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Abstract

For the numerical solution of elasto-plastic problems with use of Newton-Raphson method in global equilibrium
equation it is necessary to determine the tangent modulus in each integration point. To reach the parabolic conver-
gence of Newton-Raphson method it is convenient to use so called algorithmic tangent modulus which is consistent
with used integration scheme. For more simple models for example Chaboche combined hardening model it is pos-
sible to determine it in analytical way. In case of more robust macroscopic models it is in many cases necessary
to use the approximation approach. This possibility is presented in this contribution for radial return method on
Chaboche model. An example solved in software Ansys corresponds to line contact problem with assumption of
Coulomb’s friction. The study shows at the end that the number of iteration of N-R method is higher in case of
continuum tangent modulus and many times higher with use of modified N-R method, initial stiffness method.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

Behavior of ductile materials over yield stress under cyclic loading is in many cases compli-
cated. An accumulation of plastic deformation — ratcheting — can be observed in case of
force controlled loading with non-zero mean stress. Its simulation can be problematical [1].
For sufficient accurate description of stress-strain behavior is then necessary to use a robust
plasticity model. However numerical integration of constitution laws is not trivial. The aim of
the contribution is to show alternatives in the solution of such problem and to mark subsequent
implementation of chosen plasticity model into the finite element software.

2. Newton-Raphson method and its modification

2.1. Solution of Global Equilibrium Equations

At the beginning can be reminded that by assuming of deformation variant of FEM is after finite
element discretization obtained the system of equilibrium equations in the nodes

[K]{u} = {F a}, (1)

where [K] is the global stiffness matrix, {u} vector of unknown nodal parameters and {F a}
vector of applied forces. In case of elasto-plastic problem the matrix [K] depends on unknown
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nodal displacements or its derivations indeed and becomes the system of nonlinear algebraic
equations [12].

[K({u})]{u} = {F a}. (2)

Equation (2) is mostly solved in the iterative way by Newton-Raphson method [9] or by its
modification [14]. One step of Newton-Raphson method is then described by equation

[KT
i ]{Δui} = {F a} − {F nr

i }, (3)

where [KT
i ] is tangent stiffness matrix, {F nr

i } is the value of load vector in i-th iteration cor-
responding to equivalent vector of inner forces and {Δui} is the unknown nodal parameters
vector increment which determines the vector {u} in following iteration, i.e.

{ui+1} = {ui}+ {Δui}. (4)

It is necessary to note that in every iteration the [KT
i ] and {F nr

i } are solved from unknown
nodal parameters {ui}. For more details see [2].

a) b)

Fig. 1. Newton-Raphson method for one degree of freedom: a) basic variant, b) increment variant (full
N-R)

In case of elasto-plastic problems the nonlinearity in equation (2) depends on loading history
and it is necessary to use the iteration substeps. This type of Newton-Raphson method is called
full Newton-Raphson method. In such case the resulting loading {F a} is divided in certain
substeps and in each of them is applied the Newton-Raphson procedure, so

[KT
n,i]{Δui} = {F a

n} − {F nr
n,i}, (5)

where n marks the n-th step of solution and i is the i-th iteration inside of n-th step. The
difference between both variants of Newton-Raphson method is evident from Fig. 1 where there
are marked for one-dimensional problem.

Except described full Newton-Raphson method its modifications can be also used which
eliminate the necessity of tangent stiffness matrix computation in every iteration substep. For
example only the tangent stiffness matrix from first iteration [KT

n,1] can be used (Fig. 1b).
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2.2. Elasto-plastic Stiffness Matrix

To guarantee the convergence of Newton-Raphson method it is necessary to determine properly
the tangent stiffness matrix [KT

i ] in every iteration step. It can be obtained in the “classical”
way by assembly from stiffness matrixes of all elements

[KT
i ] =

NELEM∑
j=1

[KT
e ] (6)

by help of so called code numbers based on indexes of unknown vector parameters {u}. The
stiffness matrix of each element is then defined as

