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Abstract

The paper deals with the acoustic transmission through perforated interface and its sensitivity w.r.t. the perforation

design. The homogenized transmission conditions are imposed on an interface plane separating two halfspaces

occupied by the acoustic medium. The conditions were obtained recently as the two-scale homogenization limit of

the standard acoustic problem imposed in the layer perforated by a sieve-like obstacle with periodic structure. The

limit model involves some homogenized impedance coefficients depending on the so-called microscopic problems;

these are imposed in the reference computational cell, Y embedding obstacle S the shape of which can be designed.

This homogenization approach allows for an efficient treatment of complicated perforation designs of perforations.

Acoustic response to the global acoustic problem involving the transmission conditions is subject to the sensitivity

analysis. Namely the total variation of an objective function depending on the acoustic pressure w.r.t. shape of S
at the “microlevel” is derived.
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1. Introduction

Minimization of noise produced by flowing acoustic medium (inviscid compressible fluid) be-

longs to important challenges of the aerospace and automotive engineering. For example, in the

exhaust silencers of the combustion engines the gas flows through ducts equipped with various

sieve-like structures which in part may influence the transmission losses associated with acous-

tic waves propagating in the exhaust gas. Apart from optimization of the exhaust silencers,

obviously there are other devices involving sieve-like structures for which the acoustic trans-

mission is an important figure to look at.

In the paper we deal with the optimal acoustic transmission through perforated interface.

In [10], using the asymptotic analysis we developed the homogenized transmission conditions

to be imposed on an interface plane representing the periodic perforation which in reality is

designed by obstacles having possibly complicated shapes.

We consider the acoustic medium occupying domain Ω which is subdivided by perforated

plane Γ0 in two disjoint subdomains Ω+ and Ω−, so that Ω = Ω+ ∪ Ω− ∪ Γ0, see fig. 1. In a

case of no convection flow (the linear acoustics), the acoustic waves in Ω are described by the
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Fig. 1. Illustration of the transmission coupling — the acoustic pressure jump is proportional to the

transverse acoustic velocity g0

following equations

c2∇2p + ω2p = 0 in Ω+ ∪ Ω− ,

transmission conditions

⎧

⎪

⎨

⎪

⎩

c2 ∂p

∂n+
= iωg0

c2 ∂p

∂n−
= −iωg0

on Γ0 ,

boundary conditions on ∂Ω .

(1)

where ∂p
∂n± = n± · ∇p are the normal derivatives on Γ0 w.r.t. normals outward to Ω+ and

Ω−, respectively. The transmission conditions on interface Γ0 involve the transversal acoustic

velocity g0 (up to the factor of the wave number squared); this variable satisfies additional

integral identities the were developed in [10] using the asymptotic analysis performed in the

δ-interface layer, see Fig. 2.

Fig. 2. The perforated interface layer, Ωδ embedded in Ω; illustration of the thickness dilatation z = x3/δ
and the periodic unfolding related to rescaling yα = xα/ε, α = 1, 2 for δ = κε. In the reference periodic

cell, the perforation geometry is represented by Y ∗ ⊂ Y

2. Homogenized interface conditions on perforated layer

In this section we record the homogenized model of the perforated transmission layer, see [10].

This serves the transmission conditions closing the boundary value problem (1).

The homogenized coefficients governing the acoustic transmission are introduced below us-

ing so called corrector functions defined in the reference periodic cell Y =]0, 1[2×]−1/2, +1/2[,
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Y ⊂ R
3. The acoustic medium occupies domain Y ∗ = Y \ S, where S ⊂ Y is the solid (rigid)

obstacle. For clarity we use notation Iy =]0, 1[2. The upper and lower boundaries are transla-

tions of (Iy, 0); we define I+
y = {y ∈ ∂Y : z = 1/2} and I−

y = {y ∈ ∂Y : z = −1/2}. By

H1
#(1,2)(Y ) we denote the space of H1(Y ) functions which are “1-periodic” in coordinates yα,

α = 1, 2; such functions will be called “transversely Y-periodic”.

2.1. Limit macroscopic equations of the transmission layer

The homogenized transmission conditions is expressed in terms of interface mean acoustic

pressure p0 ∈ H1(Γ0), and fictitious acoustic transverse velocity g0 ∈ L2(Γ0); these quantities

satisfy the interface problem constituted by two integral identities

∫

Γ0

Aαβ∂x
βp0∂x

αq −
|Y ∗|

|Y |
ω2

∫

Γ0

p0q + iω

∫

Γ0

Bα∂x
αq g0 = 0 ,

−iω

∫

Γ0

Dβ∂
x
βp0ψ + ω2

∫

Γ0

Fg0ψ = −iω
1

ε0

∫

Γ0

(p+ − p−)ψ ,

(2)

to hold for all q ∈ H1(Γ0) and ψ ∈ L2(Γ0). These equations involve the homogenized coeffi-

cients Aαβ , Bα, Dα and F expressed in terms of the local corrector functions πβ and ξ defined

in Y ∗, the solutions of the microscopic auxiliary problems introduced below.

