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ABSTRACT

To support 3D architectural modeling, geometric constraints are introduced. Explicit and implicit geomet-
ric relations between building elements can be expressed by the designer and imposed on the 3D geometry 
of the design. A complete set of constraint types is defined. Constraints are satisfied through Numerical 
Methods to achieve that the model responds to the designers’ actions in a user-intuitive way. Two prot
type systems demonstrate the application of geometric constraints in the architectural domain.
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Most traditional CAD systems developed from 2D 
drawing systems to 3D drawing systems, lacking 
appropriate tools for 3D design. One would expect a 
3D architectural design system to have a 3D-design 
environment with knowledge about the designed 
entities. Such a 3D-design environment supports the 
creation and manipulation of 3D shapes. The design 
environment should essentially be 3D as opposite to 
the well-known Windows environment with its 
menu-structured interface. Navigating and manipu-
lating in 3D requires 3D geometrical primitives, but 
also a set of 3D design tools. It seems obvious that 
these tools differ from traditional CAD aids such as 
grid and snap.

This article introduces geometric constraints as a 
solution for adding geometric design knowledge to 
an architectural design support system*. The kind of 
geometric design knowledge that is required is 
directly deduced from the design operations that are 
performed. The design operations are limited to con-
ceptual design. Geometric constraints can be 
expressed as part of the design model on a semanti-

straints has been tested in two prototype design 
systems. The theoretical background for constraint
management as well as the application in architec-
tural design is reported in this article.

The outline of the article is as follows. In the next 
section geometric constraints are introduced and 
elaborated. In the third section the constraint solvin
process is considered. In the fourth section two pro
totype systems are presented that demonstrate the
possible use of geometric constraints. In the final 
section some conclusions are draw from the resear
and proposals are made for future research.

2 GEOMETRIC CONSTRAINTS

In general, geometric relationships can be express
using some formal specification languages like 
Express [ISO/TC184], UML [Odell98] or the so-
called Feature-Type definition language 
[Leeuwen99]. In architectural design user require-
ments are often described as functional relations (e
the wall must bear the floor). Many functional rela-
tions can be expressed as geometric relations (e.g
bottom of the floor should coincide with top of the 
wall).*  The research presented on geometric modeling is 

executed within the framework of the development of a 
Virtual Reality – Design Information System [Vries97]
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In this article we argue that if we can formalize geo-
metric relationships of building elements then behav-
ior of the design system is more natural. Natural 
behavior in this context means that the model 
responds to the designer’s expectations. Moreover, 
geometric constraints should be accessible using a 
vocabulary that is close to the designers’ natural lan-
guage.
In the following we will develop formally a system 
for expressing and solving geometric constraints.

2.1  Interval constraints
The formal geometric specifications we developed 
are based on Allen’s temporal interval algebra 
[Allen93]. Allen recognizes five basic relationships: 
ahead, front-touch, in, back-touch and behind. 
Assuming that a geometry can be projected on each 
of the x-, y- and z-axis, the projection is called an 

interval. From that thirteen interval-interval relations
can be derived: x before y, x meets y, x overlaps y,
finished-by y, x contains y, x started-by y, x equals 
x starts y, x contained-in y, x finishes y, x overlap-b
y, x met-by y and x after y. At this point we assume
that a building element is represented by a boundin
box (see Figure 1). The consequences of this 
assumption will be discussed in the last section.

As a result the spatial relationship of two building 
elements can be expressed as interval-interval rela
tions. In turn, these relations can be expressed as 
numerical equations.
To introduce the use of interval constraints on boun
ing boxes an example will be worked out in 2D t
express that two bounding boxes B1 and B2 shou
meet each other.

Specification of the size of box B1 along the x-axis 
(see Figure 1):

B1x.e > B1x.b

B1x.e - B1x.b = 3

Similarly the size is specified along the y- and z-axis.
Here, B1x.b denotes the beginning of the interval of 
box B1 along the x-axis. The length of the box is 
fixed at 3 units.

Specifying that box B1 meets box B2:
B1y.e > B1y.b

B2y.e > B2y.b

B1y.e = B2y.b

In general, the geometric constraints can be depicted 
in the equations:

A1 v = c1
A2 v > c2
vxi > 0, vyi > 0, vzi > 0

A1 and A2 are matrices of size m1 3 n, and m2 3 n, 
where m1 equals the number of equalities and m2 
equals the number of inequalities. Vector v contains 
all x-, y-, z-coordinates of the intervals of box i, i = 
1..n. c1 and c2 are the right hand sides written as a 
column vector having size m1 respectively m2. As 
precondition all coordinates are assumed to be non
negative.

