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Abstract

The paper deals with the acoustic transmission through perforated interface and its sensitivity w.r.t. the perforation
design. The homogenized transmission conditions are imposed on an interface plane separating two halfspaces
occupied by the acoustic medium. The conditions were obtained recently as the two-scale homogenization limit of
the standard acoustic problem imposed in the layer perforated by a sieve-like obstacle with periodic structure. The
limit model involves some homogenized impedance coefficients depending on the so-called microscopic problems;
these are imposed in the reference computational cell, Y embedding obstacle S the shape of which can be designed.
This homogenization approach allows for an efficient treatment of complicated perforation designs of perforations.
Acoustic response to the global acoustic problem involving the transmission conditions is subject to the sensitivity
analysis. Namely the total variation of an objective function depending on the acoustic pressure w.r.t. shape of S
at the “microlevel” is derived.
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1. Introduction

Minimization of noise produced by flowing acoustic medium (inviscid compressible fluid) be-
longs to important challenges of the aerospace and automotive engineering. For example, in the
exhaust silencers of the combustion engines the gas flows through ducts equipped with various
sieve-like structures which in part may influence the transmission losses associated with acous-
tic waves propagating in the exhaust gas. Apart from optimization of the exhaust silencers,
obviously there are other devices involving sieve-like structures for which the acoustic trans-
mission is an important figure to look at.

In the paper we deal with the optimal acoustic transmission through perforated interface.
In [10], using the asymptotic analysis we developed the homogenized transmission conditions
to be imposed on an interface plane representing the periodic perforation which in reality is
designed by obstacles having possibly complicated shapes.

We consider the acoustic medium occupying domain €2 which is subdivided by perforated
plane T’y in two disjoint subdomains Q" and 27, so that Q@ = QT U Q™ U T, see fig. 1. In a
case of no convection flow (the linear acoustics), the acoustic waves in {2 are described by the
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Fig. 1. Illustration of the transmission coupling — the acoustic pressure jump is proportional to the
transverse acoustic velocity g°

following equations
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where £L—”i = n* . Vp are the normal derivatives on Iy w.r.t. normals outward to Q* and

Q~, respectively. The transmission conditions on interface I'y involve the transversal acoustic
velocity gy (up to the factor of the wave number squared); this variable satisfies additional
integral identities the were developed in [10] using the asymptotic analysis performed in the
o-interface layer, see Fig. 2.
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Fig. 2. The perforated interface layer, {25 embedded in ©; illustration of the thickness dilatation z = x5/
and the periodic unfolding related to rescaling y, = x, /e, « = 1,2 for § = se. In the reference periodic
cell, the perforation geometry is represented by Y* C Y

2. Homogenized interface conditions on perforated layer

In this section we record the homogenized model of the perforated transmission layer, see [10].
This serves the transmission conditions closing the boundary value problem (1).

The homogenized coefficients governing the acoustic transmission are introduced below us-
ing so called corrector functions defined in the reference periodic cell Y =]0, 1[*x]—1/2, +1/2],
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Y C R®. The acoustic medium occupies domain Y* =Y \ S, where S C Y is the solid (rigid)
obstacle. For clarity we use notation I, =0, 1[%. The upper and lower boundaries are transla-
tions of (1,,0); we define I/ = {y € Y : z=1/2}and I, = {y € OY : 2z = —1/2}. By
H;E(LQ)(Y) we denote the space of H'(Y') functions which are “1-periodic” in coordinates ¥,
a = 1, 2; such functions will be called “transversely Y-periodic”.

2.1. Limit macroscopic equations of the transmission layer

The homogenized transmission conditions is expressed in terms of interface mean acoustic
pressure p° € H'(Ty), and fictitious acoustic transverse velocity g° € L*(T); these quantities
satisfy the interface problem constituted by two integral identities

Y*
/Aagc’?ﬁpoagq | ‘wQ /p0q+iw/BQ8§qg° =0,
To Y| To To 2)
1
—iw/ Dﬁ8§p°¢+w2/ Fg'p = —iw— [ (p" —p7)¢,
Fo F0

€0 Jry

to hold for all ¢ € H'(T'y) and ¢» € L?(T'y). These equations involve the homogenized coeffi-
cients A,3, B,, D, and F' expressed in terms of the local corrector functions 77 and ¢ defined
in Y*, the solutions of the microscopic auxiliary problems introduced below.