We remark that p0 presents an internal variable describing the acoustic wave distributed in

the interface layer, being driven by g0; this phenomenon is featured by ∂αp0 �= 0 and it appears

only if the coupling coefficients do not vanish, i.e. Bβ, Dβ �= 0. For the discretized form (using

FEM) one can introduce an effective non-local acoustic impedance which relates the pressure

jump p+ − p− on Γ0 to the transverse velocity represented by g0, see also Fig. 3.

Fig. 3. The domain and boundary decomposition of the global acoustic problem considered. This layout

is inspired by [4]

2.2. Microscopic auxiliary problems and homogenized coefficients

In order to compute the homogenized coefficients involved in (2) the following local problems

must be solved (κ is the scaling parameter determining the ratio “thickness/period length”):

• (Corrector of the tangent interface velocity vt ≈ ∂αp0) Find πβ ∈ H1
#(1,2)(Y ), β = 1, 2,

such that

∫

Y ∗

[

∂y
απβ ∂y

αq +
1

κ2
∂zπ

β∂zq

]

= −

∫

Y ∗

∂y
βq ∀q ∈ H1

#(1,2)(Y )
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• (Corrector of the normal interface velocity vn ≈ g0±) Find ξ± ∈ H1
#(1,2)(Y )/R, such that

∫

Y ∗

[

∂y
αξ± ∂y

αq +
1

κ2
∂zξ

±∂zq

]

= −
|Y |

c2κ

(

∫

I+
y

q dSy −

∫

I−y

q dSy

)

,

for all q ∈ H1
#(1,2)(Y )/R

The homogenized coefficients are now defined as follows:

• Tangent acoustic diffusion coefficients

Aαβ =
c2

|Y |

∫

Y ∗

∂y
γ(yβ + πβ) ∂y

γ(yα + πα) +
c2

κ2|Y |

∫

Y ∗

∂zπ
β∂zπ

α .

• Coefficients of transversal-to-tangent coupling of velocity

Bα =
c2

|Y |

∫

Y ∗

∂y
αξ± ,

κBα = Dα =
1

|Iy|

(

∫

I+
y

πα dSy −

∫

I−y

πα dSy

)

,

• Local transversal impedance

F =
1

|Iy|

(

∫

I+
y

ξ± dSy −

∫

I−y

ξ± dSy

)

.

2.3. Acoustic problem in duct with transmission condition

As explained above, in domains with a perforated obstacle Γ0 the acoustic pressure is discon-

tinuous along Γ0, which in general can be a fissure embedded in a connected domain Ω. For

this we need H1
−1(Ω, Γ0), the space of discontinuous solutions defined at once in the whole of

Ω: H1
−1(Ω, Γ0) = {q ∈ L2(Ω) : q|Ωr ∈ H1(Ωr), r = +,−}. By q+ and q− we denote

traces on Γ0 of q ∈ H1(Ω+) and q ∈ H1(Ω−), respectively. Thus, in what follows by p we

denote the solution in Ω ⊂ Γ0, whereas on Γ0 the pressure is introduced by traces p+ and p− of

p ∈ H1(Ω+) and p ∈ H1(Ω−), respectively; these traces are involved in the interface problem

(2).

We also need to specify boundary conditions on boundary ∂Ω = Γin ∪ Γout ∪ Γw consisting

of the planar surfaces Γin, Γout and the channel walls Γw, see Fig. 3. On Γin we assume an

incident wave of the form p̃(x, t) = p̄e−iknl·xleiωt, where (nl) is the outward normal vector of

Ω, on Γout we impose the radiation condition in the form of the anechoic output, so that

iωp + c
∂p

∂n
= 2iωp̄ on Γin ,

iωp + c
∂p

∂n
= 0 on Γout ,

∂p

∂n
= 0 on Γw .

