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Optimization of the railway vehicle bogie in term of dynamics
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Abstract

The paper deals with parameter optimization method of a railway vehicle bogie. Wheelsets are subjected to

stochastic excitation caused by irregularities of the track geometry and/or caused by deterministic excitation from

polygonalized running surface of the wheels, respectively. Stochastic irregularities are understood as stationary

stochastic process described by spatial power spectral density functions. The polygonalization process forms ra-

dial irregularities of the running surface which can be described by of a harmonic function depending on order

of the wheel polygonalization. The optimization method is based on minimization of several types of objective

functions suitable for optimization from the dynamic load point of view of exposed linkage.
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1. Introduction

Modern high-speed railway vehicle show some dynamic phenomena characterized by frequen-

cies in the mid-frequency range. To described these phenomena conventional models on the

basis of rigid multibody-systems [5] are not sufficient.

Detailed models of railway vehicle components were presented for example in the paper [3]

and there cited papers. None of mentioned works contains complex and detailed models of

railway vehicle bogie respecting spatial vibrations of all bogie components and visco-elastic

couplings among them e.g. gearing, clutches, supports of engine stators and of gear housings

to bogie frame, elastic wheelset axles and flexible wheels etc.

This article presents the complex mathematical model of the railway vehicle bogie with

two individual wheelset drives (Fig. 1) of the electric locomotive developed for speeds about

200 km/h by the company ŠKODA TRANSPORTATION s.r.o. The model respects spatial

vibrations of all drive components as a consequence of soft supports of engine stators and of

drive housings of both individual drives (ID1, ID2) to bogie frame (BF) by rubber silent blocks.

Their centres of elasticity are designated A1, B1, C1 (for ID1) and A2, B2, C2 (for ID2). An

elasticity of composite hollow shafts embracing the wheelset axles as well as the elasticity of

wheelsets moving on visco-elastic railway balast are taken into account.

The main aim of this article is to present an original method of the optimization of the chosen

design bogie parameters from the dynamic load point of view of exposed linkage expressed by

vertical dynamic forces acting between rails and wheels and by dynamic forces transmitted by

rubber silent blocks. Excitations by track irregularities [7] and polygonalized running surfaces

of the wheels [3] are considered.
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Fig. 1. Scheme of the boogie
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Fig. 2. Scheme of the elastic wheel

2. Mathematical model of the bogie

The development of the linearized mathematical model of the bogie (Fig. 1) with rigid wheels

was written in the contribution [9] and detailed in the research report [10]. Elastic wheels

reduce the unsprung mass and isolate the bogie frame from the excitation caused by the wheel

and rail interaction. The radial and lateral elastic wheels, specially with a composite material,

consists of very stiff parts like the rim and the disc, and a relatively soft connection between

both parts. Therefore the wheel rims and the wheel discs can be considered as rigid bodies [3].

The flexible connection in between can be represented in coordinate system xi, yi, zi by linear

massless springs (see Fig.2) characterized by radial stiffness kw
y = kw

z , lateral stiffness kw
x ,

torsional stiffness kw
xx and bending stiffness kw

yy = kw
zz. Each wheel rim may undergo lateral,

vertical, longitudinal, torsional, yaw and roll motion written by the displacement vector

qw
i = [uw

i , vw
i , ww

i , ϕw
i , ϑw

i , ψw
i ]T , i = 12, 14 (1)

for ID1 and ID2, where the subscript i corresponds to nodal point (i = 12, 14) at the wheelset

axis, to which is fixed wheel on the axis. Displacements of corresponding wheel discs are

expressed by the vector

qi = [ui, vi, wi, ϕi, ϑi, ψi]
T , i = 12, 14. (2)

The mathematical model of the bogie with rigid wheels [9] was derived in configuration

space

q = [qT
ID1,q

T
BFCB,qT

ID2]
T (3)

of dimension 165, where subvectors correspond to three subsystems- individual drives (ID1 and