[KT
e ] =

∫
Ωe

[B]T [Dep][B] dΩ, (7)

where [Dep] = {dσ}
{dε} is so called elasto-plastic stiffness matrix, [B] is transformation matrix

which depends on nodal coordinates and on derivations of approximation functions and Ωe rep-
resents the sub-region allocated by element. The quadratic convergence of Newton-Raphson
method is ensured by use of consistent elasto-plastic stiffness matrix with integration scheme
used for determination of stresses in integration points, so called consistent tangent modu-
lus (also called algorithmic tangent operator) [3]. If the non-discretized constitutive relations
are used for determination of elasto-plastic matrix, the expression continuum tangent modulus
(CTM) is then usually used. In paper [4] it is shown on Armstrong-Frederick nonlinear kine-
matic model that for small time step the Newton-Raphson method converges in the same rate
both for CTM and consistent tangent modulus. The authors found also out that use of CTM for
small step has not an influence of the accuracy of Newton-Raphson method.

3. Implicit stress integration

Within the solution of elasto-plastic FEM problem it is necessary to integrate in each iteration
step chosen constitutive relations to obtain updated stress values [1]. Because of effectiveness
and stability the implicit methods are mostly used, especially the radial return method, firstly
mentioned by Wilkins [5]. Although it is usual to use the tensor notation in topical literature, the
matrix notation will be used in this paper with respect to programming of described methods.
The stress vector and total strain vector will be assumed as: {σ} = {σx, σy, σz, τxy, τyz, τxz}T ,
{ε} = {εx, εy, εz, γxy, γyz, γxz}T , respectively.

3.1. Description of Assumed Cyclic Plasticity Model

Constitutive equations for the mechanical behavior of materials developed with internal variable
concept are the most expanded technique at the last two decades [13]. In this concept, the
present state of the material depends on the present values only of both observable variables
and a set of internal state variables. When time or strain rate influence on the inelastic behavior
can be neglected, time-independent plasticity is considered. In this paper the mixed hardening
rule sometimes called Chaboche model is used. The rate-independent material’s behavior model
consists of von Mises yield criterion

f =
3

2
({s} − {a})T [M1]({s} − {a})− Y 2 = 0, (8)
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the associated plastic flow rule

{dεp} =

√
3

2
dp[M1]

{
∂f

∂{σ}

}
, (9)

the additive rule
{ε} = {εe}+ {εp}, (10)

with Hook’s law assumption for elastic strain

{σ} = [De]{εe} = [De]({ε} − {εp}), (11)

the nonlinear kinematic hardening rule proposed by Chaboche [6]

{a} =
M∑
i=1

{a(i)}, {da(i)} =
2

3
Ci[M2]{dεp} − γi{a(i)} dp (12)

and this nonlinear isotropic hardening rule

Y = σY + R, (13a)

dR = B(R∞ − R) dp, (13b)

where {s} is the deviatoric part of stress vector {σ}, {a} is the deviatoric part of back-stress
{α}, Y is the radius of the yield surface, σY is the initial size of the yield surface, R is the
isotropic variable, {εp} is the plastic strain vector, [De] is the elastic stiffness matrix and dp is

the equivalent plastic strain increment dp =
√

2
3
{dεp}T [M2]{dεp}.

Auxiliary matrixes [M1] and [M2] have non-zero elements only on their diagonals [M1] =
diag [1, 1, 1, 2, 2, 2], [M2] = diag [1, 1, 1, 1/2, 1/2, 1/2]. Three kinematic parts (M = 3) in
equation (12) will be assumed in this study. The model contains, except elastic parameters,
nine material parameters, more precisely σY , B, R∞, C1, γ1, C2, γ2, C3, γ3. The initial value of
isotropic variable is taken as zero R0 = 0.

3.2. Euler Explicit Discretization

Equations (8)–(13) can be discretized by Euler’s backward scheme [10]. Let’s assume an inter-
val from the state n to state n + 1

{εn+1} = {εe
n+1}+ {εp

n+1}, (14)
{εp

n+1} = {εp
n}+ {Δεp

n+1}, (15)
{σn+1} = [De]({εn+1} − {εp

n+1}), (16)

fn+1 =
3

2
({sn+1} − {an+1})T [M1]({sn+1} − {an+1})− Y 2

n+1 = 0, (17)

{Δεp
n+1} =

√
3

2
Δpn+1[M1]{nn+1}, (18)