(3)
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The boundary value problem (1) with (1)3 specified by conditions (3) can be formulated weakly

as follows. Given amplitude p̄ of incident plane wave with frequency ω, the weak solution

p ∈ H1
−1(Ω, Γ0) to our acoustic problem is obtained by

c2

∫

Ω

∇p · ∇q − ω2

∫

Ω

pq + iωc

∫

Γin∪Γout

pq dΓ

−

∫

Γ+
0

g0q+ dΓ +

∫

Γ−

0

g0q− dΓ = i2ωc

∫

Γin

p̄q dΓ ∀q ∈ H1
−1(Ω, Γ0) ,

(4)

where q+/− are the traces on Γ0 and g0 is the solution of interface problem (2).

3. Formulation of the optimal perforation design problem

In this section we shall formulate problem of optimal shape of the periodic perforations targeted

to maximize the transmission loss measured in an acoustic device which is equipped with the

perforated interface.

3.1. State problem hierarchical formulation

We shall first summarize the structure of the state problem describing acoustic waves in a duct

Ω ⊂ R
3 wherein the perforation represented by interface Γ0 is placed; we adhere the same

decomposition as introduced earlier; namely we may consider the following placement of the

flat (homogenized) perforation:

Γ0 = {x ∈ Ω| x3 = 0} ,

Ω+ = {x ∈ Ω| x3 > 0} ,

Ω− = {x ∈ Ω| x3 < 0} .

(5)

The state problem has a hierarchical structure incorporating 3 levels, as will be recognized

when developing the sensitivity analysis.

Let p be the acoustic pressure in Ω = Ω+ ∪ Ω− ∪ Γ0 and p+, p− be traces of p|+, p|− on

Γ0, respectively, where p|± are restrictions of p on Ω±. The level 1 state problem is to find

p ∈ H1
−1(Ω, Γ0) such that (by virtue of (4) we employ a self-explaining notation)

aΩ (p, q) − ω2 (p, q)Ω + ωc 〈p, q〉Γin−out
− iω

〈

g0, q+
〉

Γ0
+ iω

〈

g0, q−
〉

Γ0
= 2iωc 〈p̄, q〉Γin

(6)

for all q ∈ H1
−1(Ω, Γ0), where g0 ∈ L2(Γ0) satisfies the interface conditions represented by the

two homogenized equations (2); the level 2 state problem related to (2) is to find g0 ∈ L2(Γ0)
and p0 ∈ H1(Γ0) (an internal variable) such that

A(p0, φ) − ω2ς∗
〈

p0, φ
〉

Γ0
+ iωB(g0, φ) = 0 , ∀φ ∈ H1(Γ0) ,

−iωκ0B(ψ, p0) + ω2F(g0, ψ) = −iω
1

ε0

〈

p+ − p−, ψ
〉

Γ0
, ∀ψ ∈ L2(Γ0) ,

(7)

where ς∗ = |Y ∗|/|Y | and κ0 = κ/|Iy|; the bilinear forms involved in (7) are defined in terms
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of the homogenized coefficients (recall α = 1, 2 for 3D problems):

A(p, q) =

∫

Γ0

Aαβ∂βp∂αq dΓ,

B(g, q) =

∫

Γ0

Bαg∂αq dΓ,

F(g, h) =

∫

Γ0

Fgh dΓ.

(8)

The homogenized coefficients, A, B, F and, thereby, the bilinear forms A,B,F are determined

by the solution of the level 3 state problem constituted by the local corrector problems. To

simplify the notation, we introduce

∇̂q = (∂y
αq, κ−1∂zq),

a∗

Y (π, ξ) =

∫

Y ∗

∇̂π · ∇̂ξ =

∫

Y ∗

(

∂y
απ∂y

αξ +
1

κ2
∂zπ∂zξ

)

,

γ±(ξ) =

∫

I+
y

ξ −

∫

I−y

ξ

(9)

and rewrite the local corrector problems as follows: Find πβ, ξ ∈ H1
#(1,2)(Y )/R such that

a∗

Y

(

πβ + yβ, φ
)

= 0 , ∀φ ∈ H1
#(1,2)(Y ), β = 1, 2 ,

a∗

Y (ξ, φ) = −
|Y |

κc2
γ±(φ) , ∀φ ∈ H1

#(1,2)(Y ).
(10)

Using the notation just introduced, the homogenized coefficients can be expressed, as follows:

Aαβ =
c2

|Y |
a∗

Y

(

πβ + yβ, πα + yα
)

,

Bα =
c2

|Y |
a∗

Y (ξ, yα) ,

F =
1

|Iy|
γ±(ξ) .