2.2  Constraint types

The following geometric constraint types can be 
deduced from the spatial constraint and the access

Figure 1: Interval constraints
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constraint of the case study:
• Unary constraints to limit the shape of a box, in 

particular, the position and the dimensions of a 
box: FixPosition, Dimension.

• Binary constraints to specify relations between 
two boxes, in particular, connections, distances 

and intersection relations: Touch, Align, Dis-
tance, LatDistance, Contains, NonIntersect.

A summary adapted from [Kelleners99] of the con-
straints types is listed below:

Touch(BB b1, BB b2, Axis a)

Align(BB b1, BB b2, Axis a, int n)

{Min/Max}OppDistance(BB b1, BB b2, Axis a, float d)

{Min/Max}LatDistance(BB b1, BB b2, Axis a, float d)

FixPosition(BB b, Point p)
The constraint dictates that the center point of bounding box b must be equal to the specified 
point p.

{Min/Max/Fix}Dimension(BB b, LocAxis ax, float x)
The constraint MinDimension dictates that dimension ax of bounding box b must be at least 
value x. The constraint MaxDimension dictates that dimension ax must be at most value x. The 
constraint FixDimension dictates that dimension ax must be equal to value x.

NonIntersect
This constraint dictates that the two boxes b1 and b2 may not intersect

The constraint dictates that the farther side of the box 
b1 (seen from the origin) must touch the closer side of 
box b2 on axis a.

Figure 2: Touch constraint

The constraint dictates the operand b1 should be 
aligned with operand b2 on axis a. The integer n indi-
cates that the closer sides of the boxes (seen from the 
origin) must be aligned or the farther sides must be 
aligned.

Figure 3: Align constraint

The constraint dictates the operand b1 should be 
aligned with operand b2 on axis a. The integer n indi-
cates that the closer sides of the boxes (seen from the 
origin) must be aligned or the farther sides must be 
aligned.

Figure 4: Align constraint

The constraint dictates that operand b1 should have 
lateral distance d to operand b2. The sides of the 
boxes that are the closest to the origin on axis a have 
distance d, moreover b1 is closer to the origin than 
b2. Min and Max variants can be used to specify min-
imum and maximum distances.

Figure 5: LatDistance constraint
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Contains(BB b1, BB b2)

3 CONSTRAINT SATISFACTION

First we tried to solve the set of equations using Lin-
ear Programming [7] techniques. Looking at the 
example of section Interval constraints first a set of 
so-called auxiliary variables was introduced such 
that the example could be rewritten into a form con-
taining only equalities:

B1x.b - B1x.e + aux1 = 0

B1x.e - B1x.b = 3

B1y.b - B1y.e + aux2 = 0

B2y.b - B2y.e + aux3 = 0

B1y.e = B2y.b

The objective function in this case was:
minimize f(x) = B1x.b + B1x.e + B1y.b 

+ B1y.e + B1z.b + B1z.e + B2x.b + 

B2x.e + B2y.b + B2y.e + B2z.b + B2z.e

Obviously to find a solution for the example the 
intervals must be specified in x-, y- and z-direction 
(m1 = 3) for the two boxes (m2 = 2), the size (m3 = 2), 
and the meeting conditions (m4 = 3), resulting in 3 3 
2 3 2 1 3 equations. Likewise, the objective func-
tion consists of  3 3 2 3 3 variables.

In general Linear Programming is concerned with the 
problem of optimizing an objective function that is 
subject to the primary constraints. A well-known 
method that suits this purpose is the Simplex 
[Press92] method. The Simplex method may result in 
the following states:
• No solution is found.

In this case the model is over-constrained. This 
means that all possible solutions exclude each 
other.

• Exactly one solution is found.
In this case the objective function reaches a mini-
mum at exactly one set of values that satisfies the 
constraints, the so-called optimal feasible vector.

• An infinite set of solutions is found.
In this case the model is under-constrained. This 
means that the objective function reaches its min-
imum for an infinite set of feasible vectors.

When no solution is found, it is rather difficult to 

determine which constraint(s) should be relaxed to
find at least one solution. A set of solutions could b
interesting if the number in the set is limited and if 
the designer is allowed to browse through the set. 
Limiting the set could be accomplished by searchin
only for solutions that are on the intersections of th
contours of the solution space. Still it is hard to 
explain the meaning of these feasible solutions in a
architectural design context. By experimenting with
the Simplex method we found that the solutions did
not relate at all to the designers intentions and exp
tations. The solution largely depended on the initia
situation. Moreover, a minor change may lead to a 
completely different solution. This new solution, 
though correct with respect to the constraints, was
hard for the designer to understand since it deviate
greatly from the previous situation.

