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Abstract

This study is focused on the mathematical modelling of gas flow and heat transfer in a microchannel with the

rectangular cross-section. The gas flow is considered to be steady, laminar, incompressible, hydrodynamically

and thermally fully developed. The main objective is the application of the slip flow boundary conditions —

the velocity slip and the temperature jump at microchannel walls. The analytical solution of both flow and heat

transfer is derived using the Fourier method and it is also compared with the numerical solution based on the finite

difference method applied on the Poisson’s equations describing gas flow and heat transfer in the microchannel.
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1. Introduction

The interest in the study of fluid flow and heat transfer in microchannels has been increasing

a lot in the last few decades. Microflows are not only typical for biological systems (capillaries,

brain, lungs, kidneys etc.) but also for many man-made technical systems such as heat exchang-

ers, nuclear reactors or microturbines. In such objects, very small characteristic dimensions of

microchannels and microtubes result in flows with very low Reynolds numbers. If the charac-

teristic dimensions are comparable to the mean free path of the molecules, the microflow does

not behave like a continuum and the molecular structure of the fluid has a significant influence

on the microflow character. The ratio Kn = λ/Dh = Ma/Re
√

πγ/2 is the Knudsen number,

which can be related to the Reynolds and Mach numbers [6], and it plays a very important role

in gas microflows. Here, λ is the molecular mean free path, Dh is the hydraulic diameter of the

microchannel and γ is the specific heat ratio.

According to the value of the Knudsen number, the gas flow and heat transfer can be divided

into the following flow regimes, [6] or [7]: the continuum flow regime for Kn < 10−3; the

slip flow regime for 10−3 < Kn < 10−1 (the Navier-Stokes equations remain applicable,

a velocity slip and a temperature jump are taken into account at the channel walls); the transition

flow regime for 10−1 < Kn < 10 (the continuum approach of the Navier-Stokes equations

is no longer valid, but intermolecular collisions should be taken into account) and the free

molecular flow regime for Kn > 10 (the occurance of intermolecular collisions is negligible

compared with collisions between the gas molecules and the microchannel wall). It is known

that characteristic dimensions of the channel, which do not have to be micrometric, and low
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values of pressure can lead to high Knudsen numbers. However, the same situation can occur

for atmospheric pressure, when the characteristic dimensions of the channel are nanometric.

Theoretically, the Navier-Stokes equations are the first-order approximation of the Chapman-

Enskog solution for the Bolzmann equation and they are also first-order accurate in Kn.

The classical continuum flow regime may be accurately modelled by the system of the full

Navier-Stokes equations completed by the equation of state and classical non-slip boundary

conditions u|w = uwall, T |w = Twall, that express the continuity of the velocity and the tem-

perature between the fluid and the channel wall. In the close vicinity of the wall, the so-called

Knudsen layer occurs in which the gas is out of thermodynamic equilibrium. This layer has

a thickness comparable with the mean free path of molecules. For very low Knudsen numbers

(in the continuum flow regime), the effect of the Knudsen layer is negligible. However, in the

slip flow regime, the influence of the Knudsen layer must be taken into account providing the

classical non-slip boundary conditions are modified so that they express the velocity slip and the

temperature jump at channel walls. From [8] it is known that Kundt and Wartburg in 1875 and

Maxwell in 1879 were probably the first who mentioned the velocity slip and the temperature

jump at the wall. For a gas flow in the direction s parallel to the wall, the first-order velocity

slip and temperature jump boundary conditions have taken the form, [6],

uslip = us − uwall =
2 − σ

σ
λ

∂us

∂n

∣
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w
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w
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2γ
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ηcv

λ
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∣

∣

∣

w
. (2)

Here the dimensionless coefficient σ is the tangential momentum accommodation coefficient

and the dimensionless coefficient σT is the energy accommodation coefficient. The overview

of higher-order slip flow boundary conditions is presented for example in [6] or [7]. However,

many authors use the first-order slip flow boundary conditions (1)–(2) with neglected second

term in (1).

