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ABSTRACT 
 

With industrial modelling tools, topological structures and free form surfaces are often managed 
separately, and patches used for embedding are limited to dimension 2.  A new approach is to combine 
topology structures of any dimension with embedding of same dimension, and use topological operations 
to modify the shape and the properties of surfaces and volumes. The use of Chains of map as topological 
structure and Gregory-Bézier as embedding allows the conception of very general objects, made of 
various dimensional rectangular and triangular patches. 
 
Keywords: modelling tool, topological structure, Bézier-Gregory patch, association. 
 
 
 

1. INTRODUCTION 
 

In geometric modelling, there are 
principally two different kinds of modelling tools.  
Some are called volume modelling tools, because 
they can directly model object's volume with CSG 
trees. Embedding of volumes is implicitly described 
by equations of basic volumes and composition 
operations. Other modelling tools, mostly used in 
CAD/CAM, are called surface modelling tools 
because most of their operations allow the 
manipulation of complicated surfaces. Topological 
structures are often poorly managed. 

A recent improvement of surfaces 
modelling tools is the use of volume topological 
structures. Complex free form surfaces are 
associated with faces of objects. Indeed, rectangular 
and triangular patches are not often combined. The 
association between topological structures and free 
form surfaces is often complicated and needs extra 
data structures. 

 
There are several disadvantages with these 

modelling methods. Firstly, they do not allow the 
embedding of 3-dimensional topological cells with 
volume patches. This can be essential for some 
applications, such as geological modelling or fluid 

mechanics simulation. Furthermore, there are also 
some operations that can be difficult to do with these 
tools. For example, the chamfering operation gives 
naturally two kinds of patches, rectangular and 
triangular. In addition, another problem is the way to 
associate topological structures with free form 
surfaces. Modelling tools often use complicated and 
costly data structures, which imply an increase of the 
costs in time and space. 

 
We propose a new kind of embedding 

which avoids these disadvantages. We model free 
form surfaces with Gregory patches of dimension n, 
triangular or rectangular, strongly associated with 
chains of maps. The topological structure itself is 
used to organize embedding data.  In addition, this 
method allows the use of triangular and rectangular 
patches together and avoids the problem of control 
points numbering. Finally, the isomorphism between 
topological structures and free form surfaces implies 
that there is no need for extra costly data structures 
to manage the embedding of objects. 

 
We begin in Section 2 and 3 by short 

recollections about topological and free form 
models. Then we present the association between 
chains and patches. Section 4 presents association in 



 

 

dimension 1, the case of dimension 2 is shown in 
Section 5.  Then we show how these associations 
could be helpful for managing free form surfaces in 
Section 6. In Section 7 we introduce Gregory-Bézier 
volumes with a generalization of the association to 
dimension 3. Before concluding, the case of 
dimension n is explained in Section 8. 

 
 
2. TOPOLOGICAL MODELS 
 
The topological model we will use in the remainder 
of the paper is chains of maps (n-Chains). It is an 
improvement of a more simple model called 
generalized maps (n-G-maps) defined in 
[lienh88][lienh89][lienh94] and which allow only the 
modelling of manifold objects (Figure 1). n-Chains 
[elter92][elter93] can be use to define non-manifold 
(Figure 2) objects which can be orientable or not. 
For this study, we only give intuitive notions of these 
topological models, necessary for the comprehension 
of the remaining of the article. 
          

         
Figure 1: a manifold object, and its topological 
representation 
 
 

 
Figure 2: a non manifold object and its 
topological representation 

N-G-MAPS 

Notion of G-maps of dimension n or n-G-map  are 
defined by a unique kind of abstract element, called 
darts. Darts of G-maps are linked together by 
involution αi. On the Figure 3, we can see four G-
maps, of dimension 0, 1, 2, and 3. On (a) a vertex, 
represented by a unique dart. On (b) two darts linked 
together by α0 build an edge. On (c) four edges are 
assembled by α1 make a quadrangular face (8 darts). 
And finally on (d) a cube is modelled with 6 faces 
which darts are linked by α2  (48 darts). 

 
    a      b                   c                               d 
 
Figure 3: Four cells modelled by G-maps. (a) a 
vertex, (b) an edge, (c) a face, and (d) a cube. 

N-CHAINS OF MAPS 

The chains of maps have been introduced to permit 
the topological modelling of non-manifold objects. 
With a chain model, each cell is independently 
represented. A chain is made of several G-maps 
linked together by mappings. The Figure 4 shows 
four examples of complexes modelled with chains. 
On (a) a vertex is modelled as it is with the G-maps 
representation. On (b), an edge is here modelled with 
four darts. Three G-maps are linked together, one for 
the edge itself, and two for its boundaries. On (c) a 
face modelled with nine G-maps, a G-map of 
dimension 2 for the face, four 1-G-maps for the 
edges of the faces, and four 0-G-maps for the 
vertices. Finally on (d) a cube is modelled with eight 
0-G-maps, twelve 1-G-maps, six 2-G-maps and one 
3-G-map. G-maps are linked together by mapping σ.  
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    a          b                 c                             d 
 
Figure 4: Four cells modelled by chains of maps. 

(a) a vertex, (b) an edge, (c) a face, and (d) a cube. 
0-G-maps are drawn in black, 1-G-maps in red, 

2-G-maps in green and the 3-G-map in blue. 
 
3. GREGORY-BÉZIER PATCHES 
 
The embedding models used in this work are   
Gregory-Bézier patches  [Grego74] [Chiyo83] 
[Takam90], which is an enhancement of Bézier 
patches [Bezie74] [Farin86] [Farin88]. One of the 
principal difficulties encountered in the study of 
patches continuity is the intertwining of constraints 
around a central point. To bypass this difficulty 
Gregory-Bézier patches have been introduced. By 
splitting internal control points, they permit 
independent twist constraints along two consecutive 



 

 

boundaries. Their definitions apply to rectangular 
and triangular cases. 
A rectangular Gregory-Bézier patch of degree mxn 
can be constructed from a Bézier patch of the same 
degree. Four inner control points have to be split to 
give a new lattice as shown on Figure 5. 
 
 

 
Figure 5: Lattice of control points of a 
rectangular Bézier patch of degree 3x4 and the 
corresponding Gregory patch. 
 
Construction of a triangular Gregory-Bézier patch of 
degree 3 is more complicated. It can be done from a 
triangular Bézier patch of degree 4 in two steps. First 
the boundary of the patch is degenerate from degree 
3 to degree 4, and then inner control points are split. 
The Figure 6 shows Bézier and Gregory-Bézier 
patches with their lattices of control points. 
 

 
Figure 6: Lattice of control points of a triangular 
Bézier patch  and the corresponding Gregory 
Bézier patch. 
 
If we look at a corner or at a side of a patch, we can 
notice that the structure of triangular and rectangular 
Gregory-Bézier patches are similar. This makes it 
easier to join and also to control the continuity of 
rectangular and triangular patches together. 
 
The reader can consult [Grego74] and [Chiyo83] for 
complete definitions and properties of Gregory-
Bézier rectangular patches and [Takam90] for 
triangular patches. 
 
4. CURVE ASSOCIATION 
We want here to associated Bézier curves of degree 
3 with 1-chains. The associated 1-chain is made of 
four darts, which are linked in a manner which make 
the structure very similar to the one of the Bézier 
curve lattice of control points (see Figure 7). 

 

    

 

 
Figure 7: A 1-chain and the associated  lattice of  
control points. 
 
5. SURFACE ASSOCIATIONS 
Association between 2-chains and Gregory-Bézier 
patches is very natural. A simple chain, which 
models a rectangular face, has as many darts as there 
are control points in a rectangular Gregory-Bézier 
patch. Furthermore their structures are very similar. 
Internal control points can be associated with darts 
of the face, corner points with darts of the vertices, 
and others points with darts of the edges (top of 
Figure 8). The association can also be done with 
triangular patches, the same remarks about structure 
of patches and chains can be done (see bottom of  
Figure 8). 
 
 

     
Figure 8:  A rectangular and a triangular 
Gregory-Bézier patch with associated 2-chains in 
grey. 
 
 



 

 

6. ADVANTAGES OF ASSOCIATIONS 
There are several advantages in our model, even 
when modelling only 2-dimensional objects 
(surfaces). Firstly, it does not need any numbering 
and extra data structure to store and access control 
points. Then, it automatically ensures G0 continuity 
between surfaces when joining the topological 
structures. It improves the access to control points 
and finally permits the use of rectangular and 
triangular patches together. 

NO GLOBAL NUMBERING AND COSTLY 
STRUCTURE 

In a classical approach, control points of patches are 
stored in a vector, and a numbering and a function-
of-indexes transformation ensure their access. This 
transformation is easy with Bézier patches, but with 
the structure of Gregory-Bézier that is not a matrix, 
the storage of their control points is more 
complicated. With the association we have defined, 
there is a one to one mapping between darts and 
control points. Control points data can then be stored 
in the dart data structure, and there is no need of 
extra data structure to manage control points. 

AUTOMATIC G0 CONTINUITY 

The most common operation on patches is joining. 
There are several kinds of joining, which depend on 
the continuity of surface. G0 continuity defines a 
joining with the common boundary curve. A G1 
continuity joining must be G0 and must verify the 
continuity of tangent plane along the common 
boundary. Geometric continuity (Gn) and derivative 
continuity (Cn) can be defined at any order. 
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Figure 9: Two patches before and after 
identification of their boundaries. 

                  
The operation of identification permits an automatic 
G0 joining of patches. When we identify two 2-
chains with a common boundary of dimension 1, it 
merges the two subset of four darts defining the two 
initial boundaries. When these 2-chains are 
associated with Gregory-Bézier patches, the two 
subsets of darts are associated with the controls 
points defining the two initial boundaries. Then, the 
identification merges the two subsets of control 
points and gives a G0 continuity joining as it is 
shown on Figure 9. 
 
To obtain higher order continuity, constraints must 
be applied on control points. These constraints can 
no more be automatically obtained from topological 
operation, but they can be optimised by them. In 
fact, topological structures can be used to improve 
access to subset of control points involved in 
continuity constraints. 

IMPROVEMENT OF ACCESS TO CONTROL 
POINTS 

Access to control points can be improved with 
topological functions that permit direct access to 
control points. This is possible because there is a 
relation between topological function (σ and α) and 
geometrical relative positions of points. Involutions 
α link darts of G-map. α0 links the two darts of an 
edge. α1 links darts of edges to create a face. In a 
chain, σi

j links a dart of a I-G-map with a dart of a j-
G-map. Figure 10 (a) shows the relations between 
these functions and the possible ways of moving in 
the mesh of control points. 
 
 

 
                 a                                         b 
 
Figure 10: Different kinds of geometrical 
relations and the associated topological functions. 
 
 
This allows us easily to access the subset of control 
points involved in constraints like continuity.  For 
example, it is easy to find all control points directly 
adjacent to a vertex P common to several patches by 
applying 11

0)( −σ   on P (Figure 10 (b), P is the square).   



 

 

MIXING OF RECTANGULAR AND 
TRIANGULAR PATCHES 

Classical modelling tools use currently only one kind 
of patch, either rectangular (mostly used in industry) 
or triangular. But surfaces of real objects are often a 
combination of rectangular and triangular surfaces. 
In addition, some operations, like edge blending, 
generate the two kinds of patches as it shown on 
Figure 11. Our model permits the used of combined 
rectangular and triangular patches directly (Figure 
9). In addition the structure and definition of 
Gregory-Bézier patches allow us to control 
continuity of joining between patches whatever their 
shape (triangular or rectangular). 
 

         
 
Figure 11: Example of edges and vertex blending 
of a cube. 
 
7. GENERALIZATION TO DIMENSION 3 
 
 
Gregory-Bézier patches have been defined from 
Bézier patches in dimension 2. Bézier patches can be 
defined very easily at any dimension, but the 
extension to Gregory-Bézier patches is not so easy. 
 
To generalize rectangular Gregory-Bézier patches, 
we have to determine which control points have to 
be split. The problem is more complicated in the 
triangular case. In dimension 2, we have to take a 
Bézier patch of degree 4, but in dimension 3 it does 
not work with a tetrahedron of degree 4. 
 
The use of chains of dimension 3 makes these 
extensions easier. They permit us to determine the 
structure of patches directly, because there is a one 
to one mapping between the darts of a chain and the 
control points of a Gregory-Bézier. 
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Figure 12: Gregory-Bézier cube and tetrahedron. 
        
We have seen in section 5 that the structure of 2-
Chains maps exactly with the one of Gregory-Bézier 
patches. Then, we can use the structure of 3-Chains 
to define the shape of Gregory-Bézier volumes of 
degree 3. 
 
The association says that there is a one to one 
mapping between darts and control points. Here we 
take a 3-chain which models a hexahedron to 
determine Gregory Bézier cube (Figure 13). We 
know that there are 128 darts in this chain, this gives 
us the number of control points. Furthermore the 
structure of the chain gives us the structure of the 
lattice of control points. Indeed, as in dimension 2 
there is a mapping between boundaries of the 
topological structures and boundaries of free form 
volumes. The eight darts that model vertices of the 
chain are associated with the eight corners of the 
lattice. The twenty-four darts of topological edges 
are associated with control points that belong to 
edges of the lattice. The twenty-four darts of 
topological face are associated with points, which 
are inside faces. And the forty-eight darts of the 
topological cube are associated with internal control 
points. Each vertex of the topological cube is made 
of six darts, it corresponds with Bézier control point 
split in six Gregory-Bézier control points. 
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Figure 13: A hexahedral 3-chain and the 
corresponding Gregory-B\ézier volume. 
 
 
As in dimension 2 the evaluation is done by going 
back to Bézier volume. We have to interpolate 
control points of dimension 2 (points inside the 
face), and of dimension 3 (points inside the volume).  
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Figure 14: A possible numbering of darts in a 
corner 
 
 
Interpolation of points of dimension 2 can be done in 
the same way as in case of surfaces. For 3 
dimensional points, we have to do a double 
interpolation. First points have to be bilinearly 
interpolated two by two, and then the three new 
points can be trilinearly interpolated. Figure 14 
shows a possible numbering of dart of one corner of 
the 3-G-map of the 3-chain, which permit to write 
the following formula: 

wvu
wPvPuPP wvu

++
++

=     with 

 

wv
vPwPPu +

+
= 0100   , 

wu
uPwPPv +

+
= 1110    and 

vu
uPvPPw +

+
= 0121  

 
The same association can be done between a 3-chain 
which models a tetrahedron and a Gregory-Bézier 
tetrahedron, lattice of control points of a Gregory-
Bézier tetrahedron is drawn on Figure 15. 
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Figure 15: A Gregory tetrahedron 
 
8. GENERALISATION TO DIMENSION N 
 
As seen in section Generalization to dimension 3 the 
generalization of Gregory-Bézier patches is not easy. 
To define them in dimension n, their association with 
n-chains is useful. It permits us to easily determine 

the number of control points and the structure of the 
lattice. 
 
In dimension n, we have to take the n-chain to 
determine the shape of the n-dimensional Gregory-
Bézier patch. The n-chain that models a cube of 
dimension n has 

               en
in

n n
n

i

n

!2
)!(
!2

0

≈
−∑

=

darts, 

which is then the number of control points of the 
patch. Its internal points are associated with darts of 
central n-G-map that is made up 2nn! darts. As there 
is 2n vertices in a n-dimensional cube, internal points 
can be grouped in 2n subsets of n!  vertices (it is 
verified in dimension 3 : 8 subsets of 6 points). 
 
Since the boundary of an n-chain is made of (n-1)-
chains, boundary of a n-dimensional Gregory-Bézier 
patch is made of 2n (n-1)-dimensional Gregory-
Bézier patches. 
 
To evaluate an n-dimensional Gregory-Bézier patch, 
we have to interpolate subsets of n! control points to 
obtain a Bézier patch.  This can be done by 
interpolating n points which are results of n 
interpolations of n-1 points, which are interpolations 
of n-2 points, and so on until interpolations of  2 
points. 
 
9. CONCLUSION 
 
We have defined an association between a 
topological and an embedding model. n-chains of 
maps have been chosen as topological models 
because they permit the modelling of non-manifold 
objects, which can be opened or closed, orientable or 
not. Gregory-Bézier patches, which are an extension 
of Bézier patches, have been chosen, because their 
association with n-chains is very natural. They are 
also defined in quadrangular and triangular cases, 
and their continuity can easily be studied. 
 
Associations have been defined for curves and 
surfaces, and generalized to volumes and n-
dimensional entities. We show how a topological 
model can be useful to manage free form surfaces, 
and how this modelling method allows the creation 
of complicated objects with strong topological 
structures and lower cost in time and space than 
actual modelling tools. Furthermore the method 
permits the embedding of 3-dimensional topological 
structures with volume patches. In addition 
triangular and rectangular patches can be mixed 
without any trouble. This modelling method has been 
experimented in a modelling tool called Multifil with 
high level operation which allow us to create objects 
as shown on Figure 16. These objects have been 
created by using classical operations on vertices 



 

 

(rotation, translation, bend …) and three high-level 
operations, vertex and edge blending, extrusion and 
thickening. Objects shapes have been improved by 
applying continuity constraints. 
This work has to be continued, by applying 
continuity constraints on objects. To have perfect 
continuity on object of this model, we have to study 
continuity of curves, surfaces and volumes. It will be 
interesting to study continuity between objects of 
different dimensions like surface and curves.  
Definition of Gregory-Bézier volume could be 
applied on Free Form Deformation. Another 
application is the study of seismic waves propagation 
[Fouss97], it uses hexahedral subdivision of space, 
and needs continuity of joining. This subdivision can 
be modelled with Gregory-Bézier cubes and 
structured by  3-chain, then continuity and 
consistency of lattices will be ensured. 
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Figure 16: Examples of objects modelled with associated patches and chains of maps. 
 