We remark that p” presents an internal variable describing the acoustic wave distributed in
the interface layer, being driven by ¢°; this phenomenon is featured by 9,p° # 0 and it appears
only if the coupling coefficients do not vanish, i.e. Bg, D # 0. For the discretized form (using
FEM) one can introduce an effective non-local acoustic impedance which relates the pressure
jump p* — p~ on Iy to the transverse velocity represented by ¢°, see also Fig. 3.

QF I;
in oQ r I_n‘ml

w

Fig. 3. The domain and boundary decomposition of the global acoustic problem considered. This layout
is inspired by [4]

2.2. Microscopic auxiliary problems and homogenized coefficients

In order to compute the homogenized coefficients involved in (2) the following local problems
must be solved (s« is the scaling parameter determining the ratio “thickness/period length”):

o (Corrector of the tangent interface velocity v; ~ 9op°) Find 7° € Hj,, 5, (Y), 5 = 1,2,
such that

1
/* {837#” 0%q + ;3Z7rﬁazq:| = - / g Vg€ Hyqq(Y)
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e (Corrector of the normal interface velocity v,, = ¢°*) Find £+ € Hy(, 5 (Y)/R, such that

1 Y
/ {%Ei d%q + jazfiazq} = _ |2 | </ qds, —/ qd&,) ,
. » A\ S+ -

forall g € Hy,, (Y)/R

The homogenized coefficients are now defined as follows:

e Tangent acoustic diffusion coefficients

C2 2

c
s = | OU° + A U + ) +
8 ¥ Y 2| Jy-

_ 9,70, 1 .
Y] Jy-

e Coefficients of transversal-to-tangent coupling of velocity

C2

Ba = T agfi7
Y1 Jy-

1 o (e
»xB, =D, = Iy(/[;'ﬂ— dSy—/_w dSy>7

Y

e Local transversal impedance

1
Fr = — +ds, — +ds, | .
m(@f ytég Q

2.3. Acoustic problem in duct with transmission condition

As explained above, in domains with a perforated obstacle I'y the acoustic pressure is discon-
tinuous along I'y, which in general can be a fissure embedded in a connected domain €2. For
this we need H! (), Ty), the space of discontinuous solutions defined at once in the whole of
Q2 HL (QTy) = {q € L*(Q) : q¢lor € HY(Q"), r = +,—}. By ¢" and ¢~ we denote
traces on [y of ¢ € H'(Q") and ¢ € H*(Q™), respectively. Thus, in what follows by p we
denote the solution in 2 C Ty, whereas on I'y the pressure is introduced by traces p* and p~ of
p € HY(QF)and p € H'(27), respectively; these traces are involved in the interface problem
2).

We also need to specify boundary conditions on boundary 02 = I'y, U 'y U T'y, consisting
of the planar surfaces I, ['oy and the channel walls 'y, see Fig. 3. On I';;, we assume an
incident wave of the form p(z,t) = pe~*"@eit where (n;) is the outward normal vector of
Q, on I'y,, we impose the radiation condition in the form of the anechoic output, so that

0
iwp + c—p =2iwp only,,
on
0
iwp + ¢~ 0 onTyy , 3
on
dp
— =0 Iy .
o on
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The boundary value problem (1) with (1)3 specified by conditions (3) can be formulated weakly
as follows. Given amplitude p of incident plane wave with frequency w, the weak solution
p € H (9, T) to our acoustic problem is obtained by

& Vp~Vq—w2/pq+iwc/ pq dl’
Q Q TinUlout (4)

—/ ¢°¢tdr —I—/ g% dl' = i2wc/ pqdl Vg€ H' (Q,Ty),
s 5

FO Cin

where ¢*/~ are the traces on I'; and ¢° is the solution of interface problem (2).

3. Formulation of the optimal perforation design problem

In this section we shall formulate problem of optimal shape of the periodic perforations targeted
to maximize the transmission loss measured in an acoustic device which is equipped with the
perforated interface.

3.1. State problem hierarchical formulation

We shall first summarize the structure of the state problem describing acoustic waves in a duct
2 C R? wherein the perforation represented by interface 'y is placed; we adhere the same
decomposition as introduced earlier; namely we may consider the following placement of the
flat (homogenized) perforation:

Ip={zeQ|z3=0},
O ={r e Qa3 >0}, %)
Q" ={r e z3<0}.