{nn+1} =

√
3

2

{sn+1} − {an+1}
Yn+1

, (19)

{an+1} =

M∑
i=1

{a(i)
n+1}, (20)

{a(i)
n+1} = {a(i)

n }+
2

3
Ci[M2]{Δεp

n+1} − γi{a(i)
n+1}Δpn+1, (21)
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where indexes n and n+1 mark values in the time n a n+1, the symbol Δ marks the increment
of the value between n and n + 1. It can be also written

{nn+1}T [M1]{nn+1} = 1, if fn+1 = 0. (22)

Assuming the combined hardening the isotropic part is to discretize. After integration of
second term in (13) and after performing of discretization can be written

Yn+1 = σY + R∞(1− e−B·pn+1), (23)

where
pn+1 = pn + Δpn+1. (24)

3.3. Application of Radial Return Method

For integration of constitutive equations the radial return method will be used now, more accu-
rately the implicit algorithm using successive substitution method proposed by Kobayashi and
Ohno [7].

It is necessary to determine a vector {σn+1} to satisfy the discretized constitutive equation
(14)–(24) for all known values in time n and value {Δεn+1}— strain-controlled algorithm.

Radial return method is classical two-step method consisting of elastic predictor and plastic
corrector [5]. Elastic predictor is elastic testing stress vector

{σ∗
n+1} = [De]({εn+1} − {εp

n}) (25)

and the yield criterion is then verified by testing plasticity function

f ∗
n+1 =

3

2
({s∗n+1} − {an})T [M1]({s∗n+1} − {an})− Y 2

n , (26)

where {s∗n+1} is deviator of {σ∗
n+1}. In case of f ∗

n+1 < 0 the plastic deformation increment will
be zero and {σn+1} = {σ∗

n+1}. However if f ∗
n+1 ≥ 0 the condition fn+1 = 0 has to be fulfilled.

After using (25) and (15) can be equation (16) written as

{σn+1} = {σ∗
n+1} − [De]{Δεp

n+1}. (27)

The second term at the right side, so [De]{Δεp
n+1} is called plastic corrector. If only deviator

part of the equation is used, material stiffness matrix [De] is assumed as symmetric and plastic
incompressibility is supposed, then it can be written with use of (20)

{sn+1} − {an+1} = {s∗n+1} − 2G[M2]{Δεp
n+1} −

M∑
i=1

{a(i)
n+1}. (28)

In this relation the {a(i)
n+1} is given by equation (21) which can be written as

{a(i)
n+1} = θ

(i)
n+1({a(i)

n }+
2

3
Ci[M2]{Δεp

n+1}), (29)

where
θ

(i)
n+1 =

1

1 + γiΔpn+1
(30)
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fulfills the condition 0 < θ
(i)
n+1 ≤ 1. Parameter θ

(i)
n+1 was used in paper [7] for assuming of

general kinematic rule. Now, if (29) is used in (28) assuming (18) and (19) following term will
be obtained

{sn+1} − {an+1} =
Yn+1({s∗n+1} −

∑M
i=1 θ

(i)
n+1{a

(i)
n })

Yn+1 + (3G +
∑M

i=1 Ciθ
(i)
n+1)Δpn+1

. (31)

Replacing of yield criterion (26) by (31) the required accumulated plastic deformation in-
crement can be obtained in the form

Δpn+1 =

√
3
2

(
{s∗n+1} − {an}

)T
[M1]({s∗n+1} − {an})− Yn+1

3G +
∑M

i=1 Ciθ
(i)
n+1

. (32)

The obtained equation is non-linear scalar equation because the quantity θ
(i)
n+1 and Yn+1 are

the functions of Δpn+1. For a simple example of kinematic hardening without assumption of
isotropic hardening, when Yn+1 = Yn = σY the equation (32) can be solved directly, because
θ

(i)
n+1 = 1 for all of i. In other cases the solution can be found for example by iteration algorithm

with successive substitution [7]. The flowchart of such method is marked in Fig. 2. Algorithm
is based on following steps:

Fig. 2. Flowchart for constitutive relations integration
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1. From quantities known in timestep n and from chosen {Δεn+1} the elastic testing stress
vector {σ∗

n+1} and using of testing plasticity function f ∗
n+1 it is decided if is the loading

active or passive (see above).

