
Applied and Computational Mechanics 3 (2009) 111–120

Computational analysis of acoustic transmission through

periodically perforated interfaces
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Abstract

The objective of the paper is to demonstrate the homogenization approach applied to modelling the acoustic trans-

mission on perforated interfaces embedded in the acoustic fluid. We assume a layer, with periodically perforated

obstacles, separating two half-spaces filled with the fluid. The homogenization method provides limit transmission

conditions which can be prescribed at the homogenized surface representing the “limit” interface. The conditions

describe relationship between jump of the acoustic pressures and the transversal acoustic velocity, on introducing

the “in-layer pressure” which describes wave propagation in the tangent directions with respect to the interface.

This approach may serve as a relevant tool for optimal design of devices aimed at attenuation of the acoustic

waves, such as the engine exhaust mufflers or other structures fitted with sieves and grillages. We present numerical

examples of wave propagation in a muffler-like structure illustrating viability of the approach when complex 3D

geometries of the interface perforation are considered.
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1. Introduction

The purpose of the paper is to demonstrate the homogenization approach applied to computa-

tional modelling of the acoustic transmission through perforated planar structure. We consider

the acoustic medium occupying domain Ω which is subdivided by perforated plane Γ0 in two

disjoint subdomains Ω+ and Ω− so that Ω = Ω+ ∪ Ω− ∪ Γ0, see Fig. 1.

Fig. 1. Acoustic domain Ω and perforated plane Γ0

In the differential form the problem for unknown acoustic pressures p+, p− reads as follows:

c2∇2p+ + ω2p+ = 0 in Ω+,

c2∇2p− + ω2p− = 0 in Ω−,

+ boundary conditions on ∂Ω.

(1)
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In a case of no convection flow the usual transmission conditions are given by

∂p+

∂n+
= −i

ωρ

Z
(p+ − p−),

∂p−

∂n−
= −i

ωρ

Z
(p− − p+),

(2)

where n+ and n− are the outward unit normals to Ω+ and Ω−, respectively, ω is the frequency,

� is the density and Z is the transmission impedance; this complex number is characterized by

features of the actual perforation considered and is determined using experiments in the acoustic

laboratories, see e.g. [6].

The aim of our approach is to replace the transmission condition (2) by the two-scale ho-

mogenization limit of the standard acoustic problem and obtain some homogenized coefficients

characterizing the perforated structure. The problem of acoustic transmission in muffler struc-

tures treated by means of the asymptotic method was studied in [1, 2], but the results are limited

only for simple shapes of perforation.

2. Problem formulation

By indices ε we denote the dependence of variables on the scale parameter ε > 0; similar

convention is adhered in the explicit reference to the layer thickness δ > 0. By the Greek

indices we refer to the coordinate index 1 or 2, so that (xα, x3) ∈ IR3.

Let Ωδ ⊂ IR3 be an open domain shaped as a layer bounded by ∂Ωδ which is split as follows

∂Ωδ = Γ+

δ ∪ Γ−
δ ∪ ∂Ω∞

δ , (3)

where δ > 0 is the layer thickness, see Fig. 2. The acoustic medium occupies domain Ωδ \ Sε
δ ,

where Sε
δ is the solid obstacle which in a simple layout has a form of the periodically perforated

sheet.

For homogenization technique, it is important to have a fixed domain, therefore the dilata-

tion is considered, cf. [4, 6]; let Γ0 be the plane spanned by coordinates 1, 2 and contain-

ing the origin. Further let Γ+

δ and Γ−
δ be equidistant to Γ0 with the distance δ/2. Therefore,

x3 ∈] − δ/2, δ/2[ and we introduce the rescaling x3 = zδ.

Fig. 2. The perforated interface layer with periodic solid perforations; Ω – acoustic medium, S – solid

perforation (obstacle)
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The problem of acoustics is defined in Ωε
δ. We assume a monochrome stationary incident

wave with frequency ω and no convection velocity of the medium, so that

c2∇2pε δ + ω2pε δ = 0 in Ωε
δ,

c2∂pε δ

∂nδ
= −iωgε δ± on Γ±

δ ,

∂pε δ

∂nδ
= 0 on ∂Ω∞

δ ∪ ∂Sε
δ ,

(4)

where c = ω/k is the speed of sound propagation, gε δ±k2 is the interface normal acoustic

momentum; by nδ we denote the normal vector outward to Ωδ.

3. Homogenization

The homogenized model can be derived using the Tartar method of oscillating functions, see [5,

8, 7] or, alternatively, the periodic unfolding method, see [4]. The homogenization technique

itself is outside the scope of this paper, but we briefly describe the first approach.

The homogenization procedure is based on the following steps: 1) a priori estimation of the

pressure gradient, which gives information for 2) the formal asymptotic expansion that allows

to decompose the problem into local and global subproblems; 3) the homogenized coefficients

are identified using the Tartar variational method; 4) correction to a finite scale of the obstacle

thickness.