(11)

3.2. Optimal perforation problem

We now consider an objective function Φ(p), e.g. expressing the transmission loss evaluated

using two pressures pa, pb,

Φ(p) = Φ̂(pa, pb) = 20 log

(

|pa|

|pb|

)

, pa = p(x = xa), pb = p(x = xb), xa, xb ∈ Ω ,

(12)

where p satisfies the state problem, as represented by (6). In the 3D case, the shape parame-

terization of ∂S (the boundary of the obstacle placed in Y ) is introduced through a one-to-one

mapping (diffeomorphism) Σ(α, ·) : R
2 → R

3, which for a given design variable α ∈ R
Ndv

associates a reference placement t ∈ T ⊂ R
2 with a corresponding spatial position y on the

manifold ∂S, i.e. ∂S � y = Σ(α, t), t ∈ T .

In fact Σ(α) shapes domain Y ∗ where the microscopic auxiliary problems (10) are posed to

computed corrector functions πβ, ξ; these determine homogenized coefficients A, B, F involved

168



E. Rohan et al. / Applied and Computational Mechanics 3 (2009) 163–176

in transmission conditions (7), being coupled with (6) in terms of transversal “velocity flux” g0

and the pressure discontinuity p+ − p−.

We can now define the optimal perforation design problem:

min
α∈Dadm

Φ(p)

subject to: p solves (6)–(7),

where A, B, F are given by (10)–(11).

(13)

Dadm is the set of admissible designs; besides shape smoothness requirements it should reflect

some constraints concerning the size of the obstacle (thickness) and porosity of the interface.

Due to the hierarchical structure of the state problem, the homogenized coefficients can be

viewed as “intermediate” optimization parameters. Then the optimal perforation problem splits

into the following two:

• Shape Optimization: using (micro) geometry of perforation represented by α, optimize

homogenized transmission coefficients, A, B, F on Γ0,

• Material Optimization: using A, B, F on Γ0 optimize acoustic pressure in Ω.

4. Obstacle shape parameterization and shape derivative

By virtue of the hierarchical setting of the problem, we are interested in the shape sensitivity of

the microscopic response described by the corrector functions, πβ, ξ on the perforation design,

as represented by ∂S.

4.1. Design velocity field

In Section 4.2, in the standard way, we consider a “flux” of material points which is given in

terms of a vectorial (design velocity) field �V(y), y ∈ Y so that for y ∈ ∂S it describes the “flux”

of points on the design boundary. Such velocity field, in general, must be differentiable w.r.t.

y and must vanish on that part of the boundary of the optimized structure which is not subject

of the design modification (so-called “fixed boundary”); in our case all exterior boundary ∂Y
is fixed. A possible construction of �V : Y −→ R

3 (or R
2 in the 2D situation) is performed by

following steps:

– use a finite set of the design variables {αk}, k = 1, . . . , Ndv which shape the design

boundary ∂S; in this way we introduce the mapping Σ(α, T ) → ∂S;

– consider a design perturbation δα which modifies the design boundary

{δαk} → δ(∂S) ≡ {�V(y)}, y ∈ ∂S ; (14)

– compute �V = (V1,V2,V3) as a solution of the auxiliary Dirichlet boundary value prob-

lems for an elastic medium occupying domain Y ∗: in our case

∂y
j σij(�V) = 0 in Y ∗ ,

�V = 0 on I±

y

niVi = 0 on ∂Y ∗ \ (∂S ∪ I±

y )

�V = δ(∂S) on ∂S ,

(15)

which gives �V in Y ∗. We shall consider extension of �V by zero over Y \ Y ∗.
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Fig. 4. Left: design velocity field is supported in Y ∗, boundary ∂S is shaped by parameters {α}, Right:

Domain perturbation using (17); parameter t corresponds to τ used in the text

Above we consider σij = cijkle
y
ij(

�V) with arbitrary elasticity cijkl. It is worth noting, that by

means of an elasticity defined inhomogeneously in Y ∗, this machinery allows for controlling

the flux of finite element mesh in the design (optimization) process.

The design variables α = {αk}, k = 1, . . . , Ndv influence the design boundary in terms

of the shape functions which satisfy certain regularity conditions with respect to the curve pa-

rameterization T � t → ∂S (we adhere the 2D situation). As an example of the design

parameterization, we may consider a given set of shape functions {wk
i (t)}k, t ∈ T , i = 1, 2,

k = 1, . . . , Ndv; these guarantee regularity of ∂S(α) (but also restrict its variability) by virtue

of the following definition

∂S(α) = {y(t, α) | t ∈ T , α ∈ Dadm} ,

where yi(t, α) = ȳi(t) +

Ndv
∑

k=1

αkwk
i (t) , i = 1, 2

{ȳ(t)}t∈T = ∂S0 .