2. Values θ
(i)
n+1 and Yn+1 are chosen as θ

(i)
n+1 = 1, Yn+1 = Yn.

3. From (32) Δpn+1 is calculated.

4. From Δpn+1 using (31), (19) the {Δεp
n+1} is calculated from (18) and {a(i)

n+1} from (29).

5. Convergence check using criterion (33) is done∣∣∣∣1− Δpn+1(k − 1)

Δpn+1(k)

∣∣∣∣ < 10−4, (33)

where k marks the k-th iteration. If this condition is not fulfilled the actualization of
θ

(i)
n+1 and Yn+1 is done which the Δpn+1 in following iteration can be calculated from.

Steps 3–5 are repeated until (33) is fulfilled. The algorithm run can be accelerated [7] if
after each third iteration the Aitken’s Δ2 process is calculated

Δp = Δpn+1(k)− [Δpn+1(k)−Δpn+1(k − 1)]2

Δpn+1(k)− 2Δpn+1(k − 1) + Δpn+1(k − 2)
. (34)

If the results is bigger then zero, the value Δpn+1 = Δp is taken. The convergence proof of
presented stress integration method with successive substitution can be found also in [7].

4. Tangent Modulus

The requirement of determination of tangent modulus in each integration point was explained in
article 2.2. Therefore only tangent modulus for Chaboche model will be defined in this chapter.

4.1. Consistent Tangent Modulus (ATO)

For determination of algorithmic tangent operator — ATO can be used the paper [7] and so can
be written

[DATO] =
{dΔσn+1}
{dΔεn+1}

= [De]− 4G2[M2][Ln+1]
−1[Id], (35)

where

[Ln+1] =

(
G +

2Yn+1

3Δpn+1

)
[I] + [M1]

M∑
i=1

[H
(i)
n+1] + (36)

+
2

3

((
dY

dp

)
n+1

− Yn+1

Δpn+1

)
[M1]{nn+1}{nn+1}T

and deviatoric operator

[Id] =
1

3

⎡⎢⎢⎢⎢⎢⎢⎣
2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ . (37)
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For Chaboche model according to (12) and (13) can be written

[H
(i)
n+1] =

{dΔan+1}
{dΔεp

n+1}
=

2

3
Ciθ

(i)
n+1

(
[M2]− {m(i)

n+1}{nn+1}T
)

, (38)(
dY

dp

)
n+1

= B(R∞ − Rn+1) (39)

and the consistent modulus can be obtained in explicit way.

4.2. Continuum tangent modulus (CTM)

Until the year 1985 when Simo and Taylor published their theory about requirement of consis-
tent tangent modulus [3], the CTM was frequently used. The CTM can written in general form
as

[DCTM ] =
{dσ}
{dε} = [De]− 6G2{n}{n}T

3G + h
, (40)

where h is the plastic modulus. For Chaboche model can be in analytical way determined —
see [1]

h =

M∑
i=1

Ci −
√

3

2
{n}T [M1]

M∑
i=1

γi{a(i)}+
∂Y

∂p
. (41)

4.3. Numerical Computation of Consistent Tangent Modulus (NTM)

Let’s go back to analytical determination of ATO. For expression of matrix [Ln+1] according
to (36) it is necessary to obtain for chosen kinematic rule [H

(i)
n+1] = {dΔan+1}

{dΔεp
n+1}

. For general
kinematic rule the increment of certain kinematic parts can be determined by derivation of (29),
so

{dΔa
(i)
n+1} =

2

3
θ

(i)
n+1Ci[M2]{dΔεp

n+1}+ {a(i)
n+1}

dθ
(i)
n+1

θ
(i)
n+1

. (42)

For differential approach it is suitable to rewrite (29) into

{dΔa
(i)
n+1} =

2

3
θ

(i)
n+1Ci[M2]{dΔεp

n+1}+
{a(i)

n+1}
θ

(i)
n+1

{
∂θ

(i)
n+1

{∂Δεp
n+1}

}T

{dΔεp
n+1} (43)

and apply standard forward difference scheme to approximate the derivatives

∂θ
(i)
n+1

∂(Δεp
n+1)j

=
θ

(i)
n+1({Δεp

n+1}+ hT{ej})− θ
(i)
n+1

hT
, (44)

where j marks the component of vector and hT optimal stepsize. It is obvious that the choose of
stepsize will strongly influence the accuracy of differential approach. The reader is forwarded
to [8] according to the comprehension of the contribution.