ID2) that include couplings among drive components (gearing, disc clutch, composite hollow

shaft, claw clutch, railway balast) and the bogie frame linked by secondary suspension and

dampers with a half of car body (BFCB). The displacement vectors of the individual drives

with elastic wheels are extended into the form

q̃ID1 =

⎡

⎣

qID1

q̄w
12

q̄w
14

⎤

⎦ , q̃ID2 =

⎡

⎣

qID2

¯̄qw
12

¯̄qw
14

⎤

⎦ , (4)
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where vectors of node displacements with one bar correspond to wheel rims of ID1 and with two

bars to wheel rims of ID2, respectively. A contribution of the wheel rims to mass and stiffness

matrix of the subsystem ID1 (similarly for ID2) can be derived from Lagrange’s equations on

the basis of their kinetic Ew
k and potential Ew

p energy including influence of track structure

Ew
k =

1

2
( ˙̄qw

12)
TMw ˙̄qw

12 +
1

2
( ˙̄qw

14)
TMw ˙̄qw

14 +
1

2
mR(v̇w

12 − ∆̇1)
2 +

1

2
mR(v̇w

14 − ∆̇2)
2 , (5)

Ew
p =

1

2
(q̄w

12 − q12)
TKw(q̄w

12 − q12) +
1

2
(q̄w

14 − q14)
TKw(q̄w

14 − q14) +

+
1

2
kR(vw

12 − ∆1)
2 +

1

2
kR(vw

14 − ∆2)
2 , (6)

where the mass and stiffness matrices of the wheel rim is

Mw = diag (mw, mw, mw, Iw0, Iw, Iw), Kw = diag (kw
x , kw

y , kw
z , kw

xx, k
w
yy, k

w
zz)

and damping matrix Bw has the same structure as the stiffness matrix Kw. The whole track

structure (rail, railpad, sleeper and balast) is reduced to a single mass-spring-damper system [4]

defined by mass, stiffness and damping parameters mR, kR, bR. The wheelset kinematic exci-

tation by vertical track irregularities and/or polygonalized running surface of the wheel rims is

expressed by deviations ∆j (for ID1 j = 1, 2 and for ID2 j = 3, 4 — see Fig. 1).

In the configuration space defined by the vector of generalized coordinates

q = [q̃T
ID1,q

T
BFCB, q̃T

ID2]
T (7)

of dimension 189, the mathematical model of the bogie has the form (detailed in [9], [10])

Mq̈(t) + Bq̇(t) + Kq(t) = fG + fE(q̇) + fR,W (q, q̇, t) , (8)

where matrices have the block-diagonal structure

M = diag (M̃ID,MBFCB, M̃ID) ,

B = diag (B̃ID,BBFCB, B̃ID) + BD,BF + BW,BF , (9)

K = diag (K̃ID,KBFCB, K̃ID) + KD,BF + KW,BF

corresponding to subsystems. With respect to matrices of the bogie with rigid wheels [9], mass,

damping and stiffness matrices M̃ID, B̃ID, K̃ID, of the individual drives without linkages at

the bogie frame are extended by 24 DOF number corresponding to wheel rim displacements.

Matrices BD,BF and KD,BF describe the support of engine stators with gear housings to the

bogie frame in silent blocks. Matrices BW,BF and KW,BF describe dampings and stiffnesses

of the primary suspension at points T7 to T10 (damping) and P5, P6, P9, P10 (stiffness) and the

longitudinal wheelset guide between journal boxes and the bogie frame at points P7, P8, P11, P12

(see Fig. 1). The vector fG expresses all gravitational forces and the vector fE(q̇) expresses the

engine driving torques. The vector fR,W (q, q̇, t) includes contact forces between rails and wheel

rims depends on operational parameters, displacements and velocities of wheel rims and track

or wheel surface deviations ∆j(t), j = 1, 2, 3, 4.
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3. Linearized mathematical model of the bogie

To optimize bogie design parameters we neglect lateral track irregularities. The engine torques

and creep characteristics will be linearized in the neighbourhood of the static equilibrium. Let

us suppose an operational state of the railway vehicle running along the kinematically exact

straight track in static equilibrium which is given by longitudinal creepage s0 of all kinemati-

cally exact rim wheels, by forward vehicle velocity v and by vertical wheel forces N0. To all

mentioned operational parameters correspond engine torques and only longitudinal creep forces

at the contact between rails and wheels given by

M(s0, v) = 2µ0N0r0
1

p
, T0 = µ0N0 , (10)

where µ0 = µ(s0, v) is longitudinal creep coefficient [2, 8], p = ωE

ωw
is speed ratio and r0 is

the wheel radius in the central position. If the static equilibrium is disturbed by any possible

excitation sources, the bogie vibrates and the vector of generalized coordinates can be expressed

as a sum of static and dynamic (perturbance) displacements

q(t) = q0 + ∆q(t) , (11)

where before the disturbance, the velocity vector q̇0 has only nonzero coordinates corresponding

to rotation of wheelset drive components. Linearized engine torque characteristics, longitudinal

creep coefficients and vertical wheel forces can be expressed as

M = M0(s0, v) − bE∆ϕ̇1 , (12)

