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ABSTRACT

We discuss interpolation methods for the reconstruction of the radiosity function across
a patch. Two groups of methods are compared: One group based on regular grids and one
based on hierarchical subdivisions. We handle points on hierarchical subdivisions as scattered
data points which opens the field of scattered data interpolation. These different methods
were implemented and characteristic images that show the (dis)advantages are discussed
and compared. Additionally, we calculated errors in standard error measures. It shows that

some scattered data interpolation methods produce acceptable images.
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1 Introduction

The goal of image synthesis is to produce realistic
looking pictures of synthetic scenes. Several meth-
ods have been proposed, like raytracing [Whi80]
or radiosity [GTGB84]. We will restrict ourselves
to the radiosity method with constant basis func-
tions across the subdivision-patches. The prob-
lem that arises from this type of functions is that
the resulting radiosity is constant across a patch.
This results in facetted surfaces in the final pic-
tures. To solve this problem, interpolation across
the patches is used.

In the case of regular subdivisions (eg a grid)
the radiosity values at the vertices of the subdivi-
son cells (eg quadrilaterals) are used to determine
the values of the radiosity function inside a cell.
This can be done by bilinear or bicubic spline in-
terpolation, just to name some of the methods. All
of these methods have advantages and disadvan-
tages as discussed below. Typically, pictures cal-
culated from the radiosity method are rendered on
high-end graphics workstations. As of today, bi-
linear interpolation across the subdivision-patches
of the polygons is implemented in hardware.

In the case of hierarchical subdivisions (eg a
quadtree) interpolation directly from the ver-
tices produces visual artefacts, like that from T-
vertices. Therefore, hierarchical subdivisions have
to be treated further. A common approach to
solve the problems is to triangulate the subdivi-
sion and to interpolate across the newly generated
triangles using some of the above mentioned inter-
polation methods (compare [CW93], pages 147-
149). This has the disadvantage of producing even
more patches and taking over the disadvantages
of the traditional interpolation methods.

One approach for continuous radiosity re-
construction uses Clough-Tocher elements con-
structed from cubic triangular Bézier patches
[SLD92]. This results in a C'-continuous recon-
struction. Discontinuities are taken into account
by relaxing continuity conditions of the Clough-
Tocher construction. Bastos et al. use bicu-
bic Hermite interpolation for regular [BASF93]
or quadtree [BGZ96] subdivisions. Derivatives
needed for the Hermite interpolation are esti-
mated from the radiosity samples. Here discon-
tinuities can be incorporated by duplicating ver-
tices along discontinuity edges. While these ap-
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proaches have advantages, most radiosity pro-
grams do not implement discontinuity meshing
[LTG92] because it requires non trivial algorithms
and increases computing time.

We have concentrated on reconstruction meth-
ods for radiosity solutions without discontinuity
meshing. Several interpolation methods for regu-
lar and hierarchical patch subdivisions were im-
plemented and compared.

We present an approach that treats radiosity
values from hierarchical subdivisions as scattered
data. This approach has been identified as ”a
largely untapped source of potentially useful tech-
niques for radiosity and image synthesis” [CW93].
Although scattered data interpolation methods
are well known in other application fields our ap-
proach is to our knowledge the first application of
these methods for radiosity reconstruction.

This introduces methods of the field of scat-
tered data interpolation where functions f
R’ — R are reconstructed from function val-
ues of arbitrary data points. Several interpola-
tion methods exist which have their specific ap-
plication fields [A1f89, Nie93]. We will concentrate
on distance weighted interpolation, Hardy’s Mul-
tiquadrics, and natural neighbour interpolation.

2 Discussion of interpolation
methods

Let us assume we have a point q = (z4,¥4) on a
patch for which we want to determine the radios-
ity value B(q). Interpolation methods will return
an approximate B(q) calculated from the set of
known radiosity values B(p;),i=1...n.

We have implemented two groups of interpola-
tion methods: one for regular patch subdivisions
and the other for adaptive, hierarchical subdivi-
sions. The latter can also be used for regular patch
subdivisions but not vice versa.

To evaluate the quality of the different meth-
ods and compare them, images of several sample
scenes were generated using the different meth-
ods. Due to size restrictions only results from one
scene are presented. Fig. 2 shows a reference solu-
tion for this sample scene that was calculated by
a progressive radiosity program using a regular
400 by 400 patch subdivision. We are interested

in the radiosity of the ground patch. The scene is
lit by a rectangular light source above the ground
patch. Shadows are thrown by two perpendicular
patches standing on the ground. The left image
in Fig. 2 shows a view into this scene, the mid-
dle image is an enlarged portion of the left image,
showing an interesting region of the ground, and
the right image shows the radiosity distribution
over the ground patch. Each row of the Figures
3 and 4 illustrates the result of a particular in-
terpolation method. The left and middle images
show the views known from the reference solution,
the right image shows the difference between the
interpolated radiosity and the reference solution,
scaled by a factor of two. Medium grey pixels rep-
resent zero difference, bright pixels indicate pos-
itive difference, dark pixels show negative differ-
ence.

2.1 Interpolation methods for reg-
ular subdivisions

For a regular patch subdivision the sample points
lie on a regular grid. Two well-known interpola-
tion methods were used for this case, namely bi-
linear and bicubic spline interpolation.

The data for the following grid interpolation
methods was the radiosity solution for a 16 by 16
regular subdivision of the ground patch. The first
row of Fig. 3 shows this radiosity solution.

2.1.1 Bilinear interpolation

Bilinear interpolation is a linear interpolation in
two directions. As we interpolate across a twodi-
mensional patch, we determine the desired func-
tion value from the neighbours of the data point
q. We first have to determine the cell of the grid in
which the desired data point falls. After that the
function value for the data point is interpolated
from the four vertices of the cell.

Let (%1,91),.-.,(%4,ys) be the neighbours of
q = (¢4, yq), then B(q) is determined as follows:

(x4~ z1)/(22 — 21)
(ya = y1)/(y2 — 1)

u

v

i

B(za, ya) (1 -u)(1 - v)B(z1,31) +
u(l - ’U)B(zz, yg) +

u v B(zs,y3) + (1 — u)v B(zs,ya)
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The second row of Fig. 3 shows the applica-
tion of bilinear interpolation. The most noticeable
artefact is a light leak under the wall, also to be
seen in the difference image. That is a well-known
problem when using this type of interpolation for
radiosity recomstruction. Another problem with
this interpolation method is that the result has
a discontinuous first derivation across cell bound-
aries, sometimes visible as Mach bands.

2.1.2 Bicubic spline interpolation

To avoid discontinuities across cell boundaries one
can switch to higher order interpolation eg bicubic
spline interpolation. We use natural cubic splines
that have a zero second derivative at the bound-
ary. To determine a value for a data point (24, ya)
in a m x n grid we first evaluate m one dimen-
sional splines for y4. After that we evaluate the
one dimensional spline from this values and z4
to retrieve the function value B(z4,yq). Further
details can be found in [PTVF92].

The solution resulting from this interpolation
method can be seen in the third row of Fig. 3.
The higher continuity of bicubic spline interpo-
lation avoids Mach bands but an even more dis-
tractable artefact is introduced by oscillations of
the interpolation, visible as alternating dark and
bright stripes parallel to the shadow edge.

2.2 Interpolation methods for
adaptive subdivisions

Adaptive subdivision of patches for radiosity
calculations was introduced by Cohen et al.
[CGIB86] and generalized to the notion of hier-
archical radiosity by Hanrahan et al. [HSA91].
Common to these approaches is the hierarchical,
quadtree-like subdivision of the patches (cf. Fig.
1).

Using scattered data interpolation, one tries
to reconstruct a function from arbitrary located
sample points. The samples need not be aligned
on a grid. For the use of scattered data interpola-
tion in general and especially in the field of geo-
metric deformations compare [Rup94, RM93].

The data for the following scattered data inter-
polation methods was the radiosity solution for
an adaptive quadtree subdivision of the ground

Figure 1: Quadtree subdivision and sample points

patch, that resulted in 286 subpatches. The first
row of Fig. 4 shows this radiosity solution.

We present three scattered data interpolation
methods which we have implemented to see their
impacts on visualisation of radiosity functions
across scene patches.

2.2.1 Distance weighted interpolation

One of the simplest methods for scattered data in-
terpolation is distance weighted interpolation or
Shepard’s method [She68]. Every sample point
has influence on the function value for a data
point. The influence of a sample point p; depends
on its distance to the desired data point q.

B(q) = Zw;(Q) B(p;)

The w; are weights which are dependent from
the distance between the desired data point q and
the sample points p;. The w; have to fulfill the
conditions

wi(pi) = 1,
Zn:wi(q) = 1,
- wi(q) > O
Shepard chose
wi(q) = %
@) = Tapy

resulting in:
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~ i1 d(q, Pi)"* B(p;)
Bla)= = i?z(lqd(l:l’ pe)"‘p

Distance weighted interpolation was applied to
the quadtree data (second row of Fig. 4). From
the images one can see that distance weighted
interpolation has the drawback that it tends to
produce poles around the sample values. Because
of this disadvantage other methods were imple-
mented and tested.

2.2.2 Hardy’s Multiquadrics

An interpolation scheme that does not produce
the undesired poles is Hardy’s Multiquadrics. The
basic idea is to describe the interpolating function
as a linear combination of basis functions f; and to
determine the coefficients a; of the base functions.
Normally, base functions which depend only on
the distance to a sample point p; are used. They
are called radial basis functions. Qur interpolating
function becomes:

B(q) = Zai fi(d(a, pi)) 1)
i=1

Hardy chose f(d) = (4?2 + r%)¥,» > 0,u # 0. r
can be choosen freely in general, but Eck [Eck91]
proposes to associate an individual r; with ev-
ery sample point as r; = miniz;d(p;,p;). The
o; are determined by solving the linear equa-
tions resulting from solving equation (1) for the
sample points and using the auxiliary conditions
E(p,-) = B(pi). We use Gauss-Jordan elimination
from [PTVF92] to solve the linear equations.

To achieve higher precision, one can add d-
variate polynomes to the sum of equation (1). We
have not used any additional polynomes.

The results of this method can be seen in the
third row of Fig. 4 for the quadtree data. Similar
to bicubic spline interpolation this method shows
oscillations resulting from the linear combination
of basis functions with positive and negative co-
efficients.

2.2.3 Natural neighbour interpolation

In subsection 2.2.1 we gave some conditions the
weight functions have to obey to be suitable for

the interpolation. As long as these conditions are
fulfilled, any function is suitable as a weight func-
tion. Natural neighbour interpolation [Sib81] uti-
lizes a function A that has the following proper-
ties:

v(VRi(q))
v(VR(q))

v determines the area of a region. VR(q) is the
Voronoi region of a point q.

Ai(q) =

VR(q) =
{p € R’|d(p,q) < d(p,p;),Vji=1,...,n}.

VRi(q) is the sub region VR(q) N VR; where
VR; is the point set

VR; =
{p e R*|d(p,p:) < d(p,p;),¥i =1,...,n},

i=1,...,n.

Each Ai(q) represents one so called natural
neighbour coordinate. With these coordinates we
can set up our interpolating function B(q).

B(q) = Z:)\i(‘I) B(p;)

We used the program nngridr, an implementa-
tion of natural neighbour interpolation from Dave
Watson [Wat94].

Images generated with natural neighbour inter-
polation can be found in the third row of Fig.
4. The difference image shows a small light leak
along the wall. A slight problem occurs along the
border of the ground patch where the method
changes from interpolation to extrapolation. This
can be fixed by adding additional sample points
along the border, this will be the subject of fur-
ther research.

2.3 Numerical errors

Tables 1 and 2 show the error measures of the
difference images in different error norms known
from approximation theory. The L! norm mea-
sures the mean error, L? ist the mean squared
error and L* is the maximum difference between
the interpolation B and the reference solution B.
One thing to notice is that different error norms
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interpolation method ! 2 L®

piecewise constant 0.00506 | 0.000226 | 0.337
bilinear 0.00746 | 0.000842 | 0.329
bicubic 0.0142 | 0.00107 | 0.31

distance weighted 0.00685 | 0.000487 | 0.333
Hardy 0.0113 | 0.00087 | 0.329
natural neighbour 0.0127 | 0.00135 | 0.329

Table 1: Errors for reconstruction of grid data

interpolation method | L* | L? | L*

piecewise constant 0.014 | 0.000622 | 0.169
distance weighted 0.0742 | 0.00964 | 0.302
Hardy 0.033 | 0.00244 | 0.412
natural neighbour 0.0328 | 0.00273 | 0.329

Table 2: Errors for reconstruction of quadtree data

result in different rankings, eg the bicubic inter-
polation has the biggest L! error but the smallest
L* error. The second thing we noticed is that this
error measures applied to our scene are not suit-
able to compare (subjective) visual quality of the
reconstructed images. The piecewise constant ra-
diosity function, that is the originally calculated
radiosity without interpolation, has in all cases
but one the smallest error. It is obvious that no
interpolation method improves the radiosity in a
numerical sense.

3 Conclusion

We have shown and discussed the quality of sev-
eral interpolation methods used to reconstruct ra-
diosity from samples across patches. Special at-
tention was given to scattered data interpolation
methods which are widely accepted in other ap-
plication areas.

While higher order interpolation produced vi-
sual artefacts resulting from oscillation of the
interpolation function, scattered data interpola-
tion, especially natural neighbour interpolation,
has shown to achieve acceptable results.

It is difficult to propose a specific interpola-
tion method because no interpolation method de-
creases L' or L? errors and while we think that
natural neighbour interpolation is suitable to re-

construct the radiosity function, all visual quality
enhancements are subjective.

The use of scattered data interpolation for ra-
diosity reconstruction is technically independent
from the meshing used to generate radiosity sam-
ples. This makes it easy to swap to this kind of
interpolation in order to increase visual quality
when advanced meshing algorithms like disconti-
nuity meshing are not available.

Although bilinear interpolation is implemented
in hardware in some graphics workstations, it has
the disadvantage that it cannot be used directly
when radiosity is calculated only at scattered lo-
cations across the patch. Additional triangulation
or restricted quadtrees have to be used. Scattered
data interpolation can be directly applied to the
sampled radiosity values.
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Figure 2: Reference solution with regular

bilinear interpolation

bicubic spline interpolation

Figure 3: Radiosity solution with regular grid, 16 by 16
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natural neighbour interpolation

Figure 4: Radiosity solution with quadtree subdivision
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