(16)

Above Dadm is a given set of admissible design parameters and ∂S0 is some reference (initial)

design attained for α = 0. Obviously, the shape functions must be chosen so that for any fixed

α ∈ Dadm we have a one-to-one mapping T � t → y(t, α) ∈ Y .

4.2. Elements of material and shape derivatives

We are interested in variation of the shape of the obstacle S placed in the domain, Y , thereby

in variation of Y ∗ ⊂ Y . On introducing the velocity field �V in Y , as suggested in the previous

section, see (14)–(15), we parameterize the material points constituting the domain Y by

zi(y, τ) = yi + τVi(y) , y ∈ Y , i = 1, 2 , (17)

where τ is the “time-like” variable, see Fig. 4; for all details on the concept of shape and material

derivatives we refer to [6] and [5]. Throughout the text below we shall use the notion of the

following derivatives:

δ(·) . . . total (material) derivative

δτ (·) . . . partial (local) derivative w.r.t. τ .

The derivatives just introduced are computed as the directional derivatives in the direction of
�V(y), y ∈ Y ; for reader’s convenience we recall the definitions of both the material and local
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derivatives, as considered e.g. in [5]. Let f(y) be a smooth function, e.g. f ∈ C1(Z), where

Z ⊃ Y is such that for τ small enough zi(y, τ) ∈ Z for any y ∈ Y . We assume that f depends

on the actual shape of Y which is perturbed by the velocity field �V , as introduced in (17).

Therefore, by f̃(z, τ) we denote the function value evaluated at z = z(τ) and associated with

the perturbed design Ỹ (τ) = {z| z(y, τ) = y + τV(y) , y ∈ Y }. Due to mapping (17) one can

trace the ”motion” of a selected material point. The material derivative reflects the change of

the function value in the material point which is convected with velocity V:

δf(y) ◦ V ≡ lim
τ→0+

f̃(z(y, τ), τ) − f(y)

τ

= lim
τ→0+

f̃(z(y, τ), τ) − f̃(y, τ)

τ
+ lim

τ→0+

f̃(y, τ) − f(y)

τ

= δτf(y) ◦ V + ∇f(y) · V(y) ,

(18)

where the partial derivative is defined by

δτf(y) ◦ V = lim
τ→0+

f̃(y, τ) − f(y)

τ
, (19)

so that it corresponds to the local change in f evaluated at fixed position y ∈ Y . Whenever

a particular function of interest h̃(z, τ) can be expressed explicitly in the form h̃(z(y, τ), τ) =
h(y, τ), the shape derivative makes sense, so that δτh = δh holds. Therefore, any function

depending “directly” on the design modification (17) is differentiated using (19), however, typ-

ically the solutions to the problems formulated on domains subject to design modifications are

differentiated in the sense of (18); such treatment is naturally pursued when the finite element

solution is considered (values defined at mesh nodes) and finite difference calculation is applied

to approximate the sensitivity of the solution w.r.t. a particular design change.

In Section 5.2 below, we shall use extensively the following formulae, which are easy to

verify (note J(z(y, τ)) = det[∂zi(y, τ)/∂yj])

δτ

(

∂zi

∂yj

)

◦ V =
d

d τ

(

∂zi(y, τ)

∂yj

)

τ=0

=
∂Vi(y)

∂yj

,

δτ

(

∂yk

∂zj

)

◦ V =
d

d τ

(

∂yk

∂zj(y, τ)

)

τ=0

= −
∂Vk(y)

∂yj

,

δτ (J(z)) ◦ V =
d

d τ
(J(z(y, τ)))τ=0 =

∂Vi(y)

∂yi
= div�V ,

(20)

where by d
d τ

we mean the partial derivative w.r.t. τ . For completeness,

δτ |Y
∗| ◦ V = δτ

(
∫

Y ∗

dy

)

◦ V =

∫

Y ∗

div�V dy =

∫

∂Y ∗

�V · �ndΓy , (21)

where we recall �V · �n = 0 on ∂Y ∗ ∩ ∂Y .

5. Sensitivity analysis for uniformly designed perforation

We shall now develop the sensitivity of functional Φ which depends on the perforation design

through the hierarchy of the state sub-problems declared in definition (13). Assuming that the
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perforation is uniform on entire Γ0, there is only one set of homogenized coefficients A, B, F
(i.e. they are not functions of x ∈ Γ0). In order to derive the sensitivity formulae, we proceed

in the following steps:

1. we define the Lagrangian of problem (13) respecting constraints (6)–(7) only;

2. using the adjoint problem technique, we derive sensitivity of Φ w.r.t. homogenized coef-

ficients A, B, F ;

3. we derive the sensitivity of A, B, F w.r.t. the perforation design represented by mapping

Σ dependent on design variables α.