5. Numerical Study

According to following application of the tangent modulus determination procedure in case of
more complicated constitutive relations for numerical simulations of the wheel/rail system the
unique example is a cylinder loaded on its surface by normal pressure according to the Hertze
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p(x) = p0

√
1− (x/a)2 and by shear stress assumed proportional to normal pressure (Fig. 3) i.e.

with assumption of Coulomb’s friction τ(x) = f ·p, where f is friction coefficient. The diameter
of the cylinder d = 85 mm, maximal pressure 800 MPa, axis a = 0.35 mm and coefficient of
friction f = 0.2 were assumed in this task. The aim of the computation was to determine the
stress distribution in the cylinder within one substep of NR method. Material parameters used
in this numerical experiment are mentioned in Tab. 1.

Table 1. Material parameters of Chaboche model

material parameters
elastic constants: E = 190 000 MPa, μ = 0.3

σY = 235 MPa, B = 1, R∞ = 20 MPa, C1 = 67 800 MPa,
γ1 = 694, C2 = 20 763 MPa, γ2 = 136, C3 = 2 670 MPa,

γ3 = 0.

Fig. 3. Pressure applied to the surface

Described case was solved stepwise with consistent tangent modulus (ATO), continuum
tangent modulus (CTM), elastic stiffness matrix (ESM) and using the tangent matrix from first
iteration (ITM) so with use of modified Newton-Raphson method described in article 2.1. Re-
sults are shown in Fig. 4 left. It is obvious that influence of tangent modulus on the solution time
is significant. For higher loading then in this study are the differences even more significant [1].

Consequently the influence of stepsize on the convergence and the calculation accuracy in
case of numerical tangent modulus (NTM) was examined. The results with use of NTM were
compared with solution using ATO, because in given case the analytical solution is not known.

Fig. 4. Convergence of NR method for particular tangent modulus (left) and the influence of chosen
stepsize on the corvergence of NR method within the numerical calculation of tangent modulus (NTM)
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Fig. 5. Contours of equivalent stresses from computation with numerical tangent modulus (NTM, hT =
1e− 4)

Fig. 6. Contours of equivalent stresses from computation with continuum tangent modulus (CTM)
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Table 2. Some results of performed numerical experiment

From Tab. 2 it is obvious that used method is very stable and effective. For the interval of
hT 〈1−3; 1−6〉 was the solution achieved within 4 iterations, the same as in case of consistent
tangent modulus. From the practical point of view the optimal value of stepsize is between 1−4

and 1−5 when the relative error of maximal plastic deformation increment was lowest — ca
0.02 percent.

The study also confirmed that CTM gives sufficiently accurate results in cases of low equiv-
alent plastic strain increment. It can be shown on the value of maximum von Mises equiva-
lent stress σeqv. The value of maximum equivalent stress from computation using ATO was
379.711 MPa, from computation by NTM (hT = 1e − 4) then 379.706 MPa (Fig. 5) and
378.051 MPa using CTM (Fig. 6). However it is recommended by authors to use ATO or NTM
in the most of cases, because of faster convergence and CTM to use for example in the case of
debugging of source code, when a new plasticity model has to be tested.

6. Conclusion

In the contribution it is presented the new approximation expression of ATM using the classical
differential approach. The methodology can be used in case of plasticity models where it is
not possible to obtain the tangent modulus in analytical way. The advantage is obtaining of
parabolic convergence of N-R method preserving the accuracy of calculation. Presented nu-
merical experiment was performed in software ANSYS with use of user subroutine USERPL.F
which serves for implementation of own constitutive relations into the software ANSYS [11].
Described procedure of numerical stress integration in case of Chaboche model can be pro-
grammed according to this paper and after linking and compiling of subroutine USERPL.F can
be used for solution of described method for implementation of cyclic plasticity model which
was developed for better description of stress-strain behavior of steels within author’s disserta-
tion work [1].
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