From the theoretical point of view, the slip flow regime is particularly interesting because

it generally leads to analytical or semi-analytical models which allow us to calculate veloci-

ties, flow rates and temperature fields for fully developed laminar microflows. For example,

in [2], the problem of compressibility of gas flow between two parallel plates is studied ana-

lytically. Numerical solution of the same problem is given in [1]. Analytical solution of three-

dimensional fully developed laminar slip flow in rectangular microchannels is given in [3, 10].

Analytical determination of temperature field and Nusselt number between two parallel plates,

including axial heat transfer, temperature jump and viscous dissipation, is studied in paper [5].

The works [11, 9] are devoted to the analytical solution of temperature field and Nusselt num-

ber computation in three-dimensional rectangular microchannels. The flow is supposed to be

steady, laminar, incompressible, fully hydrodynamically and thermally developed. Let us note,

that further examples of laminar flow and heat transfer in various microchannels and microtubes

are given in [6].

The main objective of this study is the comparison of our analytical and numerical solution

of the gas flow and heat transfer in a 3D microchannel with rectangular cross-section in the

slip flow regime. The gas flow is assumed to be laminar, incompressible, steady, hydrodynami-

cally and thermally fully developed applying the first-order velocity slip and temperature jump

boundary conditions. The Fourier method is used for our analytical solution, resulting in ex-

pressions that seem to be simpler to evaluate than the analytical solution presented in [10]. The

good agreement with numerical results also proves the correctness of our analytical formulation.
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2. Mathematical formulation of the problem

Let us consider a steady laminar flow of an incompressible fluid in a long microchannel with a

rectangular cross-section. The microchannel dimensions are illustrated in fig. 1, where

L = 5·10−3 m is the microchannel length and the rectangle sides are considered as 2h = 10−6 m

and 2b = 2 · 10−5 m.

Fig. 1. Geometry of the microchannel with the rectangular cross-section

Velocity field

The incompressible gas flow can be described by the non-linear system of the Navier-Stokes

equations, [4]. Because we suppose the fully developed flow, we can assume ∂u/∂x = 0.

Furthermore, the cross-sectional components v, w of the velocity vector can be considered as

very small compared to the longitudinal velocity u. Thus, the non-linear system of the Navier-

Stokes equations reduces to

∂2u

∂y2
+

∂2u

∂z2
=

1

η

dp

dx
, (3)

∂p

∂y
=

∂p

∂z
= 0, (4)

which means that p = p(x) and u = u(y, z). Since the microchannel is symmetrical with

respect to the planes xz and xy, we can write the boundary conditions

(

∂u

∂y

)

y=0

= 0,

(

∂u

∂z

)

z=0

= 0. (5)

As mentioned before, we assume the slip flow boundary conditions at the microchannel walls.

In our work, we neglect the second right-hand side term in (1) and use σ = 1, σT = 1 in (1),

(2), respectivelly. Then we can write

u(±h, z) = −KnDh

(

∂u

∂y

)

y=±h

, u(y,±b) = −KnDh

(

∂u

∂z

)

z=±b

, (6)

where Dh is the hydraulic diameter

Dh =
4bh

b + h
. (7)
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Temperature field

The temperature distribution in case of the steady, laminar and incompressible flow in the long

microchannel with the rectangular cross-section can be described by the equation

Uavg

∂T

∂x
= a

(

∂2T

∂y2
+

∂2T

∂z2

)

, (8)

where a = k
cpρ

is the thermal conductivity coefficient (cp is the specific heat for constant pres-

sure, k is the heat conductivity). The average velocity Uavg is defined as

Uavg =
1

bh

∫ h

0

∫ b

0

u(y, z) dz dy. (9)

Further, we will also operate with the average temperature which is defined similarly

Tavg =
1

bh

∫ h

0

∫ b

0

T (y, z) dz dy. (10)

From the heat balance we know

cpρUavg

∂T

∂x
4bh dx = (4b dx + 4h dx)q, (11)

that is

Uavg

∂T

∂x
=

q

cpρ

b + h

bh
= Qa, (12)

where q is the heat flux and Q is defined by (12). Using (8) we can finally write

∂2T

∂y2
+

∂2T

∂z2
= Q. (13)

The symmetry boundary conditions are expressed as

(

∂T

∂y

)

y=0

= 0,

(

∂T

∂z

)

z=0

= 0 (14)

and the temperature jump at the walls is described by the relations

Tw − T (±h, z) =
2γ

γ + 1
KnDh

1

Pr

(

∂T

∂y

)

y=±h

, (15)

Tw − T (y,±b) =
2γ

γ + 1
KnDh

1

Pr

(

∂T

∂z

)

z=±b

, (16)

where Pr is the Prandtl number.