µ(si, v) = µ0 +

[

∂µ

∂si

]

si=s0

(si − s0) , i = 12, 14 , (13)

Ni = N0 + mR(∆̈j − ∆v̈w
i ) + bR(∆̇j − ∆v̇w

i ) + kR(∆j − ∆vw
i ) , (14)

where values denoted with ∆ correspond to perturbance general coordinates ∆q(t). The sub-

script j = 1 corresponds to wheelset node i = 12 and j = 2 to i = 14 of ID1 and j = 3 to

i = 12 and j = 4 to i = 14 of ID2, respectively. Longitudinal creepages of wheels are defined

by

si = s0 +
±∆ẇw

i ∓ ri∆ϕ̇w
i

v
, i = 12, 14 . (15)

Upper signs correspond to wheelset of ID1 and lower signs to wheelset ID2. Lateral creep

forces Ai ad and spin torque Mi ad are calculated using Kalker’s coefficients [5] computed for

constant vertical wheel force N0 in [9].

After expressing the engine torques according to (12) and linearization of longitudinal creep

forces Ti ad = µ(si, v0)Ni using (13) to (15) for r = r0, ∆q̇(t) = 0, ∆j = 0 the vectors of all

external forces on right side of equations (8) can be written in the following form

fG + fE(q̇) + fR,W (q, q̇, t) = f0 − [BE + Bad(s0, v)]∆q̇(t) + f(t) . (16)

The vector f0 = Kq0 expresses static force effects before the disturbance by track or wheel

surfaces irregularities. The diagonal matrix BE is determined by the inclination bE of engine

torques characteristics and the nonsymmetrical matrix Bad(s0, v) express the influence of the

linearized creep forces between wheels and rails. The creep forces depend on longitudinal
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creepage s0 defining the equilibrium state before the disturbance and on the vehicle velocity

v. The excitation vector f(t) has non-zero components fj on position corresponding to vertical

displacements of the wheel rims vw
i , i = 12, 14 for ID1 and ID2 in the general coordinate vector

q(t) (here 81, 87, 179, 185). They fulfill

fj = mR∆̈j(t) + bR∆̇j(t) + kR∆j(t) , j = 1, 2, 3, 4 . (17)

The model (8) using (11) and (16) can be written in perturbance coordinates ∆q(t) in the

neighbourhood of the static equilibrium as

M∆q̈(t) + [B + BE + Bad(s0, v)]∆q̇(t) + K∆q(t) = f(t) . (18)

4. Optimization in term of dynamic response excited by track irregularities

The track irregularities can be understood as stationary stochastic process described by spa-

tial power spectral density (PSD) function [6] S(F ) depends on spatial frequency F = 1
λ

given in cycle parameter (λ is a wavelength). Several track measurements along the track have

shown that S(F ) can be approximately expressed in the log-log coordinate system by piecewise

straight line [1] in the analytical form

S(F ) = Si

(

F

Fi

)κi

, F ∈ 〈Fi, Fi+1〉, κi =
logSi+1

Si

logFi+1

Fi

(19)

and Si (Si+1) are PSD values for spatial frequencies Fi (Fi+1).
The spatial PSD must be transformed into the standard PSD depending on frequency of the

waves f = vF [Hz] in the form [5]

S(f) =
1

v
Si

(

f

vFi

)κi

, f ∈ 〈fi, fi+1〉 , (20)

where v [ms−1] is the vehicle forward velocity.