Our conclusion was that we had to look for a solutio
method that searches for a solution that is as close
possible to the former situation (see also 
[Gleicher94]). 
If the system of interval constraints that is rewritten
to a set of linear equations and inequalities is repre
sented as follows (compare with section Interval co
straints):

A1 x = b1
A2 x > b2

then this can be achieved by minimizing the chang
of each variable of vector x. It leads the following 
objective function:

minimize f(x) = ½ || x - xc || 
2

dictating that the ‘distance’ between the new solutio
x and the old solution xc should be as little as possi-
ble.

The equality constraints of A1 were solved using the 
conjugate gradient method (see [Press92]), which 
minimizes the function:

f(x) = ½ x A1 x – b x
where A1 is symmetric and positive definite.
This function is minimized with its gradient:

∇ f = A1 x – b

The following heuristic was applied for the inequal-
ity constraints of A2. A set of inequalities constraints 

This constraint dictates that box b1 contains box b2.

Figure 6: Contain constraint
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is treated as active and there is a set that is treated as 
inactive. Active constraints of A2 are added to the 
matrix A1. The inactive constraints are ignored as far 
as solving is concerned. The set of active and inac-
tive constraints is updated as the conjugate gradient 
method is iterating towards a minimum. Which ine-
qualities should be active and which inactive is deter-
mined while checking their validity.

Again, the three solution situations may occur, start-
ing from some constellation of the boxes in space:
• No solution is found.

In this case the ‘average’ position is reached since 
minimizing a quadratic objective function will 
always iterate to some value. Thus, despite the 
fact that theoretically there is no solution, the 
‘average’ solution is displayed. The ‘average’ 
solution appears to be very close the users expec-
tations.
This situation is illustrated by two boxes B1 and 
B2 that are placed on a plane within a certain dis-
tance of each other and that have two parallel 
sides S1 and S2. If the position and all dimen-
sions of both B1 and B2 are constrained and 
moreover a Touch constraint is added to S1 and 
S2, then there is no solution. In this situation the 
Touch constraint will be violated, consequently 
B1 and B2 stay in place. The explanation for this 
outcome is that the constraint solving mechanism 
will stop at that point where constraint violations 
and changes of positions and dimensions are min-
imal. 

• Exactly one solution is found.
This is rarely the case since it means that the 
designer has added the number of constraints that 
is exactly equal to the number required to find 
one solution.

• Infinite set of solutions is found.
In this situation the closest solution on the edge 
of the solution space starting from the former sit-
uation is reached. This system behavior appears 
to be very intuitive.
This situation is illustrated by two boxes B1 and 
B2 that are placed on a plane within a certain dis-
tance of each other and that have two parallel 
sides S1 and S2. If only a Touch constraint is 
added to S1 and S2, then the post condition is that 
S1 and S2 should meet and that B1 and B2 can be 
located anywhere on the plane. This situation is 
resolved by moving B1 and B2 over an equal 
minimal distance to achieve that S1 and S2 meet.

4 APPLICATION IN ARCHITECTURAL 
DESIGN

4.1  Design constraints
We learned from the case study [Achten98] that 

designers and users express their intent on a highe
level of abstraction than geometrical constraints. 
That is, they use explicit and implicit relationships 
between building elements. Therefore, we defined 
set of so-called design constraints at a semanticall
higher level using the geometrical constraints:
1 Building_Element_A adjacent to 

Building_Element_B
This relation will be implemented using the 
Touch constraint. The axis along which the build
ing elements must touch is determined from the
current position.

2 Building_Element_A in Building_Element_B
This relation is implemented using the Contain 
constraint.

3 Building_Element_A above 
Building_Element_B
This relation is implemented using the Touch 
constraint. The axis along which the building ele
ments touch is always the Z axis.

4 Building_Element_A aligns Building Element_B
This relation is implemented using the Align con
straint and the LatDistance constraint. The side
of the building elements that need to be aligned
must be specified respectively.

Two prototype applications have been developed 
using these design constraints, namely one to supp
space studies in 3D and one to investigate the beh
ior of geometrical constrained building elements. In
both prototypes, constraints are imposed and revok
by adding or deleting the appropriate commands 
using file input or by user input. 

4.2  Space study prototype
The space study prototype was developed to exam
whether spatial layout and mass study in 3D can b
supported by design constraints. Note that the prot
type system does not contain an optimization algo-
rithm for spatial layout as in [Medjdoub98]. The 
system serves as a method for positioning and 



dimensioning spaces in a 3D environment.