Dimensionless model

Relating the coordinates x, y, z to Dh, the velocity u to the average velocity Uavg , the tem-

perature T to the average temperature Tavg and the static pressure p to the reference pressure
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pref = ρU2
avg , we obtain the dimensionless form of the problem. From now, we will consider

all the quantities as dimensionless. The equation (3) now has the dimensionless form

∂2u

∂y2
+

∂2u

∂z2
= Re

dp

dx
, (17)

the dimensionless form of the velocity slip boundary conditions (6) is

u(±h, z) = −Kn

(

∂u

∂y

)

y=±h

, u(y,±b) = −Kn

(

∂u

∂z

)

z=±b

(18)

and the boundary conditions expressing the symmetry remain unchanged, so the equations (5)

still hold for dimensionless quantities. In the equation (17), we consider the Reynolds number

as Re = UavgρDh/η.

Regarding the temperature field, the dimensionless form of the equation (8) can be written

as
∂T

∂x
=

a

UavgDh

(

∂2T

∂y2
+

∂2T

∂z2

)

≡
1

Pe

(

∂2T

∂y2
+

∂2T

∂z2

)

, (19)

where Pe = Re · Pr is the Peclet number. The symmetry conditions (14) do not change for

dimensionless quantities and the temperature jump boundary conditions are now

Tw − T (±h, z) =
2γ

γ + 1

Kn

Pr

(

∂T

∂y

)

y=±h

, Tw − T (y,±b) =
2γ

γ + 1

Kn

Pr

(

∂T

∂z

)

z=±b

. (20)

3. Analytical and numerical solution of incompressible fluid flow

With regard to the mentioned planes of symmetry, let us firstly focus on the analytical solution

of the flow problem described by the equation (17) with dimensionless boundary conditions (5)

and (18) in the domain given by y ∈ 〈0; h〉, z ∈ 〉0; b〉. We expect the solution in the form

u(y, z) = u(1)(z) + u(2)(y, z). (21)

and after substituting (21) into (17) we get two differential equations

d2u(1)(z)

dz2
= Re

dp

dx
, (22)

∂2u2(y, z)

∂y2
+

∂2u(2)(y, z)

∂z2
= 0. (23)

We can express the general solution of equation (22) as

u(1)(z) =
Re

2

dp

dx
z2 + C1z + C2 (24)

and the solution of the equation (23) is expected to be a product of two functions f(y) and g(z)

u(2)(y, z) = f(y)g(z). (25)

Substituting (25) into (23) we get

1

f(y)

d2f(y)

dy2
= −

1

g(z)

d2g(z)

dz2
= κ2, (26)

67
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where κ is the unknown constant. Thus, the treatment of the partial differential equation (23) is

transformed to the solution of two ordinary differential equations

d2f(y)

dy2
− κ2f(y) = 0,

d2g(z)

dz2
+ κ2g(z) = 0 (27)

generally having the solution

f(y) = A1e
κy + A2e

−κy and g(z) = B1 cos(κz) + B2 sin(κz), (28)

and therefore according to (25) we get

u(2)(y, z) =
(

A1e
κy + A2e

−κy
)

[B1 cos(κz) + B2 sin(κz)] . (29)

Now, we can rewrite the solution (21) as

u(y, z) =
Re

2

dp

dx
z2 + C1z + C2 +

(

A1e
κy + A2e

−κy
)

[B1 cos(κz) + B2 sin(κz)] , (30)

which must satisfy the boundary conditions (5) and (18). The symmetry conditions (5) yield

C1 = 0, A1 = A2, B2 = 0. (31)