The state problem has a hierarchical structure incorporating 3 levels, as will be recognized
when developing the sensitivity analysis.

Let p be the acoustic pressure in Q@ = QT U Q™ UTy and p*, p~ be traces of p|,, p|_ on
Iy, respectively, where p|. are restrictions of p on QF. The level 1 state problem is to find
p € H',(Q,Ty) such that (by virtue of (4) we employ a self-explaining notation)

—iw {(g°, q )y, +iw (¢°, ¢ )p, = 2iwe (P, Qp,
(6)

ag (p, ) — w* (p, q)q +we (p, @

in—out

forall ¢ € H (2, T), where ¢° € L*(Ty) satisfies the interface conditions represented by the
two homogenized equations (2); the level 2 state problem related to (2) is to find ¢° € L?(T'y)
and p° € H'(Ty) (an internal variable) such that

AW°, ¢) =W’ (0, ¢)p, +iwB(g%,¢) =0, Vo e H'(T),
@)
s lB( )+ F () = i (07— 0y, V€ TTY),

where ¢* = |Y*|/|Y| and s = 3¢/|1,]; the bilinear forms involved in (7) are defined in terms
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of the homogenized coefficients (recall & = 1, 2 for 3D problems):
A(p., q) = / Aagagpaaq dlﬂ
To
B(g,q) = / Bogd.qdT, (®)
To
Flg,h) = / Fghdl.
To

The homogenized coefficients, A, B, F' and, thereby, the bilinear forms A, I3, F are determined
by the solution of the level 3 state problem constituted by the local corrector problems. To
simplify the notation, we introduce

Vg = (0%, 5 '0.q),

i (6 = [ 9n-Se= [ (owmore + Lomoe) o

+ — _
N (5)—/@5 K

and rewrite the local corrector problems as follows: Find 7°, ¢ € H #1#172) (Y)/R such that

aﬁ{/ (ﬂ—g +y[ﬁ7 ¢) = 07 ng € H;#(I,Z)(Y)v ﬁ = 1727

(10)
0 (6 0) =~ Lk), o e Ly ).

e
Using the notation just introduced, the homogenized coefficients can be expressed, as follows:

2
C * o «
Aus = —|Y|ay (ﬂﬁ+y[’, ™ +y%),

CQ

Ba: ma; (ga yot)7 (11)
1

F=—~%(¢).
) (€

3.2. Optimal perforation problem

We now consider an objective function ®(p), e.g. expressing the transmission loss evaluated
using two pressures p®, p°,

o(p) = o(p*,p") = 20log ('Zbl) , pr=ple=a"), p=plx=2"), 2"€Q,
12)
where p satisfies the state problem, as represented by (6). In the 3D case, the shape parame-
terization of 05 (the boundary of the obstacle placed in Y') is introduced through a one-to-one
mapping (diffeomorphism) (v, ) : R? — R3, which for a given design variable o € RNav
associates a reference placement ¢t € T° C R? with a corresponding spatial position 3 on the
manifold 95, i.e. 05 3 y = (o, t), t € T.
In fact ¥(«) shapes domain Y* where the microscopic auxiliary problems (10) are posed to
computed corrector functions 77, ¢; these determine homogenized coefficients A, B, F involved
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in transmission conditions (7), being coupled with (6) in terms of transversal “velocity flux” g°
and the pressure discontinuity p™ — p~.
We can now define the optimal perforation design problem:

in ¢
in ®(p)

subject to:  p solves (6)—(7), (13)
where A, B, F' are given by (10)—(11).

D 44, 1s the set of admissible designs; besides shape smoothness requirements it should reflect
some constraints concerning the size of the obstacle (thickness) and porosity of the interface.

Due to the hierarchical structure of the state problem, the homogenized coefficients can be
viewed as “intermediate” optimization parameters. Then the optimal perforation problem splits
into the following two:

e Shape Optimization: using (micro) geometry of perforation represented by «, optimize
homogenized transmission coefficients, A, B, F' on I,

e Material Optimization: using A, B, F' on Iy optimize acoustic pressure in 2.

4. Obstacle shape parameterization and shape derivative

By virtue of the hierarchical setting of the problem, we are interested in the shape sensitivity of
the microscopic response described by the corrector functions, 77, £ on the perforation design,
as represented by 0S.