The homogenization process results in the limit macroscopic problem in the transmission

layer and the local microscopic subproblem that is formulated using so called corrector func-

tions. The local subproblem is solved within the reference periodic cell and gives some homog-

enized acoustic coefficients that characterize the specific shape of the perforation at the micro-

scopic level. These acoustic coefficients allows to constitute the new homogenized transmission

condition imposed on the perforated surface at the global (macroscopic) scale.

3.1. Local microscopic problems

The homogenized coefficients are introduced using corrector functions πβ, ξ± (β = 1, . . . , (N−
1) where N is the problem dimension) computed for the reference periodic cell Y which

is perforated by the solid (rigid) obstacle S, so that the acoustic medium occupies domain

Y ∗ = Y \ S. We refer to the upper and lower boundaries of Y by I+

Y and I−
Y (see Fig. 3).

Fig. 3. Reference periodic cell Y ; Y ∗ – acoustic medium, S – solid obstacle, yα – “periodicity” direction,

z – normal direction, I+
Y and I−Y – upper and lower boundaries
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The local microscopic problems can be formulated (see [7, 8]) in the discrete forms (in the

sense of finite element approximation) as: Find πβ and ξ± such that (notation pH means the

Hermitian transpose to p)

(

K +
1

κ2
Kz

)

ξ± =
|Y |

c2κ
f ,

(

K +
1

κ2
Kz

)

πβ = Kyβ,

(5)

where K, Kz, f are finite element approximations of integrals

∫

Y ∗

∂q

∂yα

∂p

∂yα
≈ qHKp,

∫

Y ∗

∂q

∂z

∂p

∂z
≈ qHKzp,

(

∫

I+
y

q −

∫

I−y

q

)

≈ qHf

(6)

and y is the coordinate vector. Parameter κ relates the thickness and the period length, so that

δ = κε.

3.2. Macroscopic problem in transmission layer

Homogenized acoustic behaviour in the transmission layer is expressed in terms of interface

mean acoustic pressure p0 and acoustic transverse momentum g0 which satisfy the interface

problem

[

(A − φ∗ω2M) iωBT

−iωD ω2F

] [

p0

g0

]

=

[

0

−iωM (p̄+ − p̄−)

]

, (7)

where φ∗ = |Y ∗|
|Y |

and matrices A, B, D, F, M are finite element approximations of the following

integrals

∫

Γ0

Aαβ
∂q

∂xα

∂p

∂xβ
≈ qHAp,

∫

Γ0

Bα
∂q

∂xα

p ≈ qHBp,

∫

Γ0

Dα q
∂p

∂xα

≈ qHDp,

∫

Γ0

F± q p ≈ qHFp,

∫

Γ0

q p ≈ qHMp.

(8)
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These equations involve the homogenized coefficients which are expressed in terms of the cor-

rector functions πβ and ξ±:

Aαβ =
c2

|Y |

(

yβ + πβ
)T

K (yα + πα) +
c2

|Y |κ2

(

πβ
)T

Kzπ
α,

Dα =
1

|IY |
fT πα =

κ

|IY |
Bα,

F± =
1

|IY |
fT ξ±.

(9)

It is possible to compute the Schur complement (for ω out-of-resonance) of the discretized

interface problem (7), so that

p0 = −iω
(

A − φ∗ω2M
)−1

BTg0,

ω2

[

F − D
(

A − φ∗ω2M
)−1

BT
]

g0 = −iωM
(

p̄+ − p̄−
)

.
(10)

Thus, it is possible to introduce the coupled impedance

X(ω2) = ω2

[

F− D
(

A − φ∗ω2M
)−1

BT
]

, (11)

hence the discretized interface transmission condition reduces to

X(ω2) g0 = −i ω M
(

p̄+ − p̄−
)

, (12)

which resembles the structure of the standard conditions (2), since g0 approximates the transver-

sal velocities (g0 ≈ ∂p+/∂n+).

4. Global acoustic problem

Macroscopic acoustic behaviour in Ω is described by acoustic pressures p+, p− which satisfy

equations (1) and by the homogenized interface problem (7), so we can consider (see [4, 8])

c2 ∂p+

∂n+
= iωg0,

c2
∂p−

∂n−
= −iωg0 on Γ0,

(13)

instead of (2). The relationship between p0, g0 and pressure jump p+ − p− is given by (7).

We need to specify boundary conditions on boundary ∂Ω = Γin∪Γout∪Γw consisting of the

planar surfaces Γin, Γout and the walls Γw, see Fig. 4. On Γin we assume an incident wave with

given amplitude p̃ and on Γout we impose the radiation condition in the form of the anechoid

output, so that

iωp + c
∂p

∂n
= 2iωp̃ on Γin ,

iωp + c
∂p

∂n
= 0 on Γout ,

∂p

∂n
= 0 on Γw .