Afterwards, the solution (30) reduces to

u(y, z) =
Re

2

dp

dx
z2 + C2 + A cosh(κy) cos(κz), (32)

where A = 2A1B1. To derive the remaining constants A, C2, κ we will use the boundary

conditions (18), so we get

Re

2

dp

dx
z2 + C2 + A cosh(κh) cos(κz) = −κKnA sinh(κh) cos(κz), (33)

Re

2

dp

dx
b2 + C2 + A cosh(κy) cos(κb) = −Kn

[

Re
dp

dx
b − Aκ cosh(κy) sin(κb)

]

. (34)

In order to be the equation (34) fulfilled for every y ∈ 〈0; h〉, following conditions have to be

satisfied

C2 = −
Re

2

dp

dx
b2

(

1 +
2Kn

b

)

, (35)

cot(κb)

κb
=

Kn

b
. (36)

The transcendent equation (36) has an infinite number of roots κb = κib, i = 1, . . . ,∞, and

therefore we can write the solution (32) as

u(y, z) =
Re

2

dp

dx

[

z2 − b2

(

1 +
2Kn

b

)]

+
∞
∑

i=1

Ai cosh(κiy) cos(κiz). (37)

The last step is to determine the constants Ai using (33) and (35) that result in

∞
∑

i=1

Ai [cosh(κih) + κKnA sinh(κih)] cos(κiz) =
Re

2

dp

dx
b2

(

1 +
2Kn

b
−

z2

b2

)

. (38)
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Multiplying this equation by cos(κjz) dz, where j is any given value of i, and integrating over

the interval 〈0; b〉, we get

Ai =
Re dp

dx
b

κ2

i

[

− cos(κib) +
(

Knκi + 1
κib

)

sin(κib)
]

[cosh(κih) + Knκi sinh(κih)]
[

b
2

+ sin(2κib)
4κi

] (39)

and finally we can write the solution as

u(y, z) =
Re

2

dp

dx

[

z2 − b2

(

1 +
2Kn

b

)]

+

+

∞
∑

i=1

Re dp

dx
b
κ2

i

[

− cos(κib) +
(

Knκi + 1
κib

)

sin(κib)
]

[cosh(κih) + Knκi sinh(κih)]
[

b
2

+ sin(2κib)
4κi

] cosh(κiy) cos(κiz). (40)

For the numerical solution of the steady, laminar, incompressible and fully developed flow

in the microchannel with the rectangular cross-section, the finite difference method is used.

The elliptic PDE (17) describing the velocity field is dicretized using the five-point difference

formulas of the second order accuracy. The Gauss-Seidel iteration method is applied, which

means that in order to evaluate u at grid point i, j, the values of ui−1,j , ui,j−1 are used from the

current iteration and the values of ui+1,j , ui,j+1 are used from the previous iteration. The finite

difference form of (17) used for our numerical computation is therefore

un+1
i,j =

1
2

(∆b)2
+ 2

(∆h)2

[

1

(∆b)2

(

un
i+1,j + un+1

i−1,j

)

+
1

(∆h)2

(

un
i,j+1 + un+1

i,j−1

)

− Re
dp

dx

]

, (41)

where u is the velocity in the x-direction, n denotes the number of the iteration, ∆h = yj+1−yj

and ∆b = zi+1 −zi are the step sizes in the direction of y and z, which are constant in the entire

computational domain, and the indices i and j correspond to the position of the actual finite

difference cell in the direction of z and y, respectivelly. The velocity slip at microchannel walls,

i. e. for y = h and z = b, is expresed by the boundary conditions

un+1
i,py =

Kn

∆h
·

un
i,py−1

1 + Kn
∆h

, un+1
pz,j =

Kn

∆b
·

un
pz−1,j

1 + Kn
∆b

, (42)

where py and pz is the total number of cells in direction of y and z, respectivelly. The symmetry

condition for y = 0 and z = 0 is

un+1
i,1 = un

i,2, un+1
1,j = un

2,j. (43)

The comparison of the results obtained using the analytical and numerical solution is made

in the following figures. For the pressure driven flow of argon (γ = 1.67, ρ = 1.35 kg m−3,

p1 = 202 650 Pa, p2 = 25 000 Pa, η = 2.588 · 10−5 Pa s) we obtain Re = 0.015 and Kn =
0.032 6. The dimensionless sizes of the microchannel are considered as h = 0.262 5, b = 5.25
and L = 2625. In fig. 2, where the velocity profiles for given y- and z-cuts are shown, our

analytical solution is verified using the comparison with the numerical solution. The cuts are

considered in the middle of the channel (for y = 0 or z = 0), in the quarter of the corresponding

channel size (y = h/2, z = b/2) and at the wall (y = h, z = b). The good agreement of the

obtained results indicates the correctness of our analytical formulation. In fig. 3, the velocity

profile in the yz plane is shown, illustrating the velocity slip at the microchannel walls caused

by the relatively high Knudsen number.
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Fig. 2. Numerical and analytical dimensionless velocity profiles for given y- and z-cuts

Fig. 3. Dimensionless velocity profile in the yz plane.

4. Analytical and numerical solution of heat transfer

In the case of heat transfer, we will focus on the temperature distribution described by the

equation (19) with the boundary conditions (14) and (20). Similarly as in the previous case, we

write the general solution as

T (y, z) = T (1)(z) + T (2)(y, z). (44)

After the substitution of (44) into (19), we get

d2T (1)(z)

dz2
= Pe

∂T

∂x
, (45)
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∂2T (2)(y, z)

∂y2
+

∂2T (2)(y, z)

∂z2
= 0. (46)

The solution of (45) can be expressed as

T (1)(z) =
1

2
Pe

∂T

∂x
z2 + D1z + D2 (47)

and the solution of (46) is considered to be the product of two functions ϕ(y) and ψ(z)

T (2)(y, z) = ϕ(y)ψ(z). (48)

Further, we substitute (48) into (46) which results in two differential equations (analogous

to (27)) having the solution

ϕ(y) = A3e
χy + A4e

−χy and ψ(z) = B3 cos(χz) + B4 sin(χz), (49)

where the constants D1, D2, A3, A4, B3, B4, χ will be determined from the boundary condi-

tions. The general solution of the problem can be written in the form

T (y, z) =
1

2
Pe

∂T

∂x
z2 + D1z + D2 +

[

A3e
χy + A4e

−χy
]

[B3 cos(χz) + B4 sin(χz)] . (50)

If we take into account the symmetry conditions (14), we get D1 = B4 = 0, A3 = A4 and this

general solution reduces to

T (y, z) =
1

2
Pe

∂T

∂x
z2 + D2 + B cosh(χy) cos(χz) (51)

where B = 2A3B3. In order to determine the constants B, D2, χ, we use the boundary condi-

tions (20)

Tw −
1

2
Pe

∂T

∂x
z2 − D2 − B cosh(χh) cos(χz) =

2γ

γ + 1

Kn

Pr
χB sinh(χh) cos(χz), (52)

Tw −
1

2
Pe

∂T

∂x
b2 − D2 − B cosh(χy) cos(χb) =

=
2γ

γ + 1

Kn

Pr
[Pe

∂T

∂x
b − χB cosh(χy) sin(χb)]. (53)

Following two equations result from (53)

D2 = Tw −
1

2
Pe

∂T

∂x
b2 −

2γ

γ + 1

Kn

Pr
Pe

∂T

∂x
b, (54)

cot(χb)

χb
=

2γ

γ + 1

Kn

Pr · b
. (55)

The transcendent equation (55) has an infinite number of roots χb = χib, i = 1, . . . ,∞, there-

fore the solution can be expressed as

T (y, z) = Tw +
1

2
Pe

∂T

∂x

[

z2 − b2

(

1 +
4γ

γ + 1

Kn

Pr · b

)]

+

+

∞
∑

i=1

Bi cosh(χiy) cos(χiz). (56)
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The constants Bi can be determined similarly as the constants Ai for the velocity. We obtain

Bi =

2
χ3

i

Pe∂T
∂x

sin(χib)
[

b + sin(2χib)
2χi

] [

cosh(χih) + 2γ

γ+1
Kn
Pr

χi sinh(χih)
] (57)

and the final form of the temperature distribution results from the substitution of Bi into (56).

The finite difference method is also used for the numerical solution of the temperature dis-

tribution. By applying the Gauss-Seidel iterative method on the elliptic PDE (19) describing

the temperature field, we get

T n+1
i,j =

1
2

(∆b)2
+ 2

(∆h)2

[

1

(∆b)2

(

T n
i+1,j + T n+1

i−1,j

)

+
1

(∆h)2

(

T n
i,j+1 + T n+1

i,j−1

)

− Pe
∂T

∂x

]

, (58)

where ∂T/∂x is supposed to be constant. The temperature jump at channel walls is expresed as

T n+1
i,py =

1

1 + c
(c · Ti,py−1 + Tw) , T n+1

pz,j =
1

1 + d
(d · Tpz−1,j + Tw) , (59)

where

c =
2γ

γ + 1
·

Kn

Pr · ∆h
, d =

2γ

γ + 1
·

Kn

Pr · ∆b
. (60)

The symmetry condition for y = 0 and z = 0 gives

T n+1
i,1 = T n

i,2, T n+1
1,j = T n

2,j . (61)

Temperature distributions obtained using our analytical and numerical solution are com-

pared in the following figures. The wall temperature needed for the analysis is chosen as

Tw = 350 K and the thermal conductivity coefficient is considered to be a = 0.017 m2/s.

Other parameters of argon and the dimensionless microchannel sizes are the same as for the

velocity distribution investigation. In fig. 4, analytical and numerical profiles of the difference

of dimensionless temperatures T − Tw in given y- and z-cuts are compared.

Fig. 4. Numerical and analytical profiles of the difference of dimensionless temperatures T − Tw for

given y- and z-cuts

72
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Fig. 5. Profile of the difference of dimensionless temperatures T − Tw in the yz plane

Fig. 5 shows the three-dimensional profile of the difference of dimensionless temperatures

T − Tw in the yz plane expressing the temperature jump at the walls as the effect of the slip

flow. The good agreement of our analytical and numerical results can be clearly seen in fig. 4,

which proves the correctness of our analytical formulation as well as in the case of the velocity

field analysis.

5. Conclusion

This study deals with the analytical and numerical solution of gas flow and heat transfer in

the microchannel with rectangular cross-section. Our analytical solution is derived using the

Fourier method applying the velocity slip and temperature jump boundary conditions that are

valid for microflows in the slip flow regime. The good agreement with the numerical solu-

tion obtained using the Gauss-Seidel iteration method proves the correctness of our analytical

expressions. Moreover, these expressions seems to be simpler for the evaluation then the ana-

lytical solution presented in [10]. Our analytical approach can be also applied on the classical

steady, laminar, incompressible and fully developed gas flow with non-slip boundary conditions

prescribed at the channel walls, which results in

u(y, z) =
Re

2

dp

dx

(

z2 − b2
)

+

+
∞
∑

i=1

16Re dp

dx
b2

(2i−1)3π3 (−1i−1)

cosh
[

(2i−1)πh

2b

] cosh

[

(2i − 1)πy

2b

]

cos

[

(2i − 1)πz

2b

]

.

The same expression can be also obtained by setting Kn = 0 in (40). Similarly, the temperature

distribution for Kn = 0 has the form
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T (y, z) = Tw +
Pe

2

∂T

∂x

(

z2 − b2
)

+

+
∞
∑

i=1

16Pe∂T
∂x

b2

(2i−1)3π3 (−1i−1)

cosh
[

(2i−1)πh

2b

] cosh

[

(2i − 1)πy

2b

]

cos

[

(2i − 1)πz

2b

]

.

In our future study, we want to focus on the analytical and numerical analysis of gas mi-

croflow considering the second-order velocity slip and temperature jump boundary conditions

at the microchannel walls. Furthermore, we also want to derive the analytical solution of a lam-

inar incompressible slip flow in the inlet part of the rectangular microchannel using the Oseen

flow model with the first-order slip flow boundary conditions prescribed at the microchannel

walls.
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