4.1. Design velocity field

In Section 4.2, in the standard way, we consider a “flux” of material points which is given in
terms of a vectorial (design velocity) field ﬁ(y), y € Y sothat for y € 95 it describes the “flux”
of points on the design boundary. Such velocity field, in general, must be differentiable w.r.t.
y and must vanish on that part of the boundary of the optimized structure which is not subject
of the design modification (so-called “fixed boundary”); in our case all exterior boundary Y
is fixed. A possible construction of V:V — R} (or R? in the 2D situation) is performed by
following steps:

— use a finite set of the design variables {a*}, k = 1,..., N4, which shape the design
boundary 9SS in this way we introduce the mapping >(a, T') — 0S;

— consider a design perturbation §a which modifies the design boundary

{6a*} — 5(0S) = (V(y)}, y € 0S; (14)

— compute V = (Vy, Vs, V) as a solution of the auxiliary Dirichlet boundary value prob-
lems for an elastic medium occupying domain Y*: in our case
0Yo;(V)=0 inY",

V=0 on I;E
n;V; =0 ondY™\ (0SU Iyi)

—

V=06(S) onds,

5)

which gives Vin Y*. We shall consider extension of V by zero over Y \ Y*.
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Fig. 4. Left: design velocity field is supported in Y*, boundary 9 is shaped by parameters {a}, Right:
Domain perturbation using (17); parameter ¢ corresponds to 7 used in the text

Above we consider o;; = cijklefj(ﬁ) with arbitrary elasticity c;;;. It is worth noting, that by
means of an elasticity defined inhomogeneously in Y*, this machinery allows for controlling
the flux of finite element mesh in the design (optimization) process.

The design variables a = {a’“}, k = 1,..., Ny, influence the design boundary in terms
of the shape functions which satisfy certain regularity conditions with respect to the curve pa-
rameterization " 3 ¢t — 0S5 (we adhere the 2D situation). As an example of the design
parameterization, we may consider a given set of shape functions {wf(t)}s, t € T, i = 1,2,
k =1,..., Nqy; these guarantee regularity of 9S(«a) (but also restrict its variability) by virtue
of the following definition

85(@) = {y(t,a) | te Ta a € Dadm}:
Nav
where y;(t, ) = g;(t) + Y _ a*wh(t), i =1,2 (16)
k=1

{g(t)}teT = 05",

Above D4, is a given set of admissible design parameters and 95 is some reference (initial)
design attained for « = 0. Obviously, the shape functions must be chosen so that for any fixed
a € Dy, we have a one-to-one mapping 7' 3 ¢t — y(t,a) € Y.

4.2. Elements of material and shape derivatives

We are interested in variation of the shape of the obstacle § placed in the domain, Y, thereby
in variation of Y* C Y. On introducing the velocity field V in Y, as suggested in the previous
section, see (14)—(15), we parameterize the material points constituting the domain Y by

where 7 is the “time-like” variable, see Fig. 4; for all details on the concept of shape and material
derivatives we refer to [6] and [5]. Throughout the text below we shall use the notion of the
following derivatives:

d(-) ... total (material) derivative
d-(-) ... vpartial (local) derivative w.r.t. 7.

The derivatives just introduced are computed as the directional derivatives in the direction of
V(y), y € Y for reader’s convenience we recall the definitions of both the material and local
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derivatives, as considered e.g. in [5]. Let f(y) be a smooth function, e.g. f € C'(Z), where
Z DY is such that for 7 small enough z;(y, 7) € Z for any y € Y. We assume that f depends
on the actual shape of Y which is perturbed by the velocity field V, as introduced in (17).
Therefore, by f(z,7) we denote the function value evaluated at z = z(7) and associated with
the perturbed design Y (1) = {z| 2(y,7) =y + 7V(y), y € Y'}. Due to mapping (17) one can
trace the “motion” of a selected material point. The material derivative reflects the change of
the function value in the material point which is convected with velocity V:

df(y)oV = lim Y

T—04 T
o [Cn D = F) | FT) - f) a8)
T—04 T T—04 T
=0 f(y) o V+VI(y) V),
where the partial derivative is defined by
0:f(y)oV = lim M (19)

so that it corresponds to the local change in f evaluated at fixed position y € Y. Whenever
a particular function of interest & (z, 7) can be expressed explicitly in the form h(z(y, 7),7) =
h(y,T), the shape derivative makes sense, so that 6,h = dh holds. Therefore, any function
depending “directly” on the design modification (17) is differentiated using (19), however, typ-
ically the solutions to the problems formulated on domains subject to design modifications are
differentiated in the sense of (18); such treatment is naturally pursued when the finite element
solution is considered (values defined at mesh nodes) and finite difference calculation is applied
to approximate the sensitivity of the solution w.r.t. a particular design change.