In what follows, by expression δφf(φ, . . . ) ◦ δφ we mean the (partial) Gateaux differential of f
w.r.t. φ, so that δφf(φ, . . . ) is the (partial Fréchet) derivative.

5.1. Sensitivity w.r.t. the homogenized transmission coefficients

Because of complicated structure of the state problem (6)–(7), it is useful to introduce its ab-

stract form which will allow us to derive efficiently the sensitivity formulas. Let u = (p, p0, g0)
be a solution to (6)–(7) and define V = H1

−1(Ω, Γ0) × H1(Γ0) × L2(Γ0), the space of the state

problem solutions. We shall use the following notation:

Ψ(u, v) ≡ aΩ (p, q) − ω2 (p, q)Ω + ωc 〈p, q〉Γin−out
− iω

〈

g0, q+ − q−
〉

Γ0

+ A(p0, ϕ) − ω2ς∗
〈

p0, ϕ
〉

Γ0
+ iωB(g0, ϕ)

− iωκ0B(ψ, p0) + ω2F(g0, ψ) + iω
1

ε0

〈

p+ − p−, ψ
〉

Γ0
,

f(v) =2iωc 〈p̄, q〉Γin
,

where v = (q, ϕ, ψ) .

(22)

Now the state problem can be rewritten in the abstract form: find u ∈ V such that

Ψ(u, v) = f(v) ∀v ∈ V . (23)

Let us denote by u� the complex conjugate of u. Obviously, if u solves (23), then also

Ψ�(u�, v) = f �(v) ∀v ∈ V , (24)

where Ψ�(·, ·) and f �(·) are complex conjugate to Ψ(·, ·) and f(·), respectively.

The Lagrangean associated to step 1 involves the triple of primary variables u = (p, p0, g0)
and two Lagrange multipliers, wk = (qk, ϕk, ψk), k = 1, 2, associated to the state problem

defined equivalently by (23) and (24):

L(u; w1, w2) =Φ(u) + Ψ(u, w1) − f(w1) + Ψ�(u�, w2) − f �(w2) , (25)

where Φ(u) ≡ Φ(p). Let us consider Φ(u) evaluated just for admissible states u, i.e. for any

admissible design giving the homogenized coefficients we consider u satisfying (23). Then

optimality condition

δuL ◦ δu = δpL ◦ δp + δp0L ◦ δp0 + δg0L ◦ δg0 = 0 (26)
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must hold for any variation δu ∈ V, where

δpL ◦ δp = δpΦ(p) ◦ δp + aΩ (δp, q) − ω2 (δp, q)Ω + ωc 〈δp, q〉Γin−out
+

+ iω
1

ε0

〈

δp+ − δp−, ψ
〉

Γ0

δp0L ◦ δp0 = A(δp0, ϕ) − ω2ς∗
〈

δp0, ϕ
〉

Γ0
− iωκ0B(ψ, δp0)

δg0L ◦ δg0 = −iω
〈

δg0, q+ − q−
〉

Γ0
+ iωB(δg0, ϕ) + ω2F(δg0, ψ) .

(27)

Since we deal with complex functions, it is worth to recall the sense of differentiation employed

above; p = �(p) + i�(p), hence

δpΦ(p) ◦ δp = δ�(p)Φ(p) ◦ �(δp) + iδ�(p)Φ(p) ◦ �(δp).

If condition (26) is satisfied for various designs α ∈ Dadm , we obtain a path of admissible

states u(α) which form a manifold in the design–state space. Thus, (13) may be considered

as minimization of Φ(p) w.r.t. α on the manifold p(α). Then, by virtue of optimality (26),

multipliers wk, k = 1, 2, called the adjoint variables, must satisfy

[

δ�(u)Ψ(u, w1) + δ�(u)Ψ
�(u�, w2) + δ�(u)Φ(u)

]

◦ δ�(u) = 0 ,
[

δ�(u)Ψ(u, w1) + δ�(u)Ψ
�(u�, w2) + δ�(u)Φ(u)

]

◦ δ�(u) = 0 .
(28)

Since, due to linearity, δ�(u)Ψ
�(u�, w2) = δ�(u)Ψ

�(u, w2) = iδ�(u)Ψ
�(u�, w2) and iδ�(u)

Ψ(u, w1) = −δ�(u)Ψ(u, w1), on multiplying (28)2 subsequently by −i and i and on adding

the result to (28)1, the following equivalents of (28) can be obtained:

2δ�(u)Ψ(u, w1) ◦ δ�(u) = −
[

δ�(u)Φ(u) − iδ�(u)Φ(u)
]

◦ δ�(u) ,

2δ�(u)Ψ
�(u, w2) ◦ δ�(u) = −

[

δ�(u)Φ(u) + iδ�(u)Φ(u)
]

◦ δ�(u) ,
(29)

where the r.h.s. of the two equations are mutually complex conjugate. Hence w
�
2 = w1 ≡ w and

just one adjoint equation must be solved for w ∈ V:

2Ψ(v, w) = −
[

δ�(u)Φ(u) − iδ�(u)Φ(u)
]

◦ v ∀v ∈ V , (30)

which reads as: compute (q, ϕ, ψ) ∈ H1
−1(Ω, Γ0)×H1(Γ0)×L2(Γ0) satisfying adjoint equations

A(ϕ̃, ϕ) − ω2ς∗ 〈ϕ̃, ϕ〉Γ0
− iωκ0B(ψ, ϕ̃) = 0 ,

iωB(ψ̃, ϕ) + ω2F(ψ̃, ψ) − iω
〈

ψ̃, q+ − q−
〉

Γ0

= 0 ,

iω
1

ε0

〈

q̃+ − q̃−, ψ
〉

Γ0
+ aΩ (q̃, q) − ω2 (q̃, q)Ω + ωc 〈q̃, q〉Γin−out

=

−
1

2

[

δ�(p)Φ(p) − iδ�(p)Φ(p)
]

◦ q̃

(31)

for all (q̃, ϕ̃, ψ̃) ∈ H1
−1(Ω, Γ0) × H1(Γ0) × L2(Γ0). Note the order of equations which was

changed w.r.t. to (22) to make the symmetry of (31) more apparent. Now the Lagrangian (25)

can be rewritten as

L(u; w) = Φ(u) + Ψ(u, w) − f(w) + Ψ�(u�, w
�) − f(w�) . (32)
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Once the adjoint state w = (q, ϕ, ψ) has been computed, one can evaluate sensitivity of Φ
w.r.t. the homogenized coefficients (which depend further on design α). For this we consider

Lagrangian (25) as the function of homogenized coefficients A, B, F . Then the total variation

of L involves partial derivatives w.r.t. A, B, F ; it holds that

δL ◦ δ(A, B, F ) =
[

δ(p,p0,g0)L ◦ δ(p, p0, g0) + δ(A,B,F )L
]

◦ δ(A, B, F ) , (33)

where δ is the total variation w.r.t. A, B, F . Since we consider only admissible states, i.e. (31)

holds also for (q̃, ϕ̃, ψ̃) = δ(p, p0, g0), the first r.h.s. term in (33) vanishes. Moreover, δL = δΦ
w.r.t. to any variation on the path of admissible states, hence

δΦ(p) ◦ δ(A, B, F ) = δ(A,B,F )L(p, p0, g0, q, ϕ, ψ) ◦ δ(A, B, F ) , (34)

where (p, p0, g0) is the state problem solution and (q, ϕ, ψ) satisfies (31), for a given (A, B, F ).
The sensitivity δ(A, B, F ) w.r.t. the microstructure is derived below.

5.2. Shape sensitivity of the homogenized transmission coefficients

Through the following text, for simplicity of the notation, we shall write just δτ (·) and δ(·)
instead of δτ (·) ◦ V and δ(·) ◦ V , respectively, to refer to the directional derivatives (18)–(19).

In order to complete the sensitivity formula (34), we shall derive sensitivity formulae for

computing the shape derivatives of the homogenized coefficients defined in (11). For this we

need to differentiate the local equations (10); thus, we obtain

δτa
∗

Y (πα, φ) + a∗

Y (δπα + Vα, φ) = 0 ,

δτa
∗

Y (ξ, φ) + a∗

Y (δξ, φ) = 0 ,
(35)

for all φ ∈ H1
#(1,2)(Y ), where using (20)

δτa
∗

Y (φ, ψ) =

∫

Y ∗

[

divV∇̂φ · ∇̂ψ − (∇̂V · ∇φ) · ∇̂ψ − ∇̂φ · (∇̂V · ∇ψ)
]

=

∫

Y ∗

[

divV∇̂φ · ∇̂ψ − ∂αVk∂kφ∂αψ − ∂αφ∂αVl∂lψ

−
1

κ2
∂zVk∂kφ∂zψ −

1

κ2
∂zφ∂zVl∂lψ

]

.