The linearized model (18) can be rewritten after Fourier transformation into the frequency

domain

{−ω2M + iω[B + BE + Bad(s0, v)] + K}∆q(ω) = zR(ω)∆(ω) , (21)

where in accordance with (17) the complex reduced track stiffness is

zR = −ω2mR + iωbR + kR (22)

and for the time shift ∆t = l
v
, determined by vehicle velocity v and wheelbase of the bogie l,

the vector of Fourier transformations of the rail deviations is

∆(ω) = [. . .∆1(ω) . . .∆2(ω) . . .∆2(ω)eiω∆t . . .∆1(ω)eiω∆t]T . (23)

The Fourier transformation of an arbitrary dynamic displacements is

∆qi(ω) = Gi,1(ω)∆1(ω) + Gi,2(ω)∆2(ω) , i = 1, . . . , 189 , (24)

where the corresponding frequency response functions are

Gi,1(ω) = zR(ω)[gi,81(ω) + gi,185(ω)eiω∆t], Gi,2(ω) = zR(ω)[gi,87(ω) + gi,179(ω)eiω∆t] (25)
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and gi,j(ω) are elements of frequency response function (FRF) matrix

G(ω) = {−ω2M + iω[B + BE + Bad(s0, v)] + K}−1 . (26)

The subscripts i correspond to general coordinates and subscript j (here 81, 87, 179, 185) to

vertical displacements of the wheel rims in q(t). The vertical irregularities of the rails along the

track can be understood as an ergodic Gaussian process with zero mean values [3] and the cross

correlation between the rail irregularities ∆1 and ∆2 equates to zero.

The dynamic force vectors transmitted by silent blocks can be expressed in the form

∆fj(t) = Kj∆q1(t) + Bj∆q̇1(t) −Kj BF ∆qBF (t) − Bj BF ∆q̇BF (t) , (27)

where matrices

Kj = [Kt KtR
T
j ] , Kj BF = [Kt KtR

T
j BF ]

are determined by diagonal stiffness matrix Kt of one silent block and skew-symmetric matri-

ces Rj (RjBF ) are determined by coordinates of elasticity centre of silent blocks in coordinate

system x1, y1, z1 (xBF , yBF , zBF ) and ∆q1(t) (∆qBF (t)) is the vector of disturbance coordi-

nates of mass centre S1 (SBF ). Providing that the damping of silent blocks is proportional with

coefficient β, the Fourier transform of the ∆fj(t) is

∆fj(ω) = (1 + iωβ)[Kj∆q1(ω) −Kj BF ∆qBF (ω)] (28)

and can be rewritten, with regard to (24), into

∆fj(ω) = gj,1(ω)∆1(ω) + gj,2(ω)∆2(ω) ,

where gj,1(ω) and gj,2(ω) are vectors of frequency response functions of dimension 3. Their

PSD are

Sj = Gj(ω)S∆(ω)GH
j (ω) , j = A1, B1, C1, A2, B2, C2 , (29)

where

Gj(ω) = [gj,1(ω) gj,2(ω)] ∈ C3,2 , S∆(ω) = diag (S∆1
(ω), S∆2

(ω))

and superscript H denotes the transposition of conjugate matrix.

Let the aim of a optimization of the design parameters p = [pi] be a suppression of the

forces transmitted by the silent blocks. The sufficient objective function is

ψ(p) =

√

∑

j

∑

k

ST
j (p, fk)Sj(p, fk) , (30)

where the frequency range in Hz is divided with chosen step ∆f [Hz] and holds

fk = fmin + k∆f , k = 0, 1, . . . ,
fmax − fmin

∆f
. (31)

Especially a minimization of vertical wheel forces has a dominant interest to vertical dy-

namic of railway vehicles. According to (14) the Fourier transform of their dynamic compo-

nents acting to wheelset ID1 is

∆Ni(ω) = zR(ω)[∆j(ω) − ∆vw
i (ω)] for i = 12, j = 1 and i = 14, j = 2 . (32)
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According to (25) frequency response functions for instance between vertical wheel forces act-

ing in node 12 on the wheelset of ID1 and rail vertical irregularities can be written as

Ḡ12,1(ω) = zR(ω)[1 − G81,1(ω)] , Ḡ12,2(ω) = −zR(ω)G81,2(ω) , (33)

where subscript 81 corresponds to vertical displacement vw
12 of the wheel rim with the centre

in mode 12. The PSD of the vertical wheel forces depending on frequency f = ω
2π

in Hz are

calculated on the basis of PSD vertical rail irregularities in the form

SNi
(f) = S∆1

(f)|Ḡi,1|
2 + S∆2

(f)|Ḡi,2|
2 , i = 12, 14 . (34)

The upper limits of state dynamic values can be calculated by algebraic sum of static values and

corresponding standard deviations as follows [11]

Ni = N0 + ξσNi
, where σ2

Ni
= 2

∫

∞

0

SNi
(f)df, ξ = 2 ÷ 3 , (35)

the sufficient objective function for minimization of vertical wheel forces is

ψ(p) =
∑

i

∑

k

SNi
(p, fk) (36)

in the frequency range defined in (31).