(14)

115
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Fig. 4. Macroscopic domain Ω; L = 1 m, R1 = 0.3 m, R2 = 0.6 m

The global problem in the FEM discretized form can be expressed by the following linear

system
⎡

⎢

⎢

⎢

⎢

⎣

C(ω) (Q+)H(ω) (Q−)H(ω) 0

Q+(ω) C̄+(ω) 0 −iωM

Q−(ω) 0 C̄−(ω) +iωM

0 +iωM −iωM X(ω2)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

p

p̄+

p̄−

g0

⎤

⎥

⎥

⎥

⎥

⎦

= iω

⎡

⎢

⎢

⎢

⎢

⎣

h̄

0

0

0

⎤

⎥

⎥

⎥

⎥

⎦

, (15)

where

c2

∫

Ω

(

∇p∇q − ω2pq
)

≈ qHC(ω)p,

c2

∫

Ω+/−

(

∇p∇q − ω2pq
)

≈ qHC̄+/−(ω)p,

(16)

matrices Q+(ω), Q−(ω) are associated with boundary conditions in Ω̄ \ Γ
+/−
0 , p is pressure in

Ω+∪Ω−∪∂Ω, p̄+, p̄− are pressures on Γ+
0 , Γ−

0 and h̄ involves the right hand sides of boundary

conditions (14).

We recall that coupled impedance X(ω2) is linear function of scale parameter ε, which

reflects a given finite scale of the perforation.

5. Numerical simulations

This section presents some illustrative numerical examples of acoustic transmission showing

influence of the perforation design. Examples were computed using our code based on Python

language (“Sfepy” project, [3]) and Matlab system. We use Q1 finite element approximation

for acoustic pressure in Ω and characteristic functions in Y and P1 line elements on Γ0 to

approximate p0 and g0.

5.1. Microstructure — various perforations

In Figs. 5 and 6, we compare the corrector functions ξ±, π and homogenized parameters of three

different perforations in 2D and three perforations in 3D. Due to the geometrical arrangement of

the solid obstacles the coupling coefficients B, D vanish for perforation types 2D/#1, 3D/#1 and

3D/#2. For types 2D/#2, 2D/#3 and 3D/#3 these coefficients are nonzero, i.e. the transversal

and tangential velocities in the interface layer are coupled.

116
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Mic. 2D/#1 Mic. 2D/#2 Mic. 2D/#3

ξ±

π1

A [(m/s)2] 99271.58 77973.96 51535.28

B [m] 0 −0.112957 −0.452692

F [s2] 1.405 082× 10−5 1.530 726 × 10−5 3.344 039× 10−5

Fig. 5. Distribution of the characteristic functions ξ±, π1 in the microscopic domain Y ∗ and homoge-

nized acoustic coefficients for three shapes of 2D perforations
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Mic. 3D/#1 Mic. 3D/#2 Mic. 3D/#3

Geometry

ξ±

π1

π2

A [(m/s)2]

[

98 415.75 0.0
0.0 98 415.75

] [

98 654.50 207.83
207.83 98 155.32

] [

75 295.34 0.0
0.0 81 814.05

]

B [m]
[

0.0 0.0
] [

0.0 0.0
] [

0.142 330 0.142 330
]

F [s2] 1.754 429× 10−5 1.647 584 × 10−5 2.838 839 × 10−5

Fig. 6. Distribution of the characteristic functions ξ±, π1 and π2 in the microscopic domain Y ∗ and

homogenized acoustic coefficients for three shapes of 3D perforations
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5.2. Global problem — modelling acoustic waveguide

In Fig. 7 we show the global response of a waveguide with the homogenized transmission layer.

The modulus of the acoustic pressure p is displayed and we illustrate how this response is

sensitive to the type of perforation (2D/#1, 2D/#2 and 2D/#3). The results were obtained for the

following parameters: density ρ = 1.55 kg/m3, acoustic speed c = 343 m/s, ω = 5 · c/L and

the amplitude of the incident wave (see (14)) is p̃ = vn/(ρc), where vn = 1 m/s. The geometry

of the acoustic (macroscopic) waveguide is depicted in Fig. 4.

Fig. 7. Modulus of the acoustic pressure p [Pa] in the macroscopic waveguide for perforation types

2D/#1, 2D/#2 and 2D/#3 (see Fig. 5)

6. Conclusion

We demonstrated the homogenization approach applied to modelling the acoustic transmission

on perforated interfaces. Our model involves the new transmission conditions, see [7, 8], with

homogenized parameters which reflect specific geometry of the periodic perforation. In numer-

ical examples we showed the sensitivity of the acoustic transmission coefficients on the shape

of perforations. The presented approach can be applied to various engineering problems, such

as modelling of muffler structures (see [1]), etc.
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[7] E. Rohan, V. Lukeš, Homogenization of the acoustic transmission through perforated layer, Pro-

ceedings of the 8th International Conference on Mathematical and Numerical Aspects of Waves,

University of Reading, 2007, pp. 510–512.
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