Only the adjacent and the above constraint are used 
in this prototype. Spaces are presented in 3D by 
transparent boxes. To obtain visual input about the 
activity that will take place in a space, an icon repre-
senting that activity is located in the center of the 
transparent space (e.g. a sofa). In our experience, the 
best way to work with the system is to first specify 
the constraints that directly follow from the func-
tional brief of the building (e.g. the garage must be 
next to the kitchen). The user of the system manually 
triggers the constraint solving process. Next, addi-
tional constraints are entered by the designer when-
ever he/she feels that a specific ordering of spaces 
should be kept intact during the design session. 

Spaces can be pinned to a specific position (i.e. acti-
vating the FixPosition constraint) and dimensions 
can be fixed (i.e. activating the Dimensions con-
straint) using a toggle switch. The designer can add 
and relax these constraints to obtain a situation he/
she is satisfied with.

4.3  Building element behavior prototype

The building element behavior prototype was devel-
oped to examine whether a building concept consist-
ing of building elements can behave intuitively when 
the positions an dimensions of each building element 
are modified individually.

In this prototype all types of design constraints are 
used. The designer can dynamically stretch the room 
while all walls stay connected. The floor will resize 
accordingly. Moreover, the size and location of the 
window in the wall can be changed. It will stay 
within a minimum distance from the end of the wall 
and it cannot be dragged outside of the wall. Inside 

the room a box representing furniture can be moved 
around the floor without getting detached from the 
floor. Thus, new solutions that obey the geometric 
constraints are calculated while changing the geome-
try by pushing and pulling. Since this all happens in a 
3D environment the user can walk around the model 
or go inside the room to get a better view.

Figure 7: Space study prototype

Figure 8: Building element behaviour prototype



y 
g 

 

try 
g a 
w-

-

l 
s 

es 

h 

-
r-

 
 

-
-

5 CONCLUSIONS AND VENUES FOR 
FUTURE RESEARCH

This paper was to present the results of a research 
project that aimed the use of geometric constraints 
for support of architectural design. A set of constraint 
types was defined to express explicit and implicit 
geometric relations between building elements. A 
constraint satisfaction technique based on Linear 
Programming was introduced to achieve that the 
design support system responds in accordance with 
the users’ expectations. To examine and demonstrate 
the application of geometric constraints in a 3D envi-
ronment two prototype systems were developed. 
Simple experiments with the prototype systems indi-
cate that the proposed design constraints serve the 
design operations as expected.

Geometric constraints are a powerful concept for 
capturing specific design knowledge. Still several 
limitations of the current prototype systems have to 
be overcome and some fundamental issues need to be 
solved.

In the described geometric constraint solving mecha-
nism the bounding box plays a central role. Although 
many building elements fit a bounding box quite well 
(e.g. wall, floor), it imposes limitations on architec-
tural design, such as:
• Walls, floors, etc. can only meet perpendicular.
• Curved walls, roofs etc. cannot be represented 

adequately.
• Caved structures cause modeling problems (e.g. a 

chair cannot be moved under a table).
Thus, bounding boxes suit well for an important cate-
gory of building elements, but for non-rectangular 
shapes, a different strategy must be developed.

The graphical user interface of the prototype system 
does not allow yet the direct creation and manipula-
tion of design constraints. A graphical representation 
of constraints gives the user better control of the 
design and its behavior. Widgets should allow the 
user to interactively attach and detach constraints 
appropriate for the building element at hand.
The performance of the prototype systems decreases 
rapidly with an increasing number of constraints. The 
complete set of equations is currently solved when a 
system event that signals a change in the position of 
one of the bounding boxes is raised. The constraint 
solving algorithm could be optimized by recalculat-
ing only local changes. 

A more fundamental question is which design 
knowledge should be represented by constraints. In 
general static and procedural knowledge can be 
described by any formalism such as Object Oriented 
Modeling, Rule Based Design, etc. In the VR-DIS 

program, for the time being, we have chosen to rel
on the expressive power of Feature-Based Modelin
[Leeuwen99]. If FBM does not suffice we will use 
constraints. This rather arbitrary choice was made 
because computing the Feature Model takes less 
computational power than dynamically calculating 
constraints. As with a natural language, there are 
many ways to express a design, but all with a 
(slightly) different meaning. In due time description
styles will emerge supporting the designers’ intent.

Implementing a design system prototype immedi-
ately raises questions about user access to geome
data. There seems to be a trade off between havin
complete and consistent set of design data and allo
ing a designer to freely edit geometry. The underly
ing question however, is how user interaction with 
the design at the building element description leve
should be communicated with the drawing primitive
level.

We hope to report on the solution to these challeng
in future publications.
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