouku je zajištěno elektrodou a výstupní tryskou. [12]

Laserový paprsek

Laser pracuje na principu indukované emise, tj. vynuceného záření. Indukovaná emise je vyvolána dopadem záření na atom prvku, kdy záření donutí elektron obíhající kolem jádra přijmout energii a tím vystoupat na vyšší oběžnou dráhu. Další příjem energie a rovnováha sil v atomu přinutí elektron vrátit se na svoji původní oběžnou dráhu a vyzářit přijatou energii do prostoru. Vzniklé záření je monochromatické a koherentní, což znamená, že příslušné částice se ve svazku pohybují jedním směrem a jsou v jeho průřezu buď stejnosměrně, nebo alespoň velmi pravidelně rozděleny. [12]

Existují čtyři základní rozdělení laserů:

- Plynové paprsek vzniká v plynech jako jsou helium, argon nebo neon
- Kapalinové laserovým médiem je roztok barviva, díky němuž může být barva laserového světla měněna v širokém rozmezí
- Pevnolátkové nejvýznamnější je neodymový YAG laser, který využívá syntetický monokrystal yttrium-aluminiového granátu, ve kterém jsou některé yttriové ionty nahrazeny neodymovými
- Polovodičové/diodové nejmladší typy laserů, u kterých k účinnému vytváření světelného paprsku dochází v laserovém prostředí s velmi malým objemem

Plynový hořák

U této metody prvotního ohřevu nelze vyloučit kontaminaci vsázky, jelikož dochází ke vzájemnému působení spalin a taveného materiálu. To má za následek negativní vliv na požadovanou čistotu a kvalitu budoucího produktu. Za další nevýhodu můžeme považovat vysokou rychlost proudění způsobenou plamenem v případě kdy použijeme vsázku v podobě prášku.

Elektrický oblouk

Ve velmi specifických případech je možno užít tohoto způsobu prvotního ohřevu. Jde o využití tepla způsobeného elektrickým obloukem umístěným nad povrchem vsázky nebo přímo uvnitř vsázky

4.3 Roztavení materiálu a vytvoření krusty

Tavení oxidů probíhá převážně v otevřeném kelímku. Jak bylo již zmíněno, dojde vlivem chlazení k vytvoření ztuhlé vrstvy tzv. krusty mezi segmenty a taveninou. Kelímek je, jak vidno, nutné chladit, ale také regulovat výkon přenášený do vsázky. Vířivé proudy jsou vlivem skin-efektu vytlačovány k povrchu taveniny, tzn. ke též ke krustě, a tím dojde ke zvýšení konduktivity a následně i teploty taveniny v dané oblasti. Vlivem víření taveniny tak dochází k její homogenizaci, kde víření taveniny lze popsat Lorentzovou a Archimédovou silou. Dále je nutné kompenzovat ztráty do okolí, především ztráty vedením a sáláním, jinak by mohlo dojít k zatuhnutí taveniny v nesprávný moment.

Výkon přenesený z induktoru do taveniny lze spočítat jako:

$$P_{2} = \frac{dQ_{2}}{dt} + P_{L}, kde \qquad P_{L} = P_{w} + P_{b} + P_{rad}$$
(4.3)

Tepelné ztráty do dna mohou být zanedbány, vlivem izolace. Tepelné ztráty vedením do stěny kelímku:

$$P_w = \pi d_2 h_2 q_w \tag{4.4}$$

Tepelné ztráty sáláním na povrchu taveniny:

$$P_{rad} = \frac{\pi}{4} d_2^2 \varepsilon_0 \sigma (T_2^4 - T_0^4)$$
(4.5)

Další problém při tavení oxidů kovů může nastat takový, že se díky přidanému materiálu vytvoří krusta na povrchu taveniny. Ta znemožňuje další přidání materiálu a existuje několik způsobů jak se této krusty zbavit. Nejčastěji používaným způsobem je odstranění pomocí keramických tyčí.

Pokud však nedojde k jejímu odstranění zabrání se tak odpařování nežádoucích látek a vsázka tak zůstane kontaminovaná. Pokud zvolíme způsob tavení ve studeném kelímku bez speciální ochranné atmosféry, vzniká nám možnost redukování nežádoucích příměsí jako jsou např. síra, dusík, chlór, alkalické kovy a další. Jestli zvolíme tento způsob tavení, musíme dále kontrolovat rychlost odpařování, která je závislá na teplotě a tlaku par. Došlo-li by k příliš rychlému odpařování, mohlo by dojít k zastavení ohřevu, jelikož by cívka a tavenina na sebe vzájemně nepůsobily.

Po dosažení roztavení vsázky a dosažení požadovaných hodnot následuje ochlazování výsledného materiálu. Toho můžeme docílit dvěma způsoby. Prvním způsobem je odpojení od zdroje, druhým pak postupným snižováním napětí.

Poslední fází tavení oxidů kovů je krystalizace. Během tuhnutí taveniny od stěn kelímku do středu taveniny dochází k vytvoření požadovaných struktur.

Kapitola 5

Numerický model pro řešení elektromagnetického pole

Existuje mnoho moderních technologických postupů získávání nových sloučenin s využitím oxidů kovů založených na indukčním ohřevu ve studeném kelímku. Využitím indukčního ohřevu ve studeném kelímku můžeme dosáhnout vysokých čistot výsledného materiálu. Syntéza sloučenin oxidů je vyznačována vysokými teplotami taveniny a obvykle i oxidací prostředí. Jelikož nejsou známa data ohledně vlastností oxidů kovů a oxidačního prostředí při tavení za vysokých teplot, je velice obtížné navrhnout technologické zařízení pro kapalnou fázi získávání nových látek. Jedna z důležitých vlastností je vodivost, ta je ovlivňována výkonovými zdroji a nepřímo teplotou a hydrodynamickými silami v roztaveném materiálu.

Z jiné strany je sledovací a řídící systém základním stavebním kamenem jakéhokoli moderního zařízení. Obtížný technologický proces jako ISM proto vyžaduje adaptivní kontrolní systém. Získání správného sledovacího a řídícího systému proto vyžaduje matematický model chování objektu.

5.1 Řídící systém

Práce adaptivního sledovacího a řídícího systému je založena na shromažďování a zpracování primárních informací o procesu tavby. Zpracovávání dat je realizováno pomocí matematického modelu v reálném čase. Hodnoty regulačních parametrů jsou výsledkem výpočtů. Výhodou takto navrženého systému je jeho multifunkčnost. Takto navržený řídící systém pak navíc umožňuje i zkoumání vlastností taveniny například již zmíněné vodivosti.

Blokové schéma sledovacího a řídícího systému ISM je zobrazeno na obr. 5.1

Obrázek 5.1: Blokové schéma řídícího systému [14]

Obecně vyžaduje realizace ISM napájecí jednotku schopnou dosahovat vysokých hodnot frekvence i napětí. Oproti tomu mnoho technologických procesů vyžaduje změny zatížení, které vedou ke změně vstupní impedance zátěže v obvodu. Proto by měl napájecí zdroj poskytnout vysoké výstupní napětí a provozní stabilitu při změnách parametrů v širokém rozsahu. Vakuový trubkový generátor mnoho těchto požadavků splňuje. Z toho plyne typické paralelní schéma zátěže obvodu pro Vakuový trubkový generátor.

Vycházíme-li z teorie indukčního ohřevu, můžeme považovat popis elektromagnetického indukčního systému jako ekvivalent elektrického systému vyobrazeném na obr. 5.2. Předpoklad, že elektromagnetický systém obsahuje zdroje, které se nechovají podle sinu, umožňuje přechod do komplexní roviny. Tím se matematický popis systému velice zjednoduší bez značně chybného odhadu.

Obr. 5.2 zobrazuje ekvivalentní elektrické schéma zátěže. Obvyklým problémem je obecné definování veškerých parametrů schématu s takovým cílem, abychom nalezli hodnoty pro řídící parametry. Z praktických pokusů plyne, že je možné přesně měřit hodnoty jako jsou napětí a výkonové ztráty ve vysokofrekvenčních indukčních systémech. Proto mohou být použity jako vstupní údaje řídícího systému výkonové ztráty v induktoru, kelímku, napětí na kapacitoru nebo induktoru.

Použijeme tedy případ, kdy je sběrnice a cívka připojena postupně v jednom okruhu

Obrázek 5.2: Ekvivalentní elektrické schéma obvodu [14]

chladící vody. V tomto případě jsou výsledkem následující kroky.

Jsou-li elektrické ztráty v kondenzátoru zanedbány, pak vektor napětí kondenzátoru bude mít pouze reálnou složku. Poté lze reaktanci kondenzátoru definovat jako:

$$x_c = \frac{1}{\omega C} \tag{5.1}$$

Účiník indukčního systému společně se sběrnicí se spočítá jako:

$$\cos\varphi_1 = \frac{P_{bi} + P_2 + P_3}{|\bar{\mathbf{U}}_c|^2 \omega C} \tag{5.2}$$

Imaginární složka proudu kapacitoru:

$$I_{(im)c} = \frac{\mathbf{U}_c}{x_c} \tag{5.3}$$

Modul hodnoty proudu induktoru:

$$|\bar{\mathbf{I}}_i| = \frac{I_{(im)c}}{\sqrt{1 - \cos^2 \varphi_1}} \tag{5.4}$$

Reálná složka proudu induktoru:

$$I_{(re)i} = |\bar{\mathbf{I}}_i| \cos\varphi_1 \tag{5.5}$$

Souhrnná rezistence sběrnice a induktoru:

$$r_{bi} = \frac{P_{bi}}{|\bar{\mathbf{I}}_u|^2} \tag{5.6}$$

Modul vektorového napětí induktoru je měřitelný. Modul vektorového proudu je odvozen z výpočtu ekvivalentních parametrů elektrického schématu. To umožní vytvořit náhradní schéma cívky (obr. 5.3) a určit tak vstupní impedanci obvodu.

Obrázek 5.3: Ekvivalentní elektrické schéma induktoru se zátěží [14]

V tomto případě se rezistence a reaktance induktoru určí jako:

$$r_i = \frac{|\bar{\mathbf{U}}_i| \ I_{(re)i}}{|\bar{\mathbf{I}}_i|^2}, \qquad x_i = \frac{|\bar{\mathbf{U}}_i| \ I_{(im)i}}{|\bar{\mathbf{I}}_i|^2}$$
(5.7)

Reaktance sběrnice:

$$x_b = x_c - x_i \tag{5.8}$$

Naštěstí, je součet elektrických výkonových ztrát v kelímku a tavenině ($P_2 + P_3$) měřitelný. To vyžaduje znalost hodnot výkonu v tavenině a elektrických ztrát v kelímku obzvláště pro další krok výpočtu. Vyseparování P_2 a P_3 je realizováno pomocí matematického modelu.

Snížená rezistence kelímku:

$$r_{31} = \frac{P_3}{|\overline{\mathbf{I}}_i|^2} \tag{5.9}$$

Snížená rezistence taveniny:

$$r_{21} = \frac{P_2}{|\overline{\mathbf{I}}_i|^2} \tag{5.10}$$

Celkově snížená rezistence taveniny a kelímku:

$$r_{22} = r_{21} + r_{31} \tag{5.11}$$

Rezistence induktoru:

$$r_1 = r_i + r_{22} \tag{5.12}$$

Rezistence sběrnice:

$$r_b = r_{bi} + r_1 \tag{5.13}$$

Výkonový ztráty induktoru:

$$P_i = |\bar{\mathbf{I}}_i|^2 r_1 \tag{5.14}$$

Výkonové ztráty sběrnice:

$$P_b = P_{bi} - P_i \tag{5.15}$$

Účiník induktoru vyjma sběrnice:

$$\cos\varphi_2 = \frac{r_i}{\sqrt{r_i^2 + x_i^2}} \tag{5.16}$$

V důsledku těchto matematických výpočtů mohou být veškeré hodnoty jednotlivých prvků ekvivalentního schématu nalezeny. Každý z těchto parametrů může být použit v kombinaci s ostatními jako vstupní parametr řídícího systému.

Následující fázorový diagram (obr. 5.4) prokazatelně zobrazuje fáze a amplitudy mezi proudy a napětími zkoumaného schématu.

Obrázek 5.4: Fázorový diagram proudů a napětí indukčního systému [14]

5.2 Tvorba matematického modelu

Pro řešení elektromagnetického pole je nezbytné zadání materiálových parametrů všech oblastí modelu a definování okrajových podmínek. Následně dojde k harmonické analýze. V našem případě budeme řešit elektromagnetické pole ve startovací fázi tavby. Pro vytvoření matematického 3D modelu je použit program ANSYS.

Program ANSYS je komplexní nástroj umožnující řešení široké škály problémů. Je možno v něm řešit elektromagnetické pole, teplotní pole, dále také problémy týkající se konstrukční mechaniky až po dynamiku kapalin. Tento program zvládá řešit úlohy sdruženě. Komplexnost tohoto programu lze využít také např. pro modelování indukčních ohřevů pro lisování za tepla, kdy je nutné modelovat elektromagnetické pole, teplotní pole a také pole termoelastické. Tento program také dokáže řešit změnu rozměrů vlivem teploty.

Program umožňuje práci dvěma způsoby. Prvním způsobem je využití interaktivního prostředí, druhým pak použití příkazů v jazyce APDL (ANSYS Parametric Design Language). Oba způsoby je možné kombinovat. ANSYS zapisuje veškeré provedené kroky do textového souboru v jazyce APDL, čehož lze využít pro další práci, případně pro úpravu daného problému.

Veškeré kroky, které se provádí, se týkají preprocesoru což znamená předzpracování. Jedná se o zadávání údajů potřebných k vytvoření funkčního modelu.

5.2.1 Obecný postup tvorby modelu

Geometrie modelu

V tomto kroku dojde k zadání rozměrů oblastí, které jsou potřeba pro namodelování úlohy, a jejich vzájemné uspořádání. ANSYS umožňuje vícero způsobů zadávání rozměrů a uspořádání. Lze vytvořit geometrii pomocí klíčových bodů (keypionts) tj. dojde k vytvoření rohových bodů, které se následně propojí čarami (lines) a dojde tak k vytvoření oblasti (area). Další možností je definování oblastí pomocí rozměrů, jako v našem případě. Oblast se vytvoří zadáním požadovaných hodnot pro danou geometrii např. u příkazu TO-RUS je nutno zadat střední poloměr, vnitřní poloměr, vnější poloměr a úhly mezi kterými se má daná oblast vytvořit. Dále je pak nutno přemístit vybranou oblast na požadovanou pozici. To zajistíme příkazem VGEN.

Materiálové parametry a volba element typu

Program ANSYS vyžaduje pro řešení problémů volbu element typu. Element typ určuje jaký problém se bude řešit, jestli se jedná o elektromagnetiku, elektrostatiku, teplotní pole atd. Dále určuje jestli je úloha řešena ve 2D či 3D. Dále je potřebné nastavit materiálové vlastnosti (material properties), který určují použitý materiál v dané oblasti.

Síťování oblastí (Meshing)

Tento kro následuje po volbě element typu. Dojde k vytvoření sítě v každém elementu, podle toho jaký element typ byl zvolen. Velikost hrany jednotlivých elementů lze libovolně měnit a můžeme tak korigovat počet elementů v každé oblasti. Z praxe je známo, že čím se nastaví menší délka hrany elementu, tím přesnější bude výsledek. Zároveň s tím ale přichází komplikace v podobě většího nároku na výpočetní techniku tzn. výpočet bude trvat déle. Z tohoto důvodu je nezbytné volit velikost hran elementů optimálně s požadavky na přesnost, délku výpočtu a dostupnou výpočetní techniku. Obvykle se hrana elementu volí vzhledem k hloubce vniku takovým způsobem, aby byla velikost hrany alespoň dva až třikrát menší než je hloubka vniku.

V programu ANSYS lze síťovat oblasti trojím způsobem. Prvním je volné síťování (Free Meshing). Tento způsob se používá u oblastí s nepravidelným tvarem ale může být více náročný, jelikož si velikost hrany elementu zvolí program optimálně sám. Druhým způsobem je pravidelné síťování (Mapped Meshing), který se používá pro oblasti s pravidelným tvarem. Třetím způsobem je kombinace obou způsobů. Tento způsob si program zajistí sám podle toho jakého tvaru je daná oblast.

Po vytvoření sítě se nastaví v požadovaných oblastech všechny uzly na stejný potenciál. Následně se do vybraných uzlů vloží proud. Tímto se zajistí rovnoměrné rozložení proudu v požadovaných oblastech.

Počáteční a okrajové podmínky

Po vysíťování všech oblastí je možno zadat počáteční a okrajové podmínky. Tyto podmínky byly zmíněny ve druhé kapitole část 2.3.1.

Parametry pro řešení

Dosavadní kroky se odehrávaly v preprocesoru. Nyní je nutné nastavit parametry a typ analýzy pro řešení. Pro výpočet elektromagnetického pole se nastavuje harmonická analýza v případech, kdy je nastaven v některé oblasti zdroj napájení s časově proměnným harmonickým proudem. Kdybychom chtěli řešit pole teplotní, volili bychom analýzu transientní (přechodovou). Tento druh analýzy umožňuje počítání teplotního pole ve zvolených časových krocích až do doby, kdy nastane ustálení teplotního pole.

Řešení

Řešení probíhá na základě zadání hodnot z předchozích kapitol. Po vyřešení všech polí lze výsledky ukládat nebo prohlížet. Pro řešení lze použít jakéhokoli výpočetního zařízení. Záleží však na tom, jak je zařízení výkonné, což nám určí rychlost výpočtů.

Zobrazení výsledků (Postprocessing)

Po ukončení výpočtu je žádoucí výsledky zobrazit a vyhodnotit. To je zajištěno funkcí postprocessingu. Tato funkce umožňuje prohlížení výsledků z právě vyřešeného pole. Postprocessing dále umožňuje vytvoření výsledkových grafů, tabulek, výběr jednotlivých oblasti, které je potřeba zkoumat, či nechat 2D modely zobrazit jako 3D model.

5.2.2 Vlastní tvorba 3D modelu

Geometrie modelu

Při vytváření geometrie modelu se vycházelo z reálného zařízení umístěného na univerzitě v Petrohradu. Jelikož by celkové řešení 3D modelu bylo extrémně náročné na výpočetní techniku, je nutné řešit nejmenší možnou část studeného kelímku. Z toho vyplývá geometrie zahrnující jeden segment kelímku tj. výřez pod úhlem 16°.

Rozměr	Označení	Velikost
počet segmentů	\mathbf{ps}	22
výška vsázky	h_{me}	$0.072~\mathrm{m}$
výška induktoru	h_{ind}	$0.065 \mathrm{m}$
výška segmentu	h_s	$0.350 \mathrm{~m}$
šířka vsázky	r_{me}	$0.0265 {\rm m}$
šířka induktoru	r_{ind}	0.047 m

Tabulka 5.1: Rozměry segmentového studeného kelímku

(a) Reálný studený kelímek na univerzitě v Petrohradu

Obrázek 5.5: Geometrie segmentového studeného kelímku [14]

Obrázek 5.6: Nejmenší možná část studeného kelímku

Materiálové parametry a volba element typu

V našem případě byl pro řešení použit element typ 97. Tento element typ je u úlohy určen pro všechny oblasti.

Materiálové parametry byly nastaveny pro měď, která je použitá pro studený kelímek, pro startovací materiál, kterým je metalický hliník, a pro vsázku, kterou tvoří oxid hlinitý Al_2O_3 . Vnější okolí je tvořeno vzduchem.

Oblast	Relativní permeabilita	Rezistivita [$\Omega.m$]
vsázka Al_2O_3	1	1.10^{14} při $20^\circ C$
startovaci prvek Al	1	$2, 6.10^{-7}$ při $20^\circ C$
segment Cu	1	$1/57.10^6$ při $20^\circ C$
civka Cu	1	$1/57.10^6$ při $20^\circ C$

Tabulka 5.2: Materiálové parametry

Síťování oblastí (Meshing)

Pro dostatečnou přesnost výpočtu byla z předchozích zkušeností volena velikost hrany elementu pětkrát menší. Pro oblasti vsázky, startovacího materiálu a závitů cívky byl použit typ meshe mapped. Pro oblast okolí byl zvolen typ meshe free. Z průběhů modelování a výpočtů bylo zapotřebí zanedbat dno, které bylo původně navrženo na trojnásobek hloubky vniku. Jelikož by bylo modelování reálného modelu náročné a dlouhodobé na výpočet, byl model zjednodušen a došlo i na zanedbání dna.

(a) Mesh celé oblasti modelu

(b) Detail meshe celé oblasti v okolí studeného kelímku

(e) Detail meshe segmentu

= 1200, fr = 18300, ai = 4.927846359E-04, asm = 1.897060846E-03,

Obrázek 5.7: Síťování oblastí

Po vytvoření sítě se nastaví v požadovaných oblastech všechny uzly na stejný potenciál. Následně se do jednoho z uzlů každého závitu cívky vloží proud. Tímto se zajistí rovnoměrné rozložení proudu v každém závitu induktoru.

Počáteční a okrajové podmínky

Zde jsou zadány okrajové a počáteční podmínky pouze pro řešení elektromagnetického pole. Je zde využito Dirichletovy okrajové podmínky pro nastavení potenciálu na hranici oblasti okolí, které je tvořeno vzduchem. Oblast vzduchu je představována půlkružnicí ve vzdálenosti jednoho metru od středu.

Parametry pro řešení

Nyní je nutné nastavit parametry a typ analýzy pro řešení elektromagnetického pole. Pro řešení elektromagnetického pole se používá harmonická (Harmonic) analýza, jelikož je cívka napájená časově proměnným harmonickým proudem. Dalšími parametry pro řešení je nastavení frekvence, původním záměrem bylo nastavení frekvence $f_1 = 1,83 \ MHz$. To však vedlo k vytvoření elementů v řádech miliard a výpočet by tak trval v řádech dnů. Proto byla zvolena frekvence o dva řády nižší a to $f_2 = 18,3 \ kHz$. To v důsledku umožní řešení v řádech hodin. Pro ještě rychlejší řešení byla experimentálně zvolena třetí frekvence $f = 5 \ kHz$. Do programu je také nutné zadat maximální hodnotu proudu, což je $I_{max} = \sqrt{2}.I_{ef}$. Jelikož nebylo možné dopočítat se skutečné hodnoty proudu z naměřených a uvedených hodnot, byla zvolena efektivní hodnota proudu $I_{ef} = 1200 \ A$

Řešení

Pro řešení byl použit moderní počítač (taktovací frekvence 3,7 GHz CPU a velikosti operační paměti 32 GB RAM).

5.3 Výsledky řešeného problému

Následující prezentované výsledky jsou získané z programu ANSYS prostřednictvím vytvořeného programu řídícího výpočet. Výpočet byl proveden pouze pro řešení elektromagnetického pole. Po vyřešení elektromagnetického pole je možné zobrazit rozložení vektorového potenciálu, indukce, intenzity, proudové hustoty a Jouleových ztrát v nejmenší části studeného kelímku.

Pro modelování jsme vycházeli z naměřených hodnot na univerzitě v Petrohradu uvedených v tabulce 5.3, kde: P_2+P_3 jsou ztráty v tavenině a kelímku, P_{ind} ztráty v induktoru.

f[MHz]	$P_2 + P_3[kW]$	$P_{ind}[kW]$
1,83	19,79	2,22

Tabulka 5.3: Naměřené hodnoty reálného zařízení

Vzhledem k vynucenému snížení frekvence pro provedení výpočtu jsou hodnoty ztrát uvedeny v následující tabulce 5.4,

kde: $P_2[kW]$ ztráty ve startovacím materiálu, $P_3[kW]$ značí ztráty v segmentech kelímku a $P_{ind}[kW]$ v ztráty v induktoru.

Z výpočtu nejmenší části byly zjištěny hodnoty pro jednotlivé části. Aby bylo možné uvažovat výsledky celého studeného kelímku musely se všechny hodnoty ztrát násobit počtem segmentů.

$\int f[MHz]$	$P_2[kW]$	$P_3[kW]$	$P_{ind}[kW]$
0,0183	0,447	2,967	3,04

Tabulka 5.4: Vypočítané hodnoty modelu

Následující výsledky rozložení vektorového potenciálu, indukce, intenzity, proudové hustoty a Jouleových ztrát odpovídají výše uvedeným údajům a jsou vyobrazeny pouze reálné složky těchto hodnot, v určitých pohledech a pouze v bodovém zobrazení. Imaginární složky, veškeré pohledy a vektorové zobrazení jsou uvedeny v příloze.

5.3.1 Rozložení vektorového potenciálu

(a) Rozložení do okolí

(b) Rozložení v induktoru, segmentu a starto- (c) Rozložení v induktoru, segmentu a startovacím materiálu vacím materiálu, pohled shora

Obrázek 5.8: Rozložení vektorového potenciálu

5.3.2 Rozložení magnetické indukce

(a) Rozložení do okolí

(b) Rozložení v induktoru, segmentu a starto- (c) Rozložení v induktoru, segmentu a starto- vacím materiálu vacím materiálu, pohled shora

Obrázek 5.9: Rozložení magnetické indukce $\left[T\right]$

5.3.3 Rozložení magnetické intenzity

(a) Rozložení do okolí

(b) Rozložení v induktoru, segmentu a starto- (c) Rozložení v induktoru, segmentu a startovacím materiálu vacím materiálu, pohled shora

Obrázek 5.10: Rozložení magnetické intenzity $\left[A/m\right]$

5.3.4 Rozložení proudové hustoty

(a) Rozložení do okolí

(b) Rozložení v induktoru, segmentu a starto- (c) Rozložení v induktoru, segmentu a starto- vacím materiálu vacím materiálu, pohled shora

Obrázek 5.11: Rozložení proudové hustoty $[A/m^2]$

5.3.5 Rozložení Jouleových ztrát

(a) Rozložení do okolí

(b) Rozložení v induktoru, segmentu a starto- (c) Rozložení v induktoru, segmentu a starto- vacím materiálu vacím materiálu, pohled shora

Obrázek 5.12: Rozložení Jouleových ztrát $[W/m^3]$

Kapitola 6

Závěr

Cílem této diplomové práce bylo zabývat se indukčním tavením ve studeném kelímku zaměřeném na tavení oxidů kovů. Celá práce je strukturovaná podle zásad pro vypracování a proto je rozdělena do šesti kapitol.

Kapitola 1 se věnuje úvodu této práce. Popisuje postup vývoje elektrotechniky až k indukčnímu ohřevu.

Kapitola 2 je zaměřena na uvedení do problematiky indukčního ohřevu. Je zde popsána teorie indukčního ohřevu. To je velice důležité k pochopení dané problematiky.

Kapitola 3 popisuje problematiku sdílení tepla. Jedná se o sdílení tepla pomocí proudění, vedení a sálání.

Kapitola 4 se zabývá problematikou použití studeného kelímku pro tavení oxidů kovů. Jedná se o jeden ze stěžejních bodů této práce. Zde je podrobně popsán důvod použití segmentového studeného kelímku pro tavení oxidů kovů a také problematika s nastartováním tavby pro elektricky nevodivé materiály (oxidy kovů).

Kapitola 5 je zaměřena na druhý nejdůležitější bod této práce tj. vytvoření modelu segmentového studeného kelímku v programu ANSYS. Je zde uveden i důvod proč je důležité takovéto modely vytvářet a výsledky vytvořeného modelu.

Hlavním úkolem bylo navrhnout funkční numerický model pro řešení elektromagnetického pole indukčního ohřevu ve studeném segmentovém kelímku, použitém pro tavení oxidů kovů, a nechat proběhnout výpočet. Během vytváření modelu bylo objeveno několik problémů. Jedním z problémů byla nemožnost vypočítat celý segmentový studený kelímek a muselo se tak přejít na nejmenší možnou část studeného kelímku, zahrnující pouze jeden segment z celkových 22. Dalším problémem, jak se ukázalo, byla příliš vysoká frekvence použitá u reálného zařízení. Při takto vysoké frekvenci docházelo k vytváření elementů v řádech milionů až miliard a výsledný čas výpočtu se nedal odhadnout. Bylo
pravděpodobné, že výpočet bude probíhat několik dnů možná týdnů. Z toho důvodu byla zvolena frekvence o dva řády nižší. Při takto zvolené frekvenci probíhal výpočet přibližně 13 hodin. Při průběhu výpočtu byl odhalen další problém, tentokráte se týkající samotného programu ANSYS. Jelikož tento program musí být připojen k licenčnímu serveru může dojít k přerušení spojení mezi programem ANSYS a licenčním serverem. Bohužel se toto stalo během průběhu výpočtu několikrát a došlo tak k přerušení výpočtu bez požadovaných výsledků. Dále, jak se ukázalo, byla problematická část dna hlavně při vytváření síťování a dalším výpočtu. Program hlásil chybu v podobě špatně provedeného síťování. Z tohoto důvodu bylo dno zanedbáno.

Budeme-li brát v potaz možnosti návaznosti na tuto práci, bylo by záhodno vytvoření vlastního segmentového studeného kelímku a porovnávat naměřené hodnoty z přímo dostupného experimentálního zařízení s matematickým modelem. To by skýtalo další možnosti v návrhu postupu tavení různých materiálů.

Z informací uvedených v diplomové práci vyplývá použití studeného kelímku pro tavení oxidů kovů jako jedno z nejlepších řešení. Jelikož se ve studeném kelímku dosahuje velmi vysokých teplot a vysoké homogenity, je velmi výhodné používat tento systém tavení pro možnosti získávání nových materiálů a slitin kovů.

Literatura

- [1] LANGER, E.: Teorie indukčního a dielektrického tepla, Praha, Academia, 1979.
- [2] RUDNEV, V.: Handbook of induction heating, New York, Marcel Dekker, 2003.
- [3] STARCK, A., von MÜHLBAUER, A., KRAMER, C.: Handbook of thermoprocessing technologies, fundamentals, processes, components, safety, Essen, Vulkan-Verlag, 2005.
- [4] ROT, D.: Indukční ohřev pro montáž a demontáž obruče turborotoru, Plzeň, 2003. Diplomová práce. ZČU v Plzni, Fakulta elektrotechnická, Katedra technologií a měření
- [5] Inductotherm group company Consarc.: Induction skull melting furnaces [online].
 Dostupné z: http://www.consarc.com/brochures/ism.pdf
- [6] KARBAN, P.: Přednášky z předmětu ATE, Plzeň, 2013. ZČU v Plzni, Fakulta elektrotechnická, Katedra teoretické elektrotechniky
- [7] JANDA, M.: Přednosti tavení materiálů elektromagnetickou indukcí ve studeném kelímku, Plzeň, 2011. Diplomová práce, ZČU v Plzni, Fakulta elektrotechnická
- [8] Centrum výzkumu Řež s.r.o.: Laboratoř studených kelímků [online] 2014. [Citace:
 2. duben 2014] Dostupné z: http://susen2020.cz/vyzkumne-programy/programjpc/laborator-studenych-kelimku/
- [9] ROT, D., KOŽENÝ, J.: Modelování startu tavby oxidů kovů elektromagnetickou indukcí ve studeném kelímku, Electroscope, 2010.
- [10] ROT, D., JIŘINEC, S., KOŽENÝ, J.: Modelování startovací fáze tavby SiO₂ elektromagnetickou indukcí ve studeném kelímku, Electric power engineering, 2013.

- [11] NACKE, B., BEHRENS, T., KUDRYASH, M., JAKOVICS, A.: Skull melting technology for oxides and glasses, Electromagnetic processing of materials, 2005.
- [12] HLAVATY, I.: Laserové a plazmové řezání (84, 83) [online] 2014. [Citace: 4. duben 2014] Dostupné z: http://homen.vsb.cz/ hla80/2009Svarovani/16-17-83-84.pdf
- [13] Centrum laserových a automatizačních technologií.: Rozdělení laserů [online] 2014.
 [Citace: 5. duben 2014] Dostupné z: http://laser.zcu.cz/wiki/rozdeleni-laseru
- [14] POZNIAK, I., PETCHENKOV, A.: Special Tool for Investigation and Controlling of Induction Skull Melting Processes, International Scientific Colloquium, Modelling for Saving Resources, Riga, 2001.
- [15] BEHRENS, T.: Prozessorientierte Analyse der induktiven Skull-Melting-Technologie bei Verwendung eines Transistorumrichters, Doktorská práce, G.W.Leibniz Universität Hannover, 2007.
- [16] RUTHER, T.: Vitrifikace s využitím technologie indukčního ohřevu, Plzeň, 2012. Diplomová práce. ZČU v Plzni, Fakulta elektrotechnická, Katedra elektroenergetiky a ekologie
- [17] ZAJACOVÁ, N.: Vysokoteplotní tavení materiálů ve studeném kelímku Plzeň, 2012. Diplomová práce. ZČU v Plzni, Fakulta elektrotechnická, Katedra elektroenergetiky a ekologie

A Výsledky řešení modelu

Obrázek 1: Rozložení vektorového potenciálu

Obrázek 2: Rozložení magnetické indukce [T]

Obrázek 3: Rozložení magnetické intenzity [A/m]

Obrázek 4: Rozložení Jouleových ztrát $[W/m^3]$

Obrázek 5: Rozložení proudové hustoty $[A/m^2]$

B Program modelu

/NOPR ! Suppress printing of UNDO process

/PMACRO ! Echo following commands to log

FINISH ! Make sure we are at BEGIN level

/CLEAR,NOSTART ! Clear model since no SAVE found

!nastaveni potrebnych hodnot

*set,pi,3.141592654 ! nastavení pi

*set, fr, 18300 ! nastavení frekvence

*set, ur, 1 ! nastavení relativní permeability

*set,u0,4*pi*1e-7 ! nastavení permeability vakua

*set, pr, 1200*sqrt(2) ! nastavení proudu (efektivní hodnota 1200 A)

*set,rm,1/57e6 ! nastavení rezistivity induktoru (medi)

*set,rsm,2.6e-7 ! nastavení rezistivity startovacího materiálu (hliníku) pro 1013 C **MPDB**

*set, hvi, sqrt(2/(2*pi*fr*(1/rm)*ur*u0))! nastavení hloubky vniku pro induktor

*set, hvsm, sqrt(2/(2*pi*fr*(1/rsm)*ur*u0)) ! nastavení hloubky vniku pro startovací material

*set, vdi, pi*hvi/2 ! nastavení poloviny vlnové délky ve vodiči induktoru

*set,vdsm,pi*hvsm/2 ! nastavení poloviny vlnové délky ve vodiči startovacího materiálu

*set,ge,0.001 ! nastavení globalni velikost elementu

*set,prv,3 ! nasobek hloubky vniku pro stanoveni proudove vrstvy

*set,ps,22 !pocet segmentu - zadat

*set,rs,0.00375 !polomer segmentu - zadat

*set,rv,0.003602 !polomer vnitřní segmentu - zadat

*set, vmms, 0.001 !velikost mezery mezi segmenty - zadat

set,dok,ps(2*rs+vmms) !delke obvodu kelimku - vypocita se

*set,rk,dok/(2*pi) !polomer kelimku - vypocita se

*set,umsk,360/ps !uhel mezi stredy kelimku - vypocita se

```
*set,rmsk,2*pi/ps !rad mezi stredy segmentu - vypocita se
```

/title, I = %pr/sqrt(2)%, fr = %fr%, ai = %hvi%, asm = %hvsm%, ! titulek ktery se bude zobraovat v okne

*if,
hvsm/5,GT,0.001,THEN ! nastavení urcite hodnoty (0.001), pokud ma parametr
 hvsm - vyssi hodnotu, nez je pozadovano (0.001)

```
*set, hvsm, 0.001
```

*endif

*if,hvi/5,GT,0.001,THEN ! nastavení urcite hodnoty (0.001), pokud ma parametr hvi - vyssi hodnotu, nez je pozadovano (0.001)

```
*set, hvi, 0.001
*endif
/NOPR
/PMETH,OFF,1
KEYW, PR_SET, 1
KEYW, PR_ELMAG, 1
/GO
!*
!* /PREP7
/units,si
et,1,97,1, ! vsazka
et,2,97,1, ! startovaci material
et,3,97,1, ! medene segmenty
et,4,97,1, ! civka
et,5,97,1, ! medene dno
et,6,97,0, ! vzduch
et,7,97,0, ! izolace
mp,murx,1,1 ! vsazka AL2O3
mp,rsvx,1,1e14 ! vsazka AL2O3
mp,murx,2,1 ! startovaci prvek Al
mp,rsvx,2,rsm ! startovaci prvek AL
mp,murx,3,1 ! segmenty Cu
mp,rsvx,3,rm ! segmenty Cu
mp,murx,4,1 ! civka Cu
mp,rsvx,4,rm ! civka Cu
```

mp,murx,5,1 ! dno Cu mp,rsvx,5,rm ! dno Cu mp,murx,6,1 ! vzduch mp,murx,7,1 ! izolace CYLIND, 0, 0.00375, -0.175, 0.175, 0.360, ! segmenty CYLIND,0,0.00375-hvi*prv,-0.175,0.175,0,360, ! segmenty VGEN, all, , ,0.0314,0,0, , ,1 ! posunuti segmentu na pozici CYLIND,0,0.0265,0,0.072,-8.18,8.18, ! vsazka CYLIND,0,0.0265/2,0,0.072,-8.18,8.18, ! vsazka CYLIND,0,0.0265,0,-hvi*prv,-8.18,8.18, ! medene dno CYLIND,0,0.0265,0.072/2-0.0025,0.072/2+0.0025,-8.18,8.18, ! start mat. TORUS,0.052,0.005-hvi*prv,0.005,-8.18,8.18, ! induktor VGEN, 7,...,0.005,..,1 ! posunuti segmentu na pozici TORUS, 0.052, 0.005-hvi*prv, 0.005, -8.18, 8.18, ! induktor VGEN, ,8,,,,0.025,,,1 ! posunuti segmentu na pozici TORUS,0.052,0.005-hvi*prv,0.005,-8.18,8.18, ! induktor VGEN, 9,...,0.045,..,1 ! posunuti segmentu na pozici TORUS,0.052,0.005-hvi*prv,0.005,-8.18,8.18, ! induktor VGEN, 10,...,0.065,..1 ! posunuti segmentu na pozici !CYLIND,0,0.088,0.125,0.25,-8.18,8.18, ! izolace SPHERE, 2, 0, -8.18, 8.18, vovlap,all numcmp,all /PNUM,VOLU,1 allsel,all vsel,u,.,18 ALLSEL, BELOW, VOLU VPLOT /replot vsel,s,,,10,11 ! vsazka vsel,a,,,14,16 vatt, 1, 1! vybranym oblasstem priradi materialove parametry a element typ vsel,s,,,12 ! vsazka startovaci material vatt,2,,2 vsel,s,,,17 ! segment

vatt,3,,3 vsel,
s,,,2,5!civka vatt,4,,4 vsel,s,,,13 ! dno vatt,5,,5 vsel,s,,,18 ! vzduch vsel,a,,,1 vatt,5,,5 vsel,s,,,6,9 ALLSEL, BELOW, VOLU vdele,all /PNUM,MAT,1 ! barevne odlisi pouzite materialy /REPLOT ALLSEL, ALL vsel,u,,,18 ALLSEL, BELOW, VOLU /ANG,1 /REP,FAST SAVE,EMAG,db ! startovaci material vsel,s,,,12 ! startovaci material ALLSEL, BELOW, VOLU lesize,all,hvsm vsweep,12 ! civka vsel,s,,,2,5 ! civka zavity ALLSEL, BELOW, VOLU lesize,all,hvi vsweep,all ! segment vsel,s,,,17 ! segment ALLSEL, BELOW, VOLU lesize,all,hvi vsweep,17 ! dno

vsel,s,,,13 ! dno ALLSEL, BELOW, VOLU lesize,all,hvi MSHKEY,0 MSHAPE,1,3d VMESH,all !vsazka vsel,s,,,10,11 ! vsazka vsel,a,,,14,16 ALLSEL, BELOW, VOLU vsweep,all !okoli ksel,s,,,100 ksel,a,,,102 kesize,all,0.1 MSHKEY,0 MSHAPE,1,3d VMESH,all allsel,all asel,s,,,13 asel,a,,,19 asel,a,,,25 asel,a,,,31 ALLSEL, BELOW, AREA NSLA,S,1 ! vybere uzly CP,1,VOLT, all ! spoji uzly se stejným potenciálem (nutno udělat pro areu do které se vkládá I) allsel,all /SOL ANTYPE,3 ! vyber analyzy HROPT, FULL ! kompletni analyza HROUT, ON ! vystup analyzy (real+imag) EQSLV,SPAR,1e-008, ! specifikace solveru HARFRQ, fr, fr, ! definuje frekvenční rozsah v harmonické odezvy analýzy. NSUBST,1, ! určuje počet dílčích kroků KBC,0 ! typ interpolace

asel, s., 12 ! casti pri vnitrnim vnejsku asel,a,,,18 asel,a,,,24 asel,a,,,30 asel,a,.,56 asel,a,.,57 asel,a,,,51 asel,a,,,52 DA,all,VOLT,0,0 ! Definuje DOF omezení na oblasti. allsel,all FK,95,AMPS,pr,0 ! prirazeni proudu klicovemu bodu FK,71,AMPS,pr,0 FK,63,AMPS,pr,0 FK,47,AMPS,pr,0 asel, s., 32 ! vyber vnejsi skorapky DA,all,AX,0,0, ! nastaveni vektoroveho potencialu ve smeru x DA,all,AY,0,0, ! nastaveni vektoroveho potencialu ve smeru y DA,all,AZ,0,0, ! nastaveni vektoroveho potencialu ve smeru z allsel.all asel, s, 10, 11 ! vnitrni steny induktoru asel,a,,,16,17 ! vnitrni steny induktoru asel,a,,,22,23 ! vnitrni steny induktoru asel,a,,,28,29 ! vnitrni steny induktoru asel,a,,,3,6 ! vnitrni steny segmentu DA,all,AX,0,0, ! nastaveni vektoroveho potencialu ve smeru x DA,all,AY,0,0, ! nastaveni vektoroveho potencialu ve smeru v DA,all,AZ,0,0, ! nastaveni vektoroveho potencialu ve smeru z allsel,all asel, s., 45 ! vyber jedne strany komplet ze ktere budeme vkladat proud asel,a,,,50 asel,a,,,61 asel,a,,,66 asel,a,.,68 asel,a,,,73 asel,a,,,13

asel,a,,,19 asel,a,,,25 asel,a,,,31 asel,a,,,57 asel,a,,,52 DA, all, ASYM ! vytvořit antisymetrie omezení pro non-FLOTRAN modely allsel,all asel,s,,,12 asel,a,,,18 asel,a,,,24 asel,a,,,30 asel,a,,,44 asel,a,,,51 asel,a,,,49 asel,a,,,56 asel,a,,,60 asel,a,,,69 asel,a,,,65 asel,a,,,72 DA,all,ASYM allsel,all lsel,s,,,150 lsel,a,,,132 lsel,a,,,32 lsel,a,,,124 lsel,a,,,151 DL,all,,AX,0,0, DL,all,,AY,0,0, DL,all,,AZ,0,0, allsel,all solve FINISH /POST1 SET,1,LAST,1,0, , , !PLNSOL,A,SUM,0

PLNSOL,H,SUM,0 /VIEW, 1 ,,1 /ANG, 1 /REP,FAST SAVE,EMAG,db