Linear BSP Trees for Sets of Hyperrectangles with Low
Directional Density

Petr Tobola

Karel Nechvile

Faculty of Informatics
Masaryk University, Botanickd 68a
625 00 Brno
Czech Republic
{ptx, kodl}@fi.muni.cz

ABSTRACT

We consider the problem of constructing of binary space partitions (BSP) for a set S of n hy-
perrectangles in space with constant dimension. If the set S fulfills the low directional density
condition defined in this paper then the resultant BSP has O(n) size and it can be constructed
in O(nlog®n) time in R®. The low directional density condition defines a new class of objects
which we are able to construct a linear BSP for. The method is quite simple and it should be

appropriate for practical implementation.

Keywords: BSP, partitioning, hyperrectangle

1 Introduction

Many of computer graphics and computational
geometry problems concern processing of object
sets in two and three-dimensional space. Such
tasks can be usually solved successfully and effec-
tively, if a scene is simplified by a suitable parti-
tioning of the space into subspaces.

A scene can be divided in many ways. We have
to decide which information will be important for
us. A natural way to perform the partitioning is
to make a linear cut of the space with a hyper-
plane splitting the space (and possibly some of
the objects) into two parts.

Informally: Binary Space Partition, or BSP
(initially introduced by Schumacker [16]) is a re-
cursive partitioning of the space with objects by
a suitable hyperplane. The partitioning process
is repeated for new subspaces until only one frag-
ment of any object occurs in each subspace. We
suppose objects do not intersect each other, oth-
erwise we would not be able to ensure finishing of
the splitting.

The BSP for a set of objects can be naturally
expressed as a tree structure. The splitting hyper-
planes and objects lying within them are stored
in nodes of BSP tree. Each node of BSP tree is

associated with a convex region which is a part of
the original space. This convex region is created
by splitting the space by hyperplanes associated
with ancestors of given node. We can readily see
that convex regions associated with nodes of the
same level form a resolution of the original space.

The BSP trees have a wide usage in many ar-
eas of computer science. They are used, for exam-
ple, in hidden surface removal using painters algo-
rithm [10], visibility solution [17], shadow genera-
tion [7], objects modeling, surface approximation
[3], or robot motion planning [5].

When we split the space by a hyperplane then
some objects can be unwillingly divided into two
or more parts. If this is the case, the original
scene will be divided into lot of fragments. How-
ever, the efficiency of algorithms benefiting from
BSP depends on the size of the resulting BSP.
This is why the split hyperplanes must be selected
carefully.

In the past, a lot of attention was dedicated
to the development of algorithms which construct
BSP trees of a small size. Initially, several heuris-
tic methods were developed (for example [4, 10,
17]), which however can create tree of exces-
sive size under unfavorable circumstances(£2(n?)

in the plane and Q(n?) in the space). The first
provable bounds were obtained by Paterson and
Yao [13, 14]. They showed [13], that the opti-
mal size of BSP in the worst case is ©(n?) in
the space and O(nlogn) in the plane. The next
result of these authors [14] was the optimal size
BSP algorithm for the set of orthogonal objects
with ©(n?/?) in the space in the worst case and
©(n) in the plane in the worst case .

However, most of randomly created BSP trees
have reasonable behavior for practical scenes.
Their sizes are considerably smaller than the
worst case boundary. Modern algorithms try to
use these properties to construct nearly linear
BSP trees. Pankaj K. Agarwal et al. [1] solved
the problem of construction of BSP tree for a set
of fat orthogonal rectangles (the fat objects are
intuitive objects without extremely skinny and
long parts). Their algorithm creates BSP trees
of n20(VIgn) gize for scene of n fat rectangles
and of n,/m20V1°87) gize for scene of (n — m)
fat rectangles. Their algorithm is linear with re-
spect to BSP tree size. In the next paper [2] they
compared implementation of this algorithm with
other BSP algorithms. It was shown that their
algorithm is really applicable in practice.

Mark de Berg et al. have extensively studied
the problem of BSP in the plane [8]. They showed
existence of a linear size BSP for sets of line seg-
ments where the ratio between the lengths of the
longest and the shortest segment is bounded by
a constant, for sets of fat objects and for homo-
thetic objects. They also proposed effective algo-
rithms to construct it (in the time O(nloglogn),
O(nlogn) and O(nlog?n)).

In [9], de Berg was engaged in moving of the
problem of BSP for sets of fat objects into higher
dimensional spaces. His algorithm offers linear
BSP trees also with only a little worse running
time (O(nlog®n)). Nevertheless, it is simple and
more convenient for practical implementation.

Nguyen Viet Hai [11] published an algorithm
creating linear BSP trees for set of r-bounded hy-
perrectangles in R?. The advantage of this algo-
rithm is that it ensures balance of resultant BSP
tree. Moreover, the algorithm works in optimal
O(nlogn) time. We will compare the algorithms
of Nguyen Viet Hai [11], Mark de Berg [9] and our
proposed method in the last part of this paper.

The algorithm proposed in this paper extends
our previous work [18] dedicated to BSP trees
for sets of segments in the plane. We proposed
an algorithm creating linear BSP for set of seg-
ments with so-called low directional density in
O(nlog®n) time. Here we extend this method
into higher dimensional spaces. Over against this
generalisation we have lost the advantage of arbi-
trary orientation of objects and we work with axes

oriented hyperrectangles only. This quite simple
method can provide BSP trees of linear size un-
der condition of so-called low directional density
of hyperrectangles.

This paper is organized as follows: Section 2
presents some basic notions and definitions. Sec-
tion 3 is devoted to BSP of axes aligned rectan-
glesin R? and contanis definiton of low directional
density. Section 4 extends our considerations for
sets of hyperrectangles in R® and contains a de-
scription of pseudo-code of BSP construction al-
gorithm. In section 5, we describe how to write
the pseudo-code efficiently. The comparison with
other algorithms and conclusion follows in sec-
tion 6.

Because of the lack of space we omitted proofs
of Lemmas and some parts from this paper. You
can find it in [19].

2 Preliminary
We start with formal definition of the binary
space partition:

Definition 2.1: A binary space partition
tree B for a set S of pairwise disjoint, (d — 1)-
dimensional, polyhedral objects in R? is a tree re-
cursively defined as follows' :

Each node v in B represents a convex region
Ry and a set of objects S, = {sNR,|s € S},
that intersect R,. The region associated with the
root is RY itself. If S, is empty, then node v is a
leaf of B. Otherwise, we partition v's region R,
into two convex regions by a cutting hyperplane
H,. At v, we store {s N Hy|s € S,}, the set of
objects in S,, that lie in H,. If we let H} be the
positive halfspace and H; the negative halfspace
bounded by H,, the regions associated with the left
and right children of v are R,NH, and R,NH},
respectively. The left subtree of v is a BSP for set
of objects S, = {sN H, |s € S} and the right
subtree of v is a BSP for set of objects S =
{sNH}|s € S}. The size of B is the number of
nodes in B.

Both the Mark de Berg’s unclutteredness [9]
and the Nguyen Viet Hai’s r-boundedness [11] are
based on properties of scene objects and the di-
mension of that one corresponds to the dimension
of the original space. The first idea of our algo-
rithm comes out from the observation that the
dimension of the splitting hyperplane is less by
one than the split space. Since we can aim our
attention to the space and objects contained in
the splitting hyperplane only.

The second idea follows from the free cuts.
We show an example of the free cut in two-

We take up the definition of Agarwal [1]

dimensional space with set of segments but it can
be generalized for arbitrary dimension. If a seg-
ment is split into three or more parts, then we
can bring a splitting hyperplane containing the
median segment without additional splitting of
another segment. In such way, this segment can
be excluded from further consideration (see figure

1).

(e, §)-free cut

free cut-=

Figure 1: Free cut

We generalize this idea and define so-called e-
free cuts, which can cut only constant number
(¢) of other segments in our algorithm. For al-
gorithm’s intentions, we suppose that any ob-
ject (hyperrectangle) has extended low directional
density defined in the next part of this paper. We
believe, that many realistic scenes fit to this con-
dition.

Definition 2.2: Let r be a rectangle in the
space with vertices r[X;];j € {1,...,4} and side
vectors ™ = X9 — Xy and 7 = X3 — Xo, as
you can see on the figure 2. Point C be cen-
ter of the rectangle r. W.l.0.g. we can sup-

pose that |F*| > |F’|. Then (6, fu,fv,rg’g}l})—
directional neighbourhood of rectangle r (we will
mark it Q(0, fu,fv,rg’ﬁ})) is a union of set of
points defined as follows:

o Q6, fu, fo, 1) = U,y p (C E 1] + oY)
o Q0 fu, fo,r21) = U, , (C £ a1 — e2r)
© Q6, fu, fo,m]) = Uey e, (C £ 37 + cat?)
o 6, fus for721) = Ugy o, (C £ 37 — c47)

where ¢i € (0,...f,), 2 € (3,.3 +

fu>7 c3 € (Oa“'a.fu>7 C4 € <%77% + fU>
fruwy = frur(6,7) is non-negative above

unlimited function increasing with 6. The
(6, fu, fv,)-directional neighbourhood of rectan-
gle r (we will mark it Q(3, fu, fu,7)) is a union

UQ(67 fuafvar?fjﬁ}i})'

Let f, = 6,f, = 6. In this case, the defini-
tion is intuitively extension of the definition for
set of segments in the plane [18]. We call the
Q(0, fu, fu,r) neighbourhood simple directional

neighbourhood and sign Q,(d,r).

(d, f1, f2,r%1) - directional vicinity
of the rectangle r

(d, f1, f2,r7) - directional vicinity
of the rectangle r

X4 X;

X1 X2

,r,u

(d, f1, f2,7%1) - directional vicinity
of the rectangle r

(d, f1, f2,r}) - directional vicinity
of the rectangle r

Figure 2:
rectangle r

Directional neighbourhood of

Definition 2.3: Let R be a set of rect-
angles in the space, r; € R and £ be an inte-
ger constant. The rectangle r; is called free if
Q(00, fu, fu,mi)NR = (. The rectangle r; is called
e-free if |Q(oo, fu, fu,7i) N R| < e.

T 06 A foir)

Figure 3: There are three rectangles cross-
ing the Q(4, fu, fv,r1) on the figure. Specif-
ically, the rectangles ry, 73 and ry.

Definition 2.4: We say, that a rectangle r; €
R has (g,96, fu, fv)-low directional density, iff
|6, fu, fo,ri) N R| < €, whereas € is a integer
constant and & > 0 is a real constant (see figure

We say, that a set of rectangles R has
(€,6, fu, fv)-low directional density, iff any
rectangle 1 € R has (g,0, fu, fo)-low directional
density.

Let us define the simple low directional
density of r and R for the Q4(6,r) neighbour-
hood.

3 BSP of rectangles in the space

Lemma 3.1: There is a set R of azis aligned
rectangles with simple low directional density that
no linear BSP exists.

Definition 3.2: Let f, = (1 +29), f, =
‘\::’Lll (1+20). We call the Q(6, fu, fv,r) neighbour-
hood of r extended directional neighbour-
hood and sign Q.(5,7). We call the set of rect-
angles R with (g,0, fu, fv)-low directional density

the set with extended low directional density.

e=2 e=3
i
TUT lj‘- ,,,,,,,, r,“,T,E‘-
e ! . T
6=1/2 ib
a="b=|ul(l+20) = 2|y :

Figure 4: Simple low directional density (on
the left) and Eztended low directional den-
sity (on the right) of rectangle r parallel
with zy plane.

Lemma 3.3: Let S, B be non-empty sets of
segments in the plane which fulfil the following
conditions:

I.n=|S|<|B|=n+k

2. There is such injective mapping o : I —
J; I ={1,..,n},J={1,...,n+ k} and real
constant «, that the following claim holds
for alli € I: (|s;] < albyi)]) A (si |l bogiy)s
where |s;| means the length of segment s; €
S and |by(;)| means the length of segment
bg(i) € B.

Furthermore, let v be an arbitrary non-zero vector
such that A(s;) : s; f v and p be a line parallel with
v. Then the following statement holds: 3(p) :
lpN S| < alpn BJ.

Lemma 3.4: Let R be a set of azxes rectan-
gles with extended low directional density. Then
a linear BSP for the set R exists.

4 BSP of hyperrectangles in the space

Obviously, every hyperrectangle E € R? is cre-
ated by set of six bounding rectangles. Hence, if
we create a BSP of set of bounding rectangles, we
have the BSP of hyperrectangles. The first idea is
to use the set of rectangles with ezxtended low di-
rectional density. Nevertheless, we propose better
solution following from new definition of the low
directional density of set of hyperrectangles. This
definition exploits the idea of extended low direc-
tional density in two directions only. The third
direction can have the neighbourhood small. So
we can do very flat cuts using this technique.

Definition 4.1: Let e be a azis aligned hyper-
rectangle with side vectors €,, €, and €,. W.l.o.g.
we can suppose that €, > €, > €,. We assign two
directional neighbourhoods to the hyperrectangle e
using the bounding rectangles of e.

1. We extend the neighbourhoods in directions

&y Ey.

o fu=1+25

o fy = {1+ 26)
L4 fz =4

Ql (6; E) = Ure (Q((sa f7 Te))

2. We extend the neighbourhoods in directions

€y Ex.
o f,=1+26
o fy=19

o fo=1{=(1+20)

02(0, E) = Ur (200, f, 7))
1 1
i

L 27 T,

‘V z

Figure 5: The Q4 (4, E) neighbourhood.

We say, that the hyperrectangle e has (g,0)-
low directional density, iff |21 (0,e)NE| < e
or |Q2(d3,e) N E| < e.

Lemma 4.2: Let E be a set of hyperrectangles
with (g,0)-low directional density. Then a linear
BSP for the set E ezists.

Now, we can describe the pseudo-algorithm of
construction of BSP:

At first, we build up three pairs of auxiliary
sets of segments By, Sy, By, Sy and Bs, S3 in the
following way:

Let us project the set {r|r € R} of original
rectangles onto the z axis. The set of segments
Sy contains the projected rectangles S; = {s|s =
Proj.(r),r € R}. For the sake of simplicity, we
will suppose, that the endpoints are in general
position (i.e. no two endpoints have the same z-
coordinate).

The degenerate cases could be simply solved
by lexicographical ordering on the points of orig-
inal rectangles. Each endpoint of s € S; can be
considered as projection of an unique point p,,qz
(Pmin) € r maximal (minimal) in the standard
lexicographical ordering.

The simple directional neighbourhood Q(d,r)
belonging to r is a part of rectangle enclosing r.
Let us project the set {Q(d,r)|r € R} onto the
axis x. We get a set of segments. Let us split
each segment Proj,(Qs(d,7)) into two parts by
subtraction of the Proj,(r) from the one. We
get two resultant segments: b; with lower x co-
ordinates and b, with higher = coordinates as-
sociated with the segment s, as you can see in
figure 6. It follows from the definition of Q4(d,r)
that |by| = |b2| = d|s|. The set Bj is an unifica-
tion of all segments b; and b, generated by the
set of {Qs(4,7)|r € R}. Note, that the degener-
ate cases are treated by lexicographical ordering
as well and we get two zero length segments by
and b, associated with the zero length segment s.

Any segment b € B expresses the neighbour-
hood of a segment s € S.

The sets S5, By, S3 and B3 are created in the
same way by projection onto the y and z axes.

The BSP construction algorithm proceeds with
loops consisting of two sections until only one
fragment remains in the resultant subspace. In
the first section, we process all e-free rectangles
and dispose them from S;. In the second section,
we split the original set R by a plane p and asso-
ciated sets S; and B; by a line | = Proj(p) into
two portions according to Lemma 3.3, provided
that S; is not empty. The algorithm starts with
i=1.

Section 1:

while There are any e-free rectangles in R do
begin
(1) Pick an arbitrary e-free

i Neighbourhoods

By S

Figure 6: The sets S1 and B

rectangle r € R up;
(2) Determine the plane p containing r;
(3) Eliminate all segments b € B;|bNp # 0
from the sets Bj|j € {1,...,3};
(4) Use p as the splitting plane for sets
R and Sj U B]|] e {1,...,3};
(5) Recurse on the resultant sets;
end;

Section 2:

begin
(6) if There is not possibility to select
a line [according to Lemma 3.3
[/ N Bi|/lN Si| > &
then Choose a new B;, S;|i € {1, ...,3}
not disturbing the Lemma 3.3
conditons;
// If any sets B;, S; satysfying the
// Lemma 3.3 conditions doesn’t exist
// then the rectangle with its longest
// side is e-free (using extended low
// direcitonal density).
(7) Select a line [according to Lemma 3.3
and associated plane p;
(8) Eliminate all segments b € B;|bNp # 0
from the sets Bj|j € {1,...,3};
(9) Use p as the splitting plane for the sets
R and S; U Byj € {1,...,3};
(10) Recurse on the resultant sets;
end;

An example of splitting of a rectangle from lines
(4) or (9) is shown in figure 7.

5 Design of the algorithm

The proof presented above provides us a
pseudo-algorithm how to create a linear BSP tree.
However, the construction steps of the algorithm
are not elementary and a brute force implemen-
tation could be very inefficient.

! ’

R_|R s

52

First subregion ———= Second subregion

i

81 Sq

82

Figure 7: The rectangle R is divided into
two parts.

The second criterion of quality of resultant BSP
tree (after size criterion) is balance. Now, we give
a formal definition of best-balanced cut as used in
[11].

Definition 5.1: Let C be cutting hyperplane in
the space, C< and C> denote the set of rectangles
lying entirely in on of the two halfspaces generated
by the cut C'. The best balanced cut is defined
to be a cut which minimizes the difference between
C< and C>, i.e.

dc = [lIC=I=IC]ll,

where ||z|| denotes the absolute value of x.

It is not possible to construct balanced BSP
tree by the proposed algorithm in any time. For
example, the sequence of nested cubes with a
common center point and exponentially increas-
ing diameters ({1,...,2"}) has low directional
density abundantly. Unfortunately, the presented
algorithm can not create balanced BSP tree.

It is clear, that the proposed example is quite
artificial. The balanced tree exists for a large class
of practical scenes. In the rest of this paper we
show an efficient algorithm involving trade-off be-
tween balance and size of the resultant tree.

The proposed construction algorithm is based
on segment trees discovered by Bentley [6]. Seg-
ment tree is a data structure designed to handle
intervals on the real line whose extremes belong
to a fixed set of O(n) endpoints. The endpoints
can be normalized by replacing each of them by
its rank in their left-to-right order. W.l.o.g., we
may consider these endpoints as the integers in
the range [1,n].

We use the definition of F. Preparata and M.
Shamos [15]:

Definition 5.2: The segment tree is a
rooted binary tree. Given integers | and r, with
[< r, the segment tree T(l,r) is recursively
built as follows: It consists of a root v, with
parameters Blv] = 1 and E[v] = r (B and E
are mnemonic for "beginning” and "end,” re-
spectively), and if v — 1 > 1, of a left sub-
tree T(l, | (B[v] + E[v])/2]) and a right subtree
T(|(Blv] + E[v])/2,7]). (The roots of these sub-
trees are naturally identified as LSON[v] and
RSONI(v], respectively.) The parameters Blv]
and E[v] define the interval [Blv], E[v]] C [l,r]
associated with node v. The set of intervals
{[B[v], E[v]] : v anode of T(l,7)} are the standard
intervals of T(I,r). The standard intervals per-
taining to the leaves of T'(I,r) are called the ele-
mentary intervals. It is straightforward to es-
tablish that T(1,r) is balanced (all leaves belong to
two contiguous levels) and has depth [log,(r—1)].

We will maintain the set of segments B;, S; in a
segment tree extended by extra data. Using this
trees, we will be able to select the splitting plane
according to Lemma 3.3 effectively.

5.1 Preliminary calculations

Because the definition of low directional density
of hyperrectangles depends on neighbourhood, it
is necessary to make a preliminary calculation.
To this purpose, we use the range trees with frac-
tional cascading technique [12].

We have to choose the better from the possi-
ble extended directional neighbourhoods. There
are two rectangles parallel with any axes aligned
plane: r1,7s || zy and 73,74 || z2.

Let ¢; = |Q.(0,7;) N E|, where e € E. If
€1 + €2 < €3 + ¢4 then we select the neighbour-
hood of rectangles 71,72 else the neighbourhood
of rectangles r3,r4 in opposite case.

The Q.(d,7) can be substituted with a rectan-
gle v = Q(d,r) Ur. This is correct because the
number of intersections between the rectangle v
and F is the same in the case of nonintersect-
ing hyperrectangles. In the case of intersecting
hyperrectangles, we can subtract the number of
intersections between E and r. Hence, we have
O(n) intersection questions between the bound-
ing rectangles of E and the neighbourhood rect-
angles (there are exactly 6n neighbourhood rect-
angles). Each intersection query can be computed
in O(log” n) time using the range tree with frac-
tional cascading and we obtain the number of
bounding rectangles intersecting the neighbour-
hood rectangle. The range tree can be con-
structed in O(nlog® n) time. Together, we spend
O(nlog®n) time by computing the extended di-

rectional neighbourhoods to the input set of hy-
perrectangles.

5.2 The trade-off algorithm

Our implementation corresponds to the pre-
sented pseudo-code. We execute cuts according
to Lemma 3.3 (i.e. it holds that |B;|/|Si] > §
where |B;| is number of segments from the set B
crossed by the line [and |S;| is number of seg-
ments from the set S crossed by the line) until
1-side free rectangles make it impossible in any
dimension.

Then e-free ctus are performed. If there is no
rectangle bounded by four cuts going through its
simple directional neighbourhood, then we use a
hyperplane containing the longist rectangle with
extended low directional density. It follows from
Lemma 4.2, that such rectangle is e-free.

The main problems appear to select a line [ac-
cording to Lemma 3.3. If such line exists (line (7)
of the algorithm), we eliminate the crossed seg-
ments b € B (lines (4) and (8) of the algorithm)
and split the sets S; U B;|j € {1,...,3} (lines (5)
and (10) of the algorithm). If this is done by
brute-force manner, then the construction time
can be quadratic. The reason of the quadratic
time is that we can spend O(n) time by searching
for the splitting line and the resultant BSP tree
can be very unbalanced. In this case, the recur-
sion R(n) = R(n — 1) 4+ O(n) leads to quadratic
time.

In order to do it efficiently, we use segment
trees. Initially, we have three pairs of sets B,
Si, i € {1,...,3}. We create three segment trees
(one for any dimension) TY; . 5y by the following
way: The segment tree T; contains all segments
b € B; and s € S;. We will suppose in the rest of
the paper, that the endpoints contained in each
T are in general position. If this condition doesnt
hold, we use the lexicographical ordering as was
described in the Lemma 3.4 Moreover, we main-
tain the next items in each node N of the T':

1. BS_quotient — the quotient |By|/|Sn| of
segments b and s contained in this node N.

2. best_descendant — a pointer to a descendant
node. Let N.T;(I,r) be the subtree gener-
ated by node N of the T;(1, K) and let m;
be a line perpendicular to the i axis and
intersecting the best quotient |b|/|s| of seg-
ments contained in N.T;(l,r) (if a such line
can intersect only b segments, then the line
intersecting most b segments is selected).
The pointer best_descendant selects the de-
scendant node, which contains elementary
interval intersected by m;.

3. best_quotient — the numbers |By.1;| and
|Sn.T,| of segments b and s of the subtree

N.T;(l,r) crossed by the line m; with best
quotient |b|/|s]|.

4. |C<| (JC>|) — the number of segments s ly-
ing entirely in the left (right) subtree.

We also suppose, that we have cross pointers
between segments belonging to identical rectangle
and subspace.

It is clear, that the finding of line [according to
Lemma 3.3 (line (7)) can be carry out in O(logn)
time by recursively descent using the described
segment tree for a set of O(n) segments. More-
over, we can order the descent to select the best
balanced cut fulfilling the Lemma 3.3 conditions.

The segment tree T'(I,r) is a static structure
with respect to the initial set of segments (i.e. the
segment trees does not support insertions or dele-
tions of segments with new endpoints). Neverthe-
less, it can store intervals, whose extremes belong
to the set {l,...,7} in a dynamic fashion (that is,
supporting insertions and deletions). Since, we
can delete a crossed segment b in O(logn) time
(lines (4), (8))-

We have to proceed more properly by splitting
a segment s. We can not select the splitting line
in any place of the crossed elementary interval be-
cause no new endpoint can arise. Hence, we select
one of the endpoints of the elementary interval.
Now, we can split the segments s in O(logn) time
as well (lines (5), (10)). We should take a note
that the new data of the segment tree can be up-
dated in the same time.

The last problem occurs, when we have to split
the sets of segments S; U B;|j € {1,...,3}. As it
has been shown, the splitting plane can be found
in O(logn) time using segment trees and we can
determine the bigger of resultant sets (Big;) and
the lesser of resultant sets (Small;). Let us sup-
pose, the set Small; contains O(m) segments. We
take this segments from the segment tree T;(l,r)
away and create a new segment tree for this set
from scratch.

In this way, we get two new segment trees (one
for each new subset of segments) and the algo-
rithm can continue recursively.

Lemma 5.3: The proposed algorithm runs in
O(nlog®n) time and space.

Theorem 5.4: Let E be a set of hyperrect-
angles with (e,0)-low directional density in the
R? space. Then the linear size BSP tree can be
constructed in O(nlog®n) time and O(nlog®n)
space. Moreover, we can trade-off between bal-
ance and size of the resultant tree.

6 Conclusion

In the proposed paper, we have tried to design
an effective algorithm for construction of low size
BSP for set of hyperrectangles. Such BSP can be
enormously useful in real-life problems because
any set of bounding-boxes of objects forms a set
of hyperrectangles.

The presented algorithm creates linear BSP
tree for so-called low directional density scenes.
It can be shown that the low directional density
is independent of r-boundedness [11] and unclut-
teredness [9]. Since it enlarges class of objects,
which we can create linear BSP for.

The algorithm can be simply extended for any
constant dimension. However, the size of constant
of resultant BSP increases exponentially with re-
spect to the space dimension. The time and space
complexity of the algorithm is O(nlog? ! n) in d-
dimensional space.

REFERENCES

[1] P. K. Agarwal, E. F. Grove, T. M. Murali,
and J. S. Vitter. Binary space partitions for
fat rectangles. In Proc. 37th Annu. IEEFE
Sympos. Found. Comput. Sci., pages 482—
491, October 1996.

[2] Pankaj K. Agarwal, T. Murali, and J. Vit-
ter. Practical techniques for constructing
binary space partitions for orthogonal rect-
angles. In Proc. 13th Annu. ACM Sympos.
Comput. Geom., pages 382—-384, 1997.

[3] Pankaj K. Agarwal and Subhash Suri. Sur-
face approximation and geometric partitions.
In Proc. 5th ACM-SIAM Sympos. Discrete
Algorithms, pages 24-33, 1994.

[4] John Milligan Airey. Increasing Update
Rates in the Building Walkthrough System
with Automatic Model-space Subdivision and
Potentially Visible Set Calculations. Ph.D.
Thesis, Dept. of Computer Science, Univer-
sity of North Carolina, Chapel Hill, 1990.

[5] C. Ballieux. Motion planning using bi-
nary space partitions. Technical Report
Inf/src/93-25, Utrecht University, 1993.

[6] J. L. Bentley. Solutions to Klee’s rectangle
problems. Technical report, Carnegie-Mellon
Univ., Pittsburgh, PA, 1977.

[7] Norman Chin and Steven Feiner. Near real-
time shadow generation using BSP trees. In
Proc. SIGGRAPH ’89, pages 99-106, New
York, August 1989. ACM SIGGRAPH.

[8] M. de Berg, M. de Groot, and M. Overmars.
New results on binary space partitions in the

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

plane. In Proc. 4th Scand. Workshop Algo-
rithm Theory, volume 824 of Lecture Notes
in Computer Science, pages 61-72. Springer-
Verlag, 1994.

Mark de Berg. Linear size binary space par-
titions for fat objects. In Proc. 3rd Annu.
European Sympos. Algorithms, volume 979 of
Lecture Notes Comput. Sci., pages 252-263.
Springer-Verlag, 1995.

H. Fuchs, Z. M. Kedem, and B. Naylor. On
visible surface generation by a priori tree
structures. Comput. Graph., 14(3):124-133,
1980. Proc. SIGGRAPH ’80.

Nguyen Viet Hai. Optimal Binary Space
Partitions for Orthogonal Objects. Ph.D.
Thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, 1996.

G. S. Lueker. A data structure for orthogonal
range queries. In Proc. 19th Annu. IEEE
Sympos. Found. Comput. Sci., pages 28-34,
1978.

M. S. Paterson and F. F. Yao. Efficient bi-
nary space partitions for hidden-surface re-
moval and solid modeling. Discrete Comput.
Geom., 5:485-503, 1990.

M. S. Paterson and F. F. Yao. Optimal bi-
nary space partitions for orthogonal objects.
Research Report 158, Univ. Warwick, 1990.

F. P. Preparata and M. I. Shamos. Computa-
tional Geometry: An Introduction. Springer-
Verlag, 3rd edition, October 1990.

R. A. Schumacker, R. Brand, M. Gilliland,
and W. Sharp. Study for applying computer-
generated images to visual simulation. Tech-
nical Report AFHRL-TR-69-14, U.S. Air
Force Human Resources Laboratory, 1969.

S. J. Teller. Visibility Computations in
Densely Occluded Polyhedral Environments.
Ph.D. Thesis, Dept. of Computer Science,
University of California, Berkeley, 1992.

P. Tobola and K. Nechvile. Linear bsp tree
in the plane for set of segments with low di-
rectional density. In Proc. 7th International
Conference in Central Europe WSCG ’99,
pages 297-304, 1999.

P. Tobola and K. Nechvile. Linear bsp trees
for sets of hyperrectangles with low direc-
tional density. Technical report, Masaryk
Univ., Brno, 2000.