In Section 5.2 below, we shall use extensively the following formulae, which are easy to
verify (note J(2(y, 7)) = det[0z;(y, T)/0y;])

(821 ) d (azi(y, T)) oVi(y)
5. oV = — = ;
ay] d T ayj =0 ayj
M d Oy MWi(y)
ZIR R L —— 20
6T <OZJ> °V dr <6zj(y77—)) =0 6y] 7 ( )

52 (1) 0V = 2 (el 7)), = T2 — aiv?,

where by % we mean the partial derivative w.r.t. 7. For completeness,

(5T|Y*|0V—5T</ dy>ov—/ divﬁdy:/ V- idly, 1)

where we recall V - 77 = 0 on 9Y* N Y.

5. Sensitivity analysis for uniformly designed perforation

We shall now develop the sensitivity of functional ® which depends on the perforation design
through the hierarchy of the state sub-problems declared in definition (13). Assuming that the
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perforation is uniform on entire I'y, there is only one set of homogenized coefficients A, B, F'
(i.e. they are not functions of z € I'y). In order to derive the sensitivity formulae, we proceed
in the following steps:

1. we define the Lagrangian of problem (13) respecting constraints (6)—(7) only;

2. using the adjoint problem technique, we derive sensitivity of ® w.r.t. homogenized coef-
ficients A, B, F;

3. we derive the sensitivity of A, B, F' w.r.t. the perforation design represented by mapping
> dependent on design variables a.

In what follows, by expression d,f(¢, . ..) o d¢ we mean the (partial) Gateaux differential of f
w.L.t. ¢, so that 6, f (¢, ... ) is the (partial Fréchet) derivative.
5.1. Sensitivity w.r.t. the homogenized transmission coefficients
Because of complicated structure of the state problem (6)—(7), it is useful to introduce its ab-
stract form which will allow us to derive efficiently the sensitivity formulas. Letu = (p, p°, ¢°)
be a solution to (6)—(7) and define V = H' (Q,T) x H'(T'y) x L*(Ty), the space of the state
problem solutions. We shall use the following notation:
\Il(u,v> = agn (p, q) - WQ (p7 q)Q +wce <p7 q>rin—out —iw <go7 qjL - q7>p
+ A", @) — 0 (0%, o)y, +iwB(g", )
. 1 _
- 1&)%03(1/),]?0) + w2f(go’ 1/)) + IWE <p+ -DP, 1/}>Fo ) (22)
f(V) :21(UC <]j7 Q>I‘in ]
where v = (¢, p,?) .

0

Now the state problem can be rewritten in the abstract form: find # € V such that
U(u,v)=f(v) WweV. (23)
Let us denote by u* the complex conjugate of u. Obviously, if u solves (23), then also
U*(w*,v) = f*(v) WeV, (24)
where U*(-,-) and f*(-) are complex conjugate to (-, -) and f(-), respectively.

The Lagrangean associated to step 1 involves the triple of primary variables u = (p, p°, ¢°)
and two Lagrange multipliers, wy = (q, %, V%), & = 1,2, associated to the state problem
defined equivalently by (23) and (24):

Llu;wi,wo) =0(u) + V(u,wi) — f(w1) + V(@ wa) — [*(w2), (25)
where ®(u) = ®(p). Let us consider ®(u) evaluated just for admissible states u, i.e. for any
admissible design giving the homogenized coefficients we consider u satisfying (23). Then
optimality condition

0 L 0 du = JpE06p+5poEO(5pO+5go£O(SgO =0 (26)
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must hold for any variation du € V, where
8L 0 6p = 8,0(p) © 6p + aq (5p, q) — w* (5p, @)g +we (Op, q)r,, ., +
+ iwgl—o <(5p+ —op~, ¢>Fo

dpoL o op° = A(0p°, ) — wis* <6p0, <p>ro — iwsB(1, 6p°)
6,0L008g° = —iw (6¢°, " — q’>FO +iwB(64°, p) + W F(66°, ) .