5. Optimization in term of dynamic response excited by polygonalized running surface of

the wheels

The polygonalization process forms radial irregularities of the running surface of the wheels

which can be described by harmonic components with frequencies [3]

ωm =
vm

r
, m = 2, 3, . . . , (37)

where v is the vehicle forward velocity, r is the averaged wheel radius and m is so called order

of the wheel polygonalization. The excitation vector in model (18) caused by polygonalization

can be expressed in the complex form

f(t) =
∑

m

zR(ωm)∆meiωmt , (38)

where the complex reduced track stiffness is given by expression (22) for ω = ωm and the

vector of complex amplitudes of irregularities is

∆m = [. . .∆1meiδ1m . . .∆2meiδ2m . . .∆3meiδ3m . . .∆4meiδ4m . . .]T . (39)

Radial irregularities of the wheels corresponding to polygonalization of order m are determined

by their amplitudes ∆jm and phases δjm. Non-zero components of vectors ∆m are on positions

corresponding to vertical displacements of the wheel rims in q(t).
The steady dynamic bogie displacements in the complex form are

∆q(t) =
∑

m

q(ωm)eiωmt (40)
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with complex amplitudes

q(ωm) = zR(ωm)G(ωm)∆m = [qi(ωm)] , (41)

where FRF matrix has the form (26) for ω = ωm. The steady dynamic force vectors transmitted

by silent blocks according to (27) and (28) are expressed as

∆fj(t) =
∑

m

(1 + iωmβ)[Kjq1(ωm) − Kj BFqBF (ωm)]eiωmt , (42)

where q1(ωm) and qBF (ωm) are subvectors of q(ωm) corresponding to mass centres of the

engines and mass centre of the bogie frame displacements.

The steady dynamic vertical wheel forces according to (14) are expressed as

∆Ni(t) =
∑

m

zR(ωm)[∆jmeiδ1m − ∆vw
i (ωm)]eiωmt, i = 12, j = 1 and i = 14 j = 2 . (43)

From the viewpoint of the dynamic loading of the silent block j (j = A1, B1, C1, A2, B2, C2)
the sufficient objective function can be formulated as the weighted sum of the global forces

transmitted by the chosen silent block

ψ(p) =
∑

m

gm

∑

j

∑

k

√

fH
j (p, m, vk)fj(p, m, vk) , (44)

where in accordance with (42) the force vectors of complex amplitudes

fj(p, m, vk) = (1 + iω(k)
m β)[Kjq1(p, ω(k)

m ) − Kj BF qBF (p, ω(k)
m )] (45)

are calculated in the frequency range

ω(k)
m =

vkm

r
, vk = 0, 1, . . . ,

vmax − vmin

∆v
(46)

and for current optimization parameters p.

Analogous to minimization of the silent block dynamic loading we can formulate the objec-

tive function for the minimization of the vertical wheel forces

ψ(p) =
∑

m

gm

∑

i

∑

k

|Ni(p, m, vk)| , (47)

where in accordance with (43) complex amplitudes of the forces

Ni(p, m, vk) = zR(ω(k)
m )[∆jmeiδjm − vw

i (p, ω(k)
m )] , i = 12, j = 1 and i = 14, j = 2 (48)

are calculated in the frequency range defined in (46) and for current optimization parameters p.

6. Application

The presented methodology and developed software in MATLAB code was tested, among other

problems, for minimization of the vertical wheel forces acting on the wheelset of ID1. Four

design parameters

p = [kw
y , kw

yy, bR, kR]T (49)
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were chosen as the optimization parameters. They were constrained by lower and upper ratios

limits (marked by bar) with respect to reference values kw
y = 7 · 109 Nm−1 (radial stiffness

of all wheels), kw
yy = 108 Nm rad−1 (bending stiffness of all wheels), bR = 8 · 104 Nm−1 s

(damping coefficient of the track structure [6]), kR = 8 · 107 Nm−1 (stiffness of track structure

[6]). Applied constraints are

p̄L < p̄ < p̄U , (50)

where p̄L = [0.5, 0.5, 0.2, 0.2]T and p̄U = [2, 2, 5, 5]T .