(36)

This expression is derived by virtue of the definition in (18), using (20),

δτa
∗

Y (π, φ) = lim
τ→0

τ−1
[

a∗

Ỹ (τ)
(π, φ) − a∗

Y (π, φ)
]

where a∗

Ỹ (τ)
(π, φ) =

∫

Y ∗

[

∂yk

∂zα

∂π

∂yk

∂yl

∂zα

∂φ

∂yl
+

1

κ2

∂yk

∂z3

∂π

∂yk

∂yl

∂z3

∂φ

∂yl

]

J(z) .

On differentiating (11) we obtain the sensitivity of Aαβ :

δAαβ =
c2

|Y |

[

δτa
∗

Y

(

πβ + yβ, πα + yα

)

◦ V + a∗

Y (Vβ, πα + yα) + a∗

Y

(

πβ + yβ, Vα

)]

(37)

where the following identity was employed a∗
Y

(

πβ + yβ, δπα
)

= 0. From this and using (35)2
one obtains

a∗

Y (δξ, yβ) = −a∗

Y

(

δξ, πβ
)

= δτa
∗

Y

(

ξ, πβ
)

, (38)
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which is used to simplify the sensitivity of Bα:

δBα =
c2

|Y |
[a∗

Y (δξ, yα) + a∗

Y (ξ, Vα) + δτa
∗

Y (ξ, yα)]

=
c2

|Y |
[δτa

∗

Y (ξ, πα + yα) + a∗

Y (ξ, Vα)] .

(39)

In order to derive the sensitivity of F , we apply subsequently (10)2 with φ = δξ and (35)2, thus

δF =
1

|Iy|
γ±(δξ) = −

κc2

|Iy||Y |
a∗

Y (ξ, δξ) =
κc2

|Iy||Y |
δτa

∗

Y (ξ, ξ) . (40)

We remark that, as usually in such a case, the sensitivities of the homogenized coefficients can

be expressed by the partial derivatives only, without need of any adjoint variables.

5.3. Shape sensitivity of the objective function

We shall summarize the sensitivity procedure to evaluate the total variation of Φ(p) w.r.t. the

shape variation. Assuming given design, {α}, and a fixed non-resonant frequency ω, we proceed

as follows:

• compute the state (p, p0, g0),

• evaluate Φ(p) and δpΦ(p) in the sense of distributions (“two-point-pressure function”),

• using (31) compute the adjoint state (q, ϕ, ψ) for given state p and δpΦ(p),

• using (37)–(40) compute the shape sensitivity of δA, δB, δF (independently of the state

level 1,2)

• evaluate the total variation (recalling (32) and (34)):

δΦ(p) ◦ δ(A, B, F ) = δ(A,B,F )L(p, p0, g0, q, ϕ, ψ) ◦ δ(A, B, F )

= δ(A,B,F )L(u, w) ◦ δ(A, B, F )

=
[

δ(A,B,F )Ψ(u, w) + δ(A,B,F )Ψ
�(u�, w

�)
]

◦ δ(A, B, F )

= 2δ(A,B,F )�(Ψ(u, w)) ◦ δ(A, B, F )

= 2�

{
∫

Γ0

δAαβ∂βp0∂ϕ + ω2

∫

Γ0

δFg0ψ

+ iω

[
∫

Γ0

δBα∂αϕ g0 − κ0

∫

Γ0

δBα∂αp0 ψ

]}

.

(41)

6. Conclusion

We have developed sensitivity formulas which describe influence of the perforation design

change on a real objective function based, in general, on the acoustic pressure field in an area

surrounding the perforation. The model of the acoustic transmission condition imposed was

developed in [10] using the asymptotic homogenization analysis; some numerical simulation

aspects related to this model are reported in this issue, [7]. The further step in the research will
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be aimed at numerical implementation of the sensitivity analysis and at solving numerically

an optimal perforation design problem to maximize the transmission loss. Such problem is an

important issue in the automotive industry, namely in the exhaust silencer design, [3, 4]. Ob-

viously, optimal designing the perforated obstacles, like sieves is just a part of tools employed

in the structural optimization related to acoustics, cf. [2, 11]. In this context, it is worthy to

note that the homogenized transmission conditions we are dealing with are non-local, involving

spatial gradients of the acoustic pressure.

The perforated sieve-like structures were considered as rigid obstacles without mechanical

interaction between the acoustic fluid (air) and the structure itself. However, for some appli-

cations (thin structures) it might be important to treat deflections of the structure due to the

acoustic pressure field fluctuations in the fluid. Then the mechanical interaction can be influ-

enced by mechanical properties of the perforated “smart” structure, which may contain some

distributed elements to control the vibrations, see e.g. [1, 8, 9].
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