27)

Since we deal with complex functions, it is worth to recall the sense of differentiation employed
above; p = R(p) + i(p), hence

(5pq)(p) odp = 5§R<p)(b(p) o ?R((Sp) + i(Sg(F)(I)(p) o %(5}))

If condition (26) is satisfied for various designs a € D ,4,,,, We obtain a path of admissible
states u(«) which form a manifold in the design—state space. Thus, (13) may be considered
as minimization of ®(p) w.r.t. « on the manifold p(«). Then, by virtue of optimality (26),
multipliers wy, & = 1, 2, called the adjoint variables, must satisfy

[59;(,,)\Il(u7 Wl) + 55)?(,,)\1’*(11*, WQ) + 5;}3(,,)@‘(1#)] o (5§R(u) =0,

28
[ 2t 1) + G U (1", )+ Gy ®(a)] 0 53(t) = 0. @

Since, due to linearity, dpu)W*(u*, wo) = One)V*(u,we) = 105 V" (1", w2) and idg)
U(u,wi) = —On@)V(u,w1), on multiplying (28), subsequently by —i and i and on adding
the result to (28);, the following equivalents of (28) can be obtained:

2699(”)\11(% wl) o (5%(1&) = — [(59?(”)‘1)([!) — iég(u)@(u)} o (5§R(u) y

: (29)
25%(u)\11*(u,w2) o (5%(”) = — [5%(,,)@(14) + 1(5g(u)<1)(u)] o (5§R(u) R

where the r.h.s. of the two equations are mutually complex conjugate. Hence ws = w; = w and
just one adjoint equation must be solved forw € V:

20 (v, w) = — [bpu P () — 05 P(m)] ov WeV, (30)
which reads as: compute (q, ¢, 1) € H',(Q,Ty)x H'(Ty) x L*(T) satisfying adjoint equations

A(@? 90) - WQC* <957 99>FU — iw%(]B(w7 @) =0,
WwB(1), @) + W2 F(1h, ) — iw <7J}7 gt — q7>r _0,

1, i i i ) @31
w5 (0" =7 )y, + 00 (@ 0) = (@ Qo +weld D, =

in—out

1 . g
=5 [Or)®(p) =056y 2(P)] © G
for all (§,¢,v) € H',(Q,T) x H'(Iy) x L*(Ty). Note the order of equations which was

changed w.r.t. to (22) to make the symmetry of (31) more apparent. Now the Lagrangian (25)
can be rewritten as

Lu;w) =)+ U(u,w)— f(w)+ U (u*,w*) — f(w"). (32)
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Once the adjoint state w = (g, , ¢) has been computed, one can evaluate sensitivity of ®
w.r.t. the homogenized coefficients (which depend further on design «). For this we consider
Lagrangian (25) as the function of homogenized coefficients A, B, F'. Then the total variation
of £ involves partial derivatives w.r.t. A, B, F'; it holds that

dLod(A B, F)= [(5(1,71,0_’90)[: o d(p,p° g°) + 6<A,B7F)£] 00(A,B,F), 33)

where 0 is the total variation w.r.t. A, B, F'. Since we consider only admissible states, i.e. (31)

holds also for (¢, ¢, 1) = d(p, p°, g°), the first r.h.s. term in (33) vanishes. Moreover, 6L = §®
w.r.t. to any variation on the path of admissible states, hence

5q)(p) o 6("47 37 F) = 6(A,B,F)£(pap07 907 q, P, 1/1) o 6(/47 Ba F) ) (34)

where (p, p°, ¢°) is the state problem solution and (g, ¢, v) satisfies (31), for a given (A, B, F)).
The sensitivity 6(A, B, F') w.r.t. the microstructure is derived below.

5.2. Shape sensitivity of the homogenized transmission coefficients

Through the following text, for simplicity of the notation, we shall write just 0..(-) and o(-)
instead of 0.(-) o V and 6(-) o V, respectively, to refer to the directional derivatives (18)—(19).

In order to complete the sensitivity formula (34), we shall derive sensitivity formulae for
computing the shape derivatives of the homogenized coefficients defined in (11). For this we
need to differentiate the local equations (10); thus, we obtain

57'0’;(/ (7.(.(1’ (b) + a*Y (57Ta + Va: (b) = 07
57'0’){’ (57 ¢) + G/;‘/ (667 ¢) = 07

for all ¢ € H;L(Lz)(Y)» where using (20)

(35)

603 (¢, ) = / [divvw NV — (VV-V)- Vi — Vo - (VY- w)]

_ / [V - 4 — V40100, — Do Vi (36)

*

1 1
—;@Vk@wﬁazw - ;@4255%514 ,
This expression is derived by virtue of the definition in (18), using (20),

6.5 (7, ) = lim 7" [ag, (7, 0) = ay (7, 0)]
. Ay Om Oy 0¢ 1 Oy, Om Oy, D¢
h s ,P) = T T TP J(2).
where  ay ;) (7, ) /y [&za Oyp 0z Oyp 22 D23 Oyy, Oz3 Oy 2
On differentiating (11) we obtain the sensitivity of A,s:

2
§Aus = ‘g/—| [(5Ta§ (Wﬁ +yg, ™+ ya) oV+ay Vs, 4+ ya) + ay (7r5 + ys, Va)] (37)

where the following identity was employed a}. (77 + yg, d7*) = 0. From this and using (35),
one obtains

ay (6€, yg) = —ay (8¢, 7°) = 6.a} (& ) | (38)
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which is used to simplify the sensitivity of B,:

2

0Ba = — [a¥ (06, ya) + @ (€, Vo) + 6.3 (€, o)
Y| (39)
C2
= 1y 1973 (6 7 4 ) + i (6 V)]

In order to derive the sensitivity of F', we apply subsequently (10), with ¢ = §¢ and (35),, thus

2 2

»c »c
- ay (€, 68) = =7
LY 12| 1Y]

OF = —-7%(6¢) =

7 5,5 (6, €) - (40)

We remark that, as usually in such a case, the sensitivities of the homogenized coefficients can
be expressed by the partial derivatives only, without need of any adjoint variables.

5.3. Shape sensitivity of the objective function

We shall summarize the sensitivity procedure to evaluate the total variation of ®(p) w.r.t. the
shape variation. Assuming given design, {«}, and a fixed non-resonant frequency w, we proceed
as follows:

e compute the state (p, p°, ¢°),
e evaluate O(p) and 6,P(p) in the sense of distributions (“two-point-pressure function™),
e using (31) compute the adjoint state (g, ¢, ¢) for given state p and 6,2 (p),

e using (37)—(40) compute the shape sensitivity of § A, 6 B, § F' (independently of the state
level 1,2)

e cvaluate the total variation (recalling (32) and (34)):

6®(p) 0 6(A, B, F) = 65, L(p. 0% ¢°,q,0,1) 0 5(A, B, F)
= 04,5, L(u,w) 0 (A, B, F)
= [6a,8,7) Y (@, W) + 64,57V (W, w)] 0 6(A, B, F)
= 25<A,B,F)3‘E(\Il(u,w)) [¢) (5(,47 37 F)
= 2R {/ 5Aa58gp08<p + wz/ SF g%
To

To

+ iw |:/ (SBaaaSOgO - J{0/ 5Baaap0 14 } .
F() FO

We have developed sensitivity formulas which describe influence of the perforation design
change on a real objective function based, in general, on the acoustic pressure field in an area
surrounding the perforation. The model of the acoustic transmission condition imposed was
developed in [10] using the asymptotic homogenization analysis; some numerical simulation
aspects related to this model are reported in this issue, [7]. The further step in the research will

(41)

6. Conclusion
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be aimed at numerical implementation of the sensitivity analysis and at solving numerically
an optimal perforation design problem to maximize the transmission loss. Such problem is an
important issue in the automotive industry, namely in the exhaust silencer design, [3, 4]. Ob-
viously, optimal designing the perforated obstacles, like sieves is just a part of tools employed
in the structural optimization related to acoustics, cf. [2, 11]. In this context, it is worthy to
note that the homogenized transmission conditions we are dealing with are non-local, involving
spatial gradients of the acoustic pressure.

The perforated sieve-like structures were considered as rigid obstacles without mechanical
interaction between the acoustic fluid (air) and the structure itself. However, for some appli-
cations (thin structures) it might be important to treat deflections of the structure due to the
acoustic pressure field fluctuations in the fluid. Then the mechanical interaction can be influ-
enced by mechanical properties of the perforated “smart” structure, which may contain some
distributed elements to control the vibrations, see e.g. [1, 8, 9].
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