The first presented optimization problem was defined by the objective function in the form

(36) for the excitation by track vertical irregularities described by spatial PSD of left S∆1
(F )

and right S∆2
(F ) rails measured along the track lengthwise 4 km with step 0.5 m obtained in

cooperation with ŠKODA TRANSPORTATION s.r.o. [12]. The coordinates of the breakpoints

of the piecewise straight lines approximating the mentioned PSD are introduced in [11] (Tab. 1).

We assume the operational parameters s0 = 0.002; v = 200 km/h and N0 = 105 N correspond-

ing to bogie’s static equilibrium before disturbance by running of the bogie frame at the real

track. The frequency range of the PSD in the objective function (36) was chosen according to

(31) fmin = 1 Hz, fmax = 50 Hz with step ∆f = 1 Hz.
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Fig. 3. Power spectral densities of the vertical wheel forces

As an illustration in Fig.3 we show the PSD of the vertical wheel forces N12 and N14 before

and after optimization. The corresponding values of the objective functions, standard deviations

and relative optimization parameters before and after optimization are summarized in Table 1.

Table 1. Starting and achieved values of the vertical wheel forces optimization for excitation by track

irregularity

state ψ(p) σN1
σN2

kw
y kw

yy bR kR

before 8.98 · 109 2.35 · 105 1.68 · 105 1 1 1 1

after 3.58 · 108 0.47 · 105 0.34 · 105 1 2 0.2 0.2
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Fig. 4. Amplitude characteristics of the vertical wheel forces

The second presented optimization problem was defined by the objective function in the

form (47) for the excitation by polygonalized wheel running surfaces and vertical wheel forces

N12 and N14 acting on the wheelset of ID1. Measurements made by the German railroad com-

pany Deutsche Bahn [3] show that dominant polygonalizations are of 3rd and 4th order and can

be approximated by harmonic functions with an amplitude ∆jm =0.3 [mm] and for δjm = 0
(j = 1, 2, 3, 4). A method and software testing has been developed for weight coefficients

g3 = 1 and g4 = 1 separately (other weight coefficients are zero) in velocity range vmin = 50,

vmax = 200, ∆v = 2 [km/h].

As an illustration, in Fig. 44 we show the amplitude characteristics of the vertical wheel

force N12 before and after optimization for polygonalization of 3rd order and 4th order. The

corresponding values of the objective functions, maximal values of vertical wheel force and

relative optimization parameters before and after optimization are summarized in Tab. 2. Main

resonances characterized by vertical wheelset vibrations on vehicle velocity v ≈ 183 [km/h]

(for m = 3) and v ≈ 137 [km/h] (for m = 4) were eliminated.

The minimization of the objective function (44) and (47) was realized in code MATLAB

by a simplex method. The total computational time (at Workstation HP xw4300) for four opti-

mization parameters defined in (49) was approximately 80 s. The computational time increases

approximately with square power of the optimization parameter number.

Table 2. Starting and achieved values of the vertical wheel forces optimization for excitation by wheel

polygonalization

value m=3 m=4

before after before after

ψ(p) 4.96 · 106 1.15 · 106 6.56 · 106 1.15 · 106

N12 max 9.6 · 104 1.1 · 104 9.6 · 104 1.6 · 104

N14 max 9.4 · 104 1.2 · 104 9.4 · 104 1.7 · 104

kw
y 1 1.99 1 0.5

kw
yy 1 0.5 1 0.59

bR 1 .80 1 0.47

kR 1 0.2 1 0.2
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7. Conclusion

This paper presents an original methodology of parametric optimization of the railway vehicle

bogie with elastic wheels. The approach to optimization is based on the mathematical modelling

of the bogie in perturbance coordinates with respect to operational state of static equilibrium

and on the calculation of the dynamic response caused by geometric irregularities of the track or

running wheel surfaces. Two types of objective functions has been formulated for the problem

of dynamic load minimization. The first type is based on power spectral density functions and

the second type on amplitude characteristics of the dynamic forces transmitted by rubber silent

blocks between engine stators with gear housings and the bogie frame and the dynamic forces in

contact between rails and wheels in a vertical direction. These couplings transfer great dynamic

forces caused by considered kinematic excitation which essentially influences a service live of

the wheelsets, rails and support of engine stators.

The developed software in MATLAB code enables to choose different design parameters as

the optimization parameters and a minimization of arbitrary displacements and accelerations of

bogie components and forces transmitted by different couplings. In a close future, the multicri-

terial objective functions will be used for optimization of bogie design parameters.
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