
o-
USING 3D GEOMETRIC CONSTRAINTS IN ARCHITECTURAL
DESIGN SUPPORT SYSTEMS

B. de Vries a, A.J. Jessurun a, R.H.M.C. Kelleners b

a Department of Architecture, Building and Planning, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands

b VDO Car Communication, Navigation Lab. Eindhoven, Glaslaan 2, 5616 LW Eindhoven, The Netherlands

ABSTRACT

To support 3D architectural modeling, geometric constraints are introduced. Explicit and implicit geomet-
ric relations between building elements can be expressed by the designer and imposed on the 3D geometry
of the design. A complete set of constraint types is defined. Constraints are satisfied through Numerical
Methods to achieve that the model responds to the designers’ actions in a user-intuitive way. Two prot
type systems demonstrate the application of geometric constraints in the architectural domain.

Keywords: CAD, Geometric constraints, Design systems

1 INTRODUCTION cally high level. The concept of geometric con-

g
-

ch

ed

.g.

.
Most traditional CAD systems developed from 2D
drawing systems to 3D drawing systems, lacking
appropriate tools for 3D design. One would expect a
3D architectural design system to have a 3D-design
environment with knowledge about the designed
entities. Such a 3D-design environment supports the
creation and manipulation of 3D shapes. The design
environment should essentially be 3D as opposite to
the well-known Windows environment with its
menu-structured interface. Navigating and manipu-
lating in 3D requires 3D geometrical primitives, but
also a set of 3D design tools. It seems obvious that
these tools differ from traditional CAD aids such as
grid and snap.

This article introduces geometric constraints as a
solution for adding geometric design knowledge to
an architectural design support system*. The kind of
geometric design knowledge that is required is
directly deduced from the design operations that are
performed. The design operations are limited to con-
ceptual design. Geometric constraints can be
expressed as part of the design model on a semanti-

straints has been tested in two prototype design
systems. The theoretical background for constraint
management as well as the application in architec-
tural design is reported in this article.

The outline of the article is as follows. In the next
section geometric constraints are introduced and
elaborated. In the third section the constraint solvin
process is considered. In the fourth section two pro
totype systems are presented that demonstrate the
possible use of geometric constraints. In the final
section some conclusions are draw from the resear
and proposals are made for future research.

2 GEOMETRIC CONSTRAINTS

In general, geometric relationships can be express
using some formal specification languages like
Express [ISO/TC184], UML [Odell98] or the so-
called Feature-Type definition language
[Leeuwen99]. In architectural design user require-
ments are often described as functional relations (e
the wall must bear the floor). Many functional rela-
tions can be expressed as geometric relations (e.g
bottom of the floor should coincide with top of the
wall).* The research presented on geometric modeling is

executed within the framework of the development of a
Virtual Reality – Design Information System [Vries97]

 x
y,
y

g

-

d-
o
ld

-

In this article we argue that if we can formalize geo-
metric relationships of building elements then behav-
ior of the design system is more natural. Natural
behavior in this context means that the model
responds to the designer’s expectations. Moreover,
geometric constraints should be accessible using a
vocabulary that is close to the designers’ natural lan-
guage.
In the following we will develop formally a system
for expressing and solving geometric constraints.

2.1 Interval constraints
The formal geometric specifications we developed
are based on Allen’s temporal interval algebra
[Allen93]. Allen recognizes five basic relationships:
ahead, front-touch, in, back-touch and behind.
Assuming that a geometry can be projected on each
of the x-, y- and z-axis, the projection is called an

interval. From that thirteen interval-interval relations
can be derived: x before y, x meets y, x overlaps y,
finished-by y, x contains y, x started-by y, x equals
x starts y, x contained-in y, x finishes y, x overlap-b
y, x met-by y and x after y. At this point we assume
that a building element is represented by a boundin
box (see Figure 1). The consequences of this
assumption will be discussed in the last section.

As a result the spatial relationship of two building
elements can be expressed as interval-interval rela
tions. In turn, these relations can be expressed as
numerical equations.
To introduce the use of interval constraints on boun
ing boxes an example will be worked out in 2D t
express that two bounding boxes B1 and B2 shou
meet each other.

Specification of the size of box B1 along the x-axis
(see Figure 1):

B1x.e > B1x.b

B1x.e - B1x.b = 3

Similarly the size is specified along the y- and z-axis.
Here, B1x.b denotes the beginning of the interval of
box B1 along the x-axis. The length of the box is
fixed at 3 units.

Specifying that box B1 meets box B2:
B1y.e > B1y.b

B2y.e > B2y.b

B1y.e = B2y.b

In general, the geometric constraints can be depicted
in the equations:

A1 v = c1
A2 v > c2
vxi > 0, vyi > 0, vzi > 0

A1 and A2 are matrices of size m1 3 n, and m2 3 n,
where m1 equals the number of equalities and m2
equals the number of inequalities. Vector v contains
all x-, y-, z-coordinates of the intervals of box i, i =
1..n. c1 and c2 are the right hand sides written as a
column vector having size m1 respectively m2. As
precondition all coordinates are assumed to be non
negative.

2.2 Constraint types

The following geometric constraint types can be
deduced from the spatial constraint and the access

Figure 1: Interval constraints

B1x.e

B1x.bB1y.b

B2y.b

B1y.e

B2y.e

X

Z

Y

constraint of the case study:
• Unary constraints to limit the shape of a box, in

particular, the position and the dimensions of a
box: FixPosition, Dimension.

• Binary constraints to specify relations between
two boxes, in particular, connections, distances

and intersection relations: Touch, Align, Dis-
tance, LatDistance, Contains, NonIntersect.

A summary adapted from [Kelleners99] of the con-
straints types is listed below:

Touch(BB b1, BB b2, Axis a)

Align(BB b1, BB b2, Axis a, int n)

{Min/Max}OppDistance(BB b1, BB b2, Axis a, float d)

{Min/Max}LatDistance(BB b1, BB b2, Axis a, float d)

FixPosition(BB b, Point p)
The constraint dictates that the center point of bounding box b must be equal to the specified
point p.

{Min/Max/Fix}Dimension(BB b, LocAxis ax, float x)
The constraint MinDimension dictates that dimension ax of bounding box b must be at least
value x. The constraint MaxDimension dictates that dimension ax must be at most value x. The
constraint FixDimension dictates that dimension ax must be equal to value x.

NonIntersect
This constraint dictates that the two boxes b1 and b2 may not intersect

The constraint dictates that the farther side of the box
b1 (seen from the origin) must touch the closer side of
box b2 on axis a.

Figure 2: Touch constraint

The constraint dictates the operand b1 should be
aligned with operand b2 on axis a. The integer n indi-
cates that the closer sides of the boxes (seen from the
origin) must be aligned or the farther sides must be
aligned.

Figure 3: Align constraint

The constraint dictates the operand b1 should be
aligned with operand b2 on axis a. The integer n indi-
cates that the closer sides of the boxes (seen from the
origin) must be aligned or the farther sides must be
aligned.

Figure 4: Align constraint

The constraint dictates that operand b1 should have
lateral distance d to operand b2. The sides of the
boxes that are the closest to the origin on axis a have
distance d, moreover b1 is closer to the origin than
b2. Min and Max variants can be used to specify min-
imum and maximum distances.

Figure 5: LatDistance constraint

B1

B2

B1

B2

B1 B2

B1

B2

e

g
e

n

ec-
l

s

n
 as

-
n-

e

n
Contains(BB b1, BB b2)

3 CONSTRAINT SATISFACTION

First we tried to solve the set of equations using Lin-
ear Programming [7] techniques. Looking at the
example of section Interval constraints first a set of
so-called auxiliary variables was introduced such
that the example could be rewritten into a form con-
taining only equalities:

B1x.b - B1x.e + aux1 = 0

B1x.e - B1x.b = 3

B1y.b - B1y.e + aux2 = 0

B2y.b - B2y.e + aux3 = 0

B1y.e = B2y.b

The objective function in this case was:
minimize f(x) = B1x.b + B1x.e + B1y.b

+ B1y.e + B1z.b + B1z.e + B2x.b +

B2x.e + B2y.b + B2y.e + B2z.b + B2z.e

Obviously to find a solution for the example the
intervals must be specified in x-, y- and z-direction
(m1 = 3) for the two boxes (m2 = 2), the size (m3 = 2),
and the meeting conditions (m4 = 3), resulting in 3 3
2 3 2 1 3 equations. Likewise, the objective func-
tion consists of 3 3 2 3 3 variables.

In general Linear Programming is concerned with the
problem of optimizing an objective function that is
subject to the primary constraints. A well-known
method that suits this purpose is the Simplex
[Press92] method. The Simplex method may result in
the following states:
• No solution is found.

In this case the model is over-constrained. This
means that all possible solutions exclude each
other.

• Exactly one solution is found.
In this case the objective function reaches a mini-
mum at exactly one set of values that satisfies the
constraints, the so-called optimal feasible vector.

• An infinite set of solutions is found.
In this case the model is under-constrained. This
means that the objective function reaches its min-
imum for an infinite set of feasible vectors.

When no solution is found, it is rather difficult to

determine which constraint(s) should be relaxed to
find at least one solution. A set of solutions could b
interesting if the number in the set is limited and if
the designer is allowed to browse through the set.
Limiting the set could be accomplished by searchin
only for solutions that are on the intersections of th
contours of the solution space. Still it is hard to
explain the meaning of these feasible solutions in a
architectural design context. By experimenting with
the Simplex method we found that the solutions did
not relate at all to the designers intentions and exp
tations. The solution largely depended on the initia
situation. Moreover, a minor change may lead to a
completely different solution. This new solution,
though correct with respect to the constraints, was
hard for the designer to understand since it deviate
greatly from the previous situation.

Our conclusion was that we had to look for a solutio
method that searches for a solution that is as close
possible to the former situation (see also
[Gleicher94]).
If the system of interval constraints that is rewritten
to a set of linear equations and inequalities is repre
sented as follows (compare with section Interval co
straints):

A1 x = b1
A2 x > b2

then this can be achieved by minimizing the chang
of each variable of vector x. It leads the following
objective function:

minimize f(x) = ½ || x - xc ||
2

dictating that the ‘distance’ between the new solutio
x and the old solution xc should be as little as possi-
ble.

The equality constraints of A1 were solved using the
conjugate gradient method (see [Press92]), which
minimizes the function:

f(x) = ½ x A1 x – b x
where A1 is symmetric and positive definite.
This function is minimized with its gradient:

∇ f = A1 x – b

The following heuristic was applied for the inequal-
ity constraints of A2. A set of inequalities constraints

This constraint dictates that box b1 contains box b2.

Figure 6: Contain constraint

B1

B2

r

a
y

-
ir

-

-
s

ort
av-

ed

ine
e
o-
is treated as active and there is a set that is treated as
inactive. Active constraints of A2 are added to the
matrix A1. The inactive constraints are ignored as far
as solving is concerned. The set of active and inac-
tive constraints is updated as the conjugate gradient
method is iterating towards a minimum. Which ine-
qualities should be active and which inactive is deter-
mined while checking their validity.

Again, the three solution situations may occur, start-
ing from some constellation of the boxes in space:
• No solution is found.

In this case the ‘average’ position is reached since
minimizing a quadratic objective function will
always iterate to some value. Thus, despite the
fact that theoretically there is no solution, the
‘average’ solution is displayed. The ‘average’
solution appears to be very close the users expec-
tations.
This situation is illustrated by two boxes B1 and
B2 that are placed on a plane within a certain dis-
tance of each other and that have two parallel
sides S1 and S2. If the position and all dimen-
sions of both B1 and B2 are constrained and
moreover a Touch constraint is added to S1 and
S2, then there is no solution. In this situation the
Touch constraint will be violated, consequently
B1 and B2 stay in place. The explanation for this
outcome is that the constraint solving mechanism
will stop at that point where constraint violations
and changes of positions and dimensions are min-
imal.

• Exactly one solution is found.
This is rarely the case since it means that the
designer has added the number of constraints that
is exactly equal to the number required to find
one solution.

• Infinite set of solutions is found.
In this situation the closest solution on the edge
of the solution space starting from the former sit-
uation is reached. This system behavior appears
to be very intuitive.
This situation is illustrated by two boxes B1 and
B2 that are placed on a plane within a certain dis-
tance of each other and that have two parallel
sides S1 and S2. If only a Touch constraint is
added to S1 and S2, then the post condition is that
S1 and S2 should meet and that B1 and B2 can be
located anywhere on the plane. This situation is
resolved by moving B1 and B2 over an equal
minimal distance to achieve that S1 and S2 meet.

4 APPLICATION IN ARCHITECTURAL
DESIGN

4.1 Design constraints
We learned from the case study [Achten98] that

designers and users express their intent on a highe
level of abstraction than geometrical constraints.
That is, they use explicit and implicit relationships
between building elements. Therefore, we defined
set of so-called design constraints at a semanticall
higher level using the geometrical constraints:
1 Building_Element_A adjacent to

Building_Element_B
This relation will be implemented using the
Touch constraint. The axis along which the build
ing elements must touch is determined from the
current position.

2 Building_Element_A in Building_Element_B
This relation is implemented using the Contain
constraint.

3 Building_Element_A above
Building_Element_B
This relation is implemented using the Touch
constraint. The axis along which the building ele
ments touch is always the Z axis.

4 Building_Element_A aligns Building Element_B
This relation is implemented using the Align con
straint and the LatDistance constraint. The side
of the building elements that need to be aligned
must be specified respectively.

Two prototype applications have been developed
using these design constraints, namely one to supp
space studies in 3D and one to investigate the beh
ior of geometrical constrained building elements. In
both prototypes, constraints are imposed and revok
by adding or deleting the appropriate commands
using file input or by user input.

4.2 Space study prototype
The space study prototype was developed to exam
whether spatial layout and mass study in 3D can b
supported by design constraints. Note that the prot
type system does not contain an optimization algo-
rithm for spatial layout as in [Medjdoub98]. The
system serves as a method for positioning and

dimensioning spaces in a 3D environment.

Only the adjacent and the above constraint are used
in this prototype. Spaces are presented in 3D by
transparent boxes. To obtain visual input about the
activity that will take place in a space, an icon repre-
senting that activity is located in the center of the
transparent space (e.g. a sofa). In our experience, the
best way to work with the system is to first specify
the constraints that directly follow from the func-
tional brief of the building (e.g. the garage must be
next to the kitchen). The user of the system manually
triggers the constraint solving process. Next, addi-
tional constraints are entered by the designer when-
ever he/she feels that a specific ordering of spaces
should be kept intact during the design session.

Spaces can be pinned to a specific position (i.e. acti-
vating the FixPosition constraint) and dimensions
can be fixed (i.e. activating the Dimensions con-
straint) using a toggle switch. The designer can add
and relax these constraints to obtain a situation he/
she is satisfied with.

4.3 Building element behavior prototype

The building element behavior prototype was devel-
oped to examine whether a building concept consist-
ing of building elements can behave intuitively when
the positions an dimensions of each building element
are modified individually.

In this prototype all types of design constraints are
used. The designer can dynamically stretch the room
while all walls stay connected. The floor will resize
accordingly. Moreover, the size and location of the
window in the wall can be changed. It will stay
within a minimum distance from the end of the wall
and it cannot be dragged outside of the wall. Inside

the room a box representing furniture can be moved
around the floor without getting detached from the
floor. Thus, new solutions that obey the geometric
constraints are calculated while changing the geome-
try by pushing and pulling. Since this all happens in a
3D environment the user can walk around the model
or go inside the room to get a better view.

Figure 7: Space study prototype

Figure 8: Building element behaviour prototype

y
g

try
g a
w-

-

l
s

es

h

-
r-

-
-

5 CONCLUSIONS AND VENUES FOR
FUTURE RESEARCH

This paper was to present the results of a research
project that aimed the use of geometric constraints
for support of architectural design. A set of constraint
types was defined to express explicit and implicit
geometric relations between building elements. A
constraint satisfaction technique based on Linear
Programming was introduced to achieve that the
design support system responds in accordance with
the users’ expectations. To examine and demonstrate
the application of geometric constraints in a 3D envi-
ronment two prototype systems were developed.
Simple experiments with the prototype systems indi-
cate that the proposed design constraints serve the
design operations as expected.

Geometric constraints are a powerful concept for
capturing specific design knowledge. Still several
limitations of the current prototype systems have to
be overcome and some fundamental issues need to be
solved.

In the described geometric constraint solving mecha-
nism the bounding box plays a central role. Although
many building elements fit a bounding box quite well
(e.g. wall, floor), it imposes limitations on architec-
tural design, such as:
• Walls, floors, etc. can only meet perpendicular.
• Curved walls, roofs etc. cannot be represented

adequately.
• Caved structures cause modeling problems (e.g. a

chair cannot be moved under a table).
Thus, bounding boxes suit well for an important cate-
gory of building elements, but for non-rectangular
shapes, a different strategy must be developed.

The graphical user interface of the prototype system
does not allow yet the direct creation and manipula-
tion of design constraints. A graphical representation
of constraints gives the user better control of the
design and its behavior. Widgets should allow the
user to interactively attach and detach constraints
appropriate for the building element at hand.
The performance of the prototype systems decreases
rapidly with an increasing number of constraints. The
complete set of equations is currently solved when a
system event that signals a change in the position of
one of the bounding boxes is raised. The constraint
solving algorithm could be optimized by recalculat-
ing only local changes.

A more fundamental question is which design
knowledge should be represented by constraints. In
general static and procedural knowledge can be
described by any formalism such as Object Oriented
Modeling, Rule Based Design, etc. In the VR-DIS

program, for the time being, we have chosen to rel
on the expressive power of Feature-Based Modelin
[Leeuwen99]. If FBM does not suffice we will use
constraints. This rather arbitrary choice was made
because computing the Feature Model takes less
computational power than dynamically calculating
constraints. As with a natural language, there are
many ways to express a design, but all with a
(slightly) different meaning. In due time description
styles will emerge supporting the designers’ intent.

Implementing a design system prototype immedi-
ately raises questions about user access to geome
data. There seems to be a trade off between havin
complete and consistent set of design data and allo
ing a designer to freely edit geometry. The underly
ing question however, is how user interaction with
the design at the building element description leve
should be communicated with the drawing primitive
level.

We hope to report on the solution to these challeng
in future publications.

6 ACKNOWLEDGEMENTS

This research project is part of the VR-DIS researc
program of the Design Systems Group. We would
like to thank the Computer Graphics Group of Com
puting Science Department of the Eindhoven Unive
sity of Technology for their collaboration.

7 REFERENCES

[Achten98] Achten, H.H., and J.P. van Leeuwen, A
Feature-Based Technique for Design Pro-
cesses: A Case Study, Proceedings of the 4th
Conference on Design and Decision Support
Systems in Architecture and Urban Planning,
Maastricht, The Netherlands, 1998.

[Allen93] Allen, F., Maintaining knowledge about
temporal intervals, Commun. ACM, 26(11)
pp. 832-843, 1993.

[Gleiger94] Gleicher, M., and A. Witkin, Drawing
with constraints, The Visual Computer, 11(1),
pp. 39-51, 1994.

[ISO/TC184] ISO/TC184, Description methods: the
EXPRESS language reference manual, ISO
TC184/SC4 10303 part 11, International Orga
nization for Standardization, Geneva, Switzer
land, 1992.

[Kelleners99] Kelleners, R.H.M.C., Constraints in
Object-Oriented Graphics, Thesis Eindhoven
University of Technology, Eindhoven, The
Netherlands, 1999.

[Leeuwen99] Leeuwen, J.P., Modelling Architectural

Design Information by Features, Thesis Eind-
hoven University of Technology, Eindhoven,
The Netherlands, 1999.

[Medjdoub98] Medjdoub, B., and B. Yannou, Topo-
logical Enumeration Heuristics in Constraint-
Based Space Layout Planning, in: Proceedings
of Artificial Intelligence in Design ’98, Lisbon,
Portugal, 1998.

[Odell98] Odell, J.J., Advanced object-oriented analy-
sis and design using UML, Cambridge Univer-
sity Press, Cambridge, 1998.

[Press92] W.H. Press, S.A. Teukolsky, W.T. Vetterling
and B.P. Flannery, Numerical recipes in C: the
art of scientific computing, 2nd ed., Cambridge
University Press, Cambridge, 1992.

[Vries97] Vries, B., de, VR-DIS Research program,
Internal report Faculty of Architecture and
Building, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands, 1997.

	Using 3D Geometric Constraints in Architectural Design Support Systems
	B. de Vries a, A.J. Jessurun a, R.H.M.C. Kelleners b
	a Department of Architecture, Building and Planning, Eindhoven University of Technology, P.O. Box...

	Abstract

	1 Introduction
	2 Geometric constraints
	2.1 Interval constraints
	Figure 1: Interval constraints

	2.2 Constraint types

	FixPosition(BB b, Point p)
	{Min/Max/Fix}Dimension(BB b, LocAxis ax, float x)
	NonIntersect
	Touch(BB b1, BB b2, Axis a)
	Align(BB b1, BB b2, Axis a, int n)
	{Min/Max}OppDistance(BB b1, BB b2, Axis a, float d)
	{Min/Max}LatDistance(BB b1, BB b2, Axis a, float d)
	Contains(BB b1, BB b2)
	3 Constraint Satisfaction
	4 Application in architectural design
	4.1 Design constraints
	1 Building_Element_A adjacent to Building_Element_B
	2 Building_Element_A in Building_Element_B
	3 Building_Element_A above Building_Element_B
	4 Building_Element_A aligns Building Element_B

	4.2 Space study prototype
	Figure 7: Space study prototype

	4.3 Building element behavior prototype
	Figure 8: Building element behaviour prototype

	5 Conclusions and venues for future research
	6 Acknowledgements
	7 References
	[Achten98] Achten, H.H., and J.P. van Leeuwen, A Feature-Based Technique for Design Processes: A ...
	[Allen93] Allen, F., Maintaining knowledge about temporal intervals, Commun. ACM, 26(11) pp. 832-...
	[Gleiger94] Gleicher, M., and A. Witkin, Drawing with constraints, The Visual Computer, 11(1), pp...
	[ISO/TC184] ISO/TC184, Description methods: the EXPRESS language reference manual, ISO TC184/SC4 ...
	[Kelleners99] Kelleners, R.H.M.C., Constraints in Object-Oriented Graphics, Thesis Eindhoven Univ...
	[Leeuwen99] Leeuwen, J.P., Modelling Architectural Design Information by Features, Thesis Eindhov...
	[Medjdoub98] Medjdoub, B., and B. Yannou, Topological Enumeration Heuristics in Constraint- Based...
	[Odell98] Odell, J.J., Advanced object-oriented analysis and design using UML, Cambridge Universi...
	[Press92] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in C: ...
	[Vries97] Vries, B., de, VR-DIS Research program, Internal report Faculty of Architecture